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A nearly lattice-matched In0.12Al0.88N/Al0.21Ga0.79N heterostructure field-effect transistor

(HFET) was fabricated and its device characteristics were evaluated. The fabricated device

showed good pinch-off characteristics with a high breakdown field of 118 V/lm. A simple device

calculation based on the experimental results showed the possibility that a low specific

on-resistance below those of conventional AlGaN-channel HFETs can be achieved for

InAlN/AlGaN HFETs in the case where a specific contact resistivity is less than 1� 10�5 X cm2.
VC 2016 American Vacuum Society. [http://dx.doi.org/10.1116/1.4961908]

I. INTRODUCTION

GaN-based two-dimensional electron gas (2DEG) hetero-

structure field-effect transistors (HFETs) have been highly

considered as a candidate device for next-generation high-

power and/or high-frequency electronic devices.1,2 In addi-

tion to conventional AlGaN/GaN heterostructures, ternary

AlGaN-channel heterostructures have recently attracted con-

siderable interest owing to their superior device characteris-

tics.3–11 Nanjo et al. reported that AlGaN-channel HFETs

showed much higher breakdown fields than those of conven-

tional GaN-channel HFETs.3–5 Hatano et al. reported that

the temperature dependence under high-temperature DC and

RF operation was lowered by using AlGaN channels instead

of GaN channels.8,9 On the other hand, 2DEG heterostruc-

tures employing InAlN layers in place of AlGaN barrier

layers have also attracted considerable attention. This is

because a high 2DEG density of over 2.5� 1013/cm2 can be

achieved without the generation of a high lattice strain

because of the large spontaneous polarization of InAlN.10,11

This feature is considered be appropriate for high-drain-

current operations. Recently, we have reported that nearly

lattice-matched InAlN/AlGaN heterostructures with high

2DEG densities exceeding 2.5� 1013/cm2 were successfully

grown on an AlN/sapphire template by metalorganic chemi-

cal vapor deposition (MOCVD).12 Further, we have also

shown the possibility that the low 2DEG mobilities observed

in the InAlN/AlGaN heterostructures can be increased by

improving the interface roughness.13 In addition, despite of a

concern about the effect of poor-quality InAlN barriers on

breakdown fields, several researchers have reported that

InAlN/GaN HFETs exhibit high breakdown voltages compa-

rable with conventional AlGaN/GaN HFETs.14–16 From

these, we expect that InAlN/AlGaN heterostructures will be

a possible candidate for future high-power electronic devi-

ces. To consider the application of InAlN/AlGaN hetero-

structures to high-power electronic devices, it is necessary to

evaluate their device characteristics. In this paper, therefore,

we present the device fabrication results and basic character-

ization of InAlN/AlGaN HFETs.

II. EXPERIMENT

An InAlN/AlGaN heterostructure was grown using a

horizontal MOCVD system with conventional precursors.

An AlN/sapphire template (DOWA Electronics), which con-

sisted of a 1-lm-thick epitaxial AlN film on a 2-in.-diameter

c-face sapphire substrate, was used as an underlying sub-

strate. Figure 1 shows a schematic of the cross section of the

MOCVD-grown sample. The sample structure consisted of

the following layers from the bottom to the top: a 2-lm-thick

Al0.21Ga0.79N channel layer, a 1-nm-thick AlN interlayer,

and a 10-nm-thick In0.12Al0.88N barrier layer. The 1-nm-

thick AlN interfacial layer was employed for the purpose of

not only enhancing 2DEG carrier confinement in the channel

but also of protecting the AlGaN surface during the growth

interval.11,12 Here, the InAlN barrier layer was confirmed

to be nearly lattice-matched to the AlGaN channel layer

by high-resolution x-ray diffraction measurements.12 More

detailed information about the MOCVD growth is presented

in our previous report.12 The room-temperature 2DEG den-

sity and mobility were measured to be 2.8� 1013/cm2 and

168 cm2/(V s), respectively, using a Hall effect measurement,

which correspond to a sheet resistance Rsh¼ 1330 X/sq.12,13a)Electronic mail: miyoshi.makoto@nitech.ac.jp
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The HFET device was fabricated using a conventional pho-

tolithographic method. The device isolation was accomplished

by BCl3 plasma reactive ion etching using a parallel-plate

reactor system. Source and drain ohmic patterns were formed

by the evaporation of Ti/Al (15/60 nm), which were subse-

quently annealed at a temperature of 550 �C for 30 s in a nitro-

gen atmosphere. The gate Schottky contact was formed by the

evaporation of Pd/Ti/Au (40/20/60 nm). The device dimen-

sions were as follows: source-to-gate distance Lsd¼ 3 lm,

gate length Lg¼ 2 lm, gate-to-drain distance Lgd¼ 4 lm, and

gate width Wg¼ 15 lm. Current–voltage (I–V) characteristics

were measured using a semiconductor parameter analyzer.

The contact resistance of the fabricated device was estimated

by using a transfer length measurement (TLM).18,19

III. RESULTS AND DISCUSSION

Figure 2 shows the typical DC characteristics of the fabri-

cated InAlN/AlGaN HFET. As seen in this figure, the device

exhibited good pinch-off characteristics. The maximum drain

current density was measured to be approximately 80 mA/mm.

Using the TLM patterns, the specific contact resistivity (qc) was

measured to be higher than at least 2� 10�3 X cm2, from which

it was found that the contact resistance was a very large part of

the total device resistance. This implies that a large reduction in

the contact resistance is indispensable for achieving a high

drain current and low on-resistance in InAlN/AlGaN HFETs.

The three-terminal off-state breakdown voltage (VB) was

measured at a gate voltage of �10 V and by increasing the

drain-to-source voltage. The typical measured results are

shown in Fig. 3, from which VB was measured to be 470 V at

a drain current density of 1 mA/mm. Correspondingly, the

critical electric field at the off-state breakdown (Ec) was esti-

mated to be 118 V/lm. Figure 4 shows the relationship

between Ec and the Al content in the AlGaN channel layers,

in which the results for the AlGaN/AlGaN HFETs reported

in Refs. 4 and 17 are also plotted. Here, all of the data are

results for HFETs without any field-plate (FP) electrodes.

Compared with the reported values, our present data seem to

be reasonable. From this, we considered that VB of the

FIG. 1. Schematic of the cross section of the InAlN/AlGaN heterostructure

grown on an AlN/sapphire template by MOCVD.

FIG. 2. (Color online) Drain-to-source I-V characteristics for an InAlN/

AlGaN HFET.

FIG. 3. (Color online) Three-terminal off-state breakdown voltage measurement

results for an InAlN/AlGaN HFET. The inset shows a semilogarithm plot.

FIG. 4. (Color online) Relationship between the critical electric field (Ec)

and the Al content, x, in the AlxGa1�xN channel layers in AlGaN-channel

HFETs. The results reported in Refs. 4 and 17 are also plotted. All of the

data are measurement results for FETs without FP electrodes.
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InAlN/AlGaN HFETs varies depending on the electrode dis-

tance on the basis of the estimated Ec of 118 V/lm.

On the basis of the above results, we attempted to esti-

mate the limit of the specific on-resistance for InAlN/AlGaN

HFETs by the reference to the method given in Ref. 17. The

inset in Fig. 5 shows the equivalent circuit and device

dimensions defined for this estimate. First, we posited that

VB is given by

VB ¼ LgdEc: (1)

On the other hand, the on-resistance of the HFET is defined

as Ron¼Rdrþ 2Rc, where Rdr is the drift resistance and Rc is

the contact resistance. According to the TLM model,18,19 Rc

is approximately given by the formula Rc ¼ ðLt=WÞRsh,

where Lt is the transfer length, and W is the device width.

Moreover, the relationship between Lt and qc is given by the

formula qc¼Lt
2Rsh. By regarding Lt as the optimized ohmic

contact length, Lc, we can obtain

Lc ffi Lt ¼
ffiffiffiffiffiffiffi
qc

Rsh

r
: (2)

Then, Rdr was defined as Rdr¼ {(LsdþLgþLgd)/W}Rsh, where

LsdþLgþLgd is the drift length in the on-state of the HFET.

Using Lc as the contact electrode length, the total device length

is represented as Ltotal¼ (LsdþLgþ Lgdþ 2Lc). The product

LtotalW gives the device area, A. As a result, we obtain

RonA ffi Rdr þ 2Rcð ÞLtotalW

¼ Lsd þ Lg þ Lgd

W
Rsh þ 2

Lc

W
Rsh

� �

� Lsd þ Lg þ Lgd þ 2Lcð ÞW
¼ Lsd þ Lg þ Lgd þ 2Lcð Þ2Rsh: (3)

Thus, VB, Ron A, and Lc can be represented by using Lgd or

qc as variables. Figure 5 shows the calculated results for Ron

A and Lc for InAlN/AlGaN HFETs as functions of qc. In this

estimate, we assumed In0.12Al0.88N/Al0.21Ga0.79N HFETs

with Lsd¼ 1 lm, Lg¼ 1 lm, and Lgd¼ 5.1, 7.7, 10.2, and

12.8 lm, which correspond to VB¼ 600, 900, 1200, and

1500 V, respectively. Figure 5 indicates that Ron A for

InAlN/AlGaN HFETs is markedly reduced by lowering qc.

In the case where qc is less than 1� 10�5 X cm2, Ron A was

calculated to be 1.0, 1.7, 2.6, and 3.6 mX cm2 for the devices

with VB¼ 600, 900, 1200, and 1500 V, respectively, with an

optimized contact lengths Lc¼ 0.9 lm. These Ron A values

compare favorably with the results for GaN-channel HFETs

with optimized FP electrodes.17 From this, it is expected that

a further improvement will be achievable by adopting an

optimized FP electrode or by obtaining a high 2DEG mobil-

ity. On the basis of the above, we conclude that improve-

ments in the contact resistance and 2DEG mobility should

be the first priority for the development of InAlN/AlGaN

heterostructures for high-power electronic devices. Our pre-

vious report indicates that 2DEG mobility of approximately

300 cm2/V s can be achieved by realizing atomically smooth

heterointerfaces and that there is still room for improvement

in the surface roughness of AlGaN channels.13 In order to

achieve such a smooth AlGaN surface, MOCVD growth

conditions, including the V/III gas ratio, the growth rate,

and the other growth parameters, must be reconsidered.20,21

Regarding the contact resistance, it is important to lessen

the influence of the high energy barrier related to the InAlN

layer existing between the surface and 2DEGs and to

enhance the carrier tunneling. In future research, we will

consider some methods ever reported for AlGaN/GaN or

AlGaN/AlGaN heterostructures.5,22,23

IV. SUMMARY AND CONCLUSIONS

A nearly lattice-matched InAlN/AlGaN HFET was fabri-

cated and evaluated. The fabricated device showed good

pinch-off characteristics with a drain current density of approx-

imately 80 mA/mm with a breakdown field of 118 V/lm.

A simple device calculation based on experimental results

indicated that low Ron A values can be obtained even without

the use of FP electrodes in the case where qc is less than

1� 10�5 X cm2. It was indicated that an improvement in the

contact resistance is indispensable for the development of

InAlN/AlGaN HFETs.
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