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We simulate crystallization and melting with local Monte Carlo (LMC), with event-chain Monte
Carlo (ECMC), and with event-driven molecular dynamics (EDMD) in systems with up to one
million three-dimensional hard spheres. We illustrate that our implementations of the three algorithms
rigorously coincide in their equilibrium properties. We then study nucleation in the NVE ensemble
from the fcc crystal into the homogeneous liquid phase and from the liquid into the homogeneous
crystal. ECMC and EDMD both approach equilibrium orders of magnitude faster than LMC.
ECMC is also notably faster than EDMD, especially for the equilibration into a crystal from a
disordered initial condition at high density. ECMC can be trivially implemented for hard-sphere
and for soft-sphere potentials, and we suggest possible applications of this algorithm for study-
ing jamming and the physics of glasses, as well as disordered systems. C 2015 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4929529]

I. INTRODUCTION

Crystallization and melting have long been central sub-
jects in statistical physics. These processes connect micro-
scopic nucleation with the macroscopic phenomena of domain
growth and of phase transitions. A number of numerical
methods and simulation techniques have been brought to bear
on these subjects, following the pioneering computer simula-
tions of hard-sphere systems by both Monte Carlo1–3 and by
molecular dynamics.4–8

The hard-sphere system is trivial to describe. Neverthe-
less, equilibration in this simplest of all particle systems is
a slow process, because of the large activation free energy
for crystallization. Timescales are also especially large in the
fluid-solid coexistence regime, because of the surface tension
between coexisting phases. Specialized algorithms for equil-
ibration have been developed to overcome these problems,
and the melting and crystallization time scales provide useful
benchmarks for their comparison.

A rejection-free hard-sphere “event-chain” Monte Carlo
algorithm (ECMC)9 has recently allowed to speed up equil-
ibration for two-dimensional hard disks by roughly two or-
ders of magnitude compared to the event-driven molecular
dynamics5,10 (EDMD) and to local Monte Carlo11,12 (LMC).
In ECMC, a randomly sampled starting sphere moves along
a straight line until the latter collides with another sphere,
which then moves in the same direction until it collides itself
with yet another sphere. This continues until the spheres’ total
displacement equals a certain fixed length Lc. ECMC breaks
detailed balance (moves are in the +x, +y , and +z directions
only) yet satisfies global balance and ergodicity.13 It rigorously
samples the equilibrium Boltzmann distribution. Considerable
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speedup was also demonstrated for the extension of ECMC to
continuous potentials.13,14

In this paper, we assess the speed of ECMC, EDMD, and
LMC not by computing autocorrelation functions in equilib-
rium, but rather by the time scales associated with melting
and crystallization in systems of many spheres at high density.
We expect our observations to extend to subjects as dense
packing, nucleation, and jamming. We focus on the melting
from the metastable solid branch to the stable liquid (that is,
slightly below the liquid–solid coexistence interval) and also
the nucleation processes from the metastable liquid branch
towards the stable solid slightly above coexistence. The paper
is organized as follows: Our model system and our methods
are described in Section II, together with the observables
on which we focus: The non-dimensional pressure and the
local and global orientational order parameters. Results are
summarized in Section III: We reproduce the phase diagram
by ECMC and quantify the efficiencies of our three methods.
We discuss the relative efficiency of ECMC and EDMD for the
crystallization process. Concluding remarks are described in
Section IV.

II. MODEL, ALGORITHMS, AND OBSERVABLES

We consider N monodisperse hard spheres of radiusσ in a
cubic box of sides L with periodic boundary conditions (PBC).
The density (packing fraction) ν is given by ν = 4/3Nπσ3/L3.
We concentrate on melting and crystallization from the un-
stable to the stable phase, i.e., from the unstable crystalline
branch to the liquid and from the unstable liquid branch to the
crystal. For our melting runs, at density ν = 0.490 below the
coexistence interval of liquid and solid phases, we prepare the
initial configurations as perfect fcc crystals, corresponding to
the stable phase at high densities (the free energy difference
between fcc and hcp crystals has been discussed actively in
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Refs. 15 and 16). The fcc initial conditions are compatible with
the cubic simulation box.

For the crystallization runs at density ν = 0.548 above the
coexistence interval, we start from a fluid initial configuration
at a liquid-phase density ν = 0.490. In order to reach the higher
target density, we repeatedly increase σ slightly and remove
all created overlaps by sliding overlapping pairs of spheres for
a half-length of overlap along their common symmetry axis.
This is done until all pair overlaps have disappeared.

In EDMD, hard spheres evolve in continuous physical
time through collisions, and the dynamics solves Newton’s
classical equations of motion. We use an efficient sequential
implementation.10 LMC and ECMC are implemented very
simply. For the former, the optimal displacement of spheres is
determined by short LMC runs from the initial conditions so
that the acceptance ratio is 1/2. For the latter, a single param-
eter, the chain length Lc, must be optimized for each density.
A single event can be implemented very quickly in ECMC, as
the motion is always in +x or +y, which decreases the CPU
time per event. We consider systems with N = 2048, 131 072,
and 1 048 576 spheres. Our calculations are mainly done on
the Intel Xeon CPU E5-2680 2.80 GHz, where we reach∼3.15
× 109 events/h of CPU time for ECMC and ∼4.62 × 108 colli-
sions/h for EDMD. For the LMC algorithm,∼6.5 × 109 trials/h
are reached. All our comparisons of algorithms are in terms
of CPU time. To be as fair as possible, the three algorithms
were implemented following unified design principles. Fur-
thermore, we used the same computer, the same language (Intel
FORTRAN), and the same optimal option of compiler. An
event-count would have produced similar results.

We track the time-evolution of the ordering/disordering of
the system from the pressure and the local and global orienta-
tional order parameters. In EDMD, the nondimensional virial
pressure is computed from the collision rate via the virial
theorem,

P∗ = βP(2σ)3 = 6ν
π


1 − βm

3T
1
N


collisions

bi j


, (1)

where T is the total simulation time, and β = 1/m


v2
x

�
is

the inverse kinetic temperature (mass m and mean-square

x-component of velocity of spheres). The collision force bi j

= ri j · vi j is defined between the relative positions and the
relative velocities of the collision partners.11,17 In ECMC, the
pressure P∗ can be evaluated from the mean excess chain
displacement,13

P∗ =
6ν
π


xfinal − xinitial

Lc


chains

, (2)

where xfinal and xinitial are final and initial positions of each
chain, respectively, taking into account the PBC. This conve-
nient formula replaces the tedious extrapolation of the pair
correlation function at contact g2(r = 2σ) that was used previ-
ously and that must still be used for LMC. The comparison
of the evolving pressure of EDMD (using Eq. (1)) and ECMC
(using Eq. (2)) in the liquid state at ν = 0.490 is shown in the
left of Fig. 1. The pressures fluctuate around P∗ = 11.3893 and
agree within very tight error bars.

Besides the pressure, we quantify the speed of melting and
of crystallization via the time-dependent local q6 and global Q6
order parameters,18

q6 =
1
N

N
i=1


4π
13

m=6
m=−6

�������

1
n(i)

n(i)
j=1

Y6,m(ri j)
�������

2

, (3)
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where n(i) is the number of nearest neighbors for each sphere
i and Y6,m(ri j) are the spherical harmonics with icosahedral
symmetry for the distance vector ri j between spheres i and
j. We detect nearest neighbors by the SANN algorithm of
van Meel et al.19 rather than by the Voronoi construction. On
the right of Fig. 1, we again demonstrate that the equilib-
rium values for q6(∼0.386 78) agree within tight error bars for
LMC, ECMC, and EDMD. Similar agreement was reached
for the global order parameter Q6. We note that perfect fcc
configurations have an orientational order Q6 = q6 ∼ 0.575,
while for liquid configurations (including our disordered initial
configurations), Q6 approaches zero. In the dense liquid, the

FIG. 1. Pressure P∗ (left) and local order parameter q6 (right) in the dense liquid at ν = 0.490, obtained from ECMC and EDMD for N = 131 072 hard spheres.
In ECMC, the pressure is computed using the excess displacement method of Eq. (2). In the right panel, the local order parameter of LMC is also shown.
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local order q6 is non-zero because of the buildup of transient
local crystal structures.20

III. RESULTS

A. Hard-sphere phase diagram

The fluid-solid coexistence in the NVE ensemble (which,
for hard spheres, corresponds to the common NVT ensemble)
for densities ν in the interval 0.494 < ν < 0.545 has been
investigated for more than 50 years.2,4,7 Recently, various theo-
retical equations of states were compared with the results
of a large-scale EDMD simulation on this system,21 with N
∼ 106. The metastable fluid branch in the fluid-solid coexis-
tence window was found stable against freezing on EDMD
time scales up to ∼O(109) collisions. To speed up the simula-
tion, the replica exchange MC method was adapted to the hard-
sphere case. To keep the acceptance rate at reasonable values,
many replicas at finely spaced densities had to be used, and this
approach proved restricted to quite small system sizes (N = 32
and N = 108).22 Fernández et al.23 explored the coexistence of
hard-sphere systems in equilibrium by tethered MC for rela-
tively small system sizes∼O(103). In this method, the approach
to equilibrium is accelerated by a biased field of two order
parameters. The equilibrium pressure P∗ = 11.5727(10) is ob-
tained through extrapolation towards the infinite-size limit.
We note that in three-dimensional hard spheres, the direct
simulation remains difficult in the coexistence region, even
for ECMC, whereas for the analogous two-dimensional hard
disks, the equilibration of the coexisting hexatic and liquid
phases by ECMC proved possible at all densities, for up to one
million disks.24

FIG. 2. Hard-sphere equation of state obtained by ECMC after ∼O(1012)
collisions. The snapshots in the coexistence interval at N = 1 048 576 repre-
sent the local orientational order q6(i) for each sphere i (liquid-like local
order is represented in green-solid-like local order in blue). The equilib-
rium coexistence pressure for the infinite system is also shown. The den-
sities ν = 0.490 and ν = 0.548, on which we concentrate in Sections III B
and III C, are indicated.

Fig. 2 shows the hard-sphere equation of state from ECMC
(final pressures after long runs with (2 ∼ 3 × 1012) collisions).
The pressure is averaged over 1010 collisions at the end of the
simulation. The stable and unstable fluid pressures well agree
with Hoover-Ree25 and Carnahan-Starling extrapolation.26 In-
side the coexistence interval, the final pressure depends on the
initial configuration, as the metastable fcc solid or fluid initial
configurationsarepreservedonthe time-scaleof thesimulation.
In the NVE ensemble, the presence of interfaces of different
topologies makes that the equation of state is non-monotonous,
and the liquid-solid coexistence pressure curve is not flat in a
finitesystem.Asone increases thedensity fromthe liquidphase,
the spherical or cylindrical droplets that can be seen in Fig. 2
generate an excess Laplace pressure. This is analogous to what
wasfoundintwo-dimensionalharddisks,24,27 whichshowdrop-
lets and stripes or in fluid-gas mixtures of the three-dimensional
Lennard-Jones system,28 where spherical and cylindrical drop-
lets as well as two-dimensional stripes are found.

Specifically, for ν < 0.498, simulations from arbitrary
initial conditions converge to the same pressure since the
system is completely liquid and nucleation barriers are low. In
the region of ν = 0.500 ∼ 0.514, simulations from fcc initial
configurations successfully create interfaces with different
topologies, whereas simulations from fluid initial conditions
remain on the fluid branch. The pressure at ν = 0.498 ∼ 0.514
decreases as P∗ = 12.2 ∼ 11.5 and agrees with the expected
coexistence pressure.23 The phase coexistence at equilibrium
can be seen clearly by the spatial distributions of the local
q6 order parameter, where the fcc crystal reduces to a droplet
(ν = 0.500 ∼ 0.502) when started from a fcc crystal. For larger
densities (ν = 0.504 ∼ 0.512), the remaining fcc phase has the
form of a cylinder that reconnects through the PBC, surrounded
by the liquid dominant phase created through melting (see the
insets of Fig. 2). In the density interval ν = 0.514 ∼ 0.530, the
fcc crystal and the liquid remain metastable on the available
scales of simulation time. For ν = 0.532 ∼ 0.543, simula-
tions from fluid initial conditions nucleate fcc droplets. At ν
> 0.543, simulations from fluid initial condition drop down

FIG. 3. Melting at ν = 0.490 (N = 131 072) from a fcc initial configuration
into the stable liquid, tracked by the time evolution of the global Q6 order
parameter in LMC, EDMD, and ECMC with optimal chain length (Lc/2σ
= 5.87). Data averaged over 5 samples. Note that ECMC and EDMD are
orders of magnitude faster than LMC.
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FIG. 4. Crystallization at ν = 0.548 from a random initial configuration, tracked by the evolution of the pressure P∗ in EDMD and ECMC with different chain
lengths Lc. Data averaged over 100 samples for N = 131 072 (left) and 5 samples for N = 1 048 576 (right). The inset in the left panel illustrates the influence
of the parameter Lc on the performance of ECMC.

near the solid branch, however, relaxation is in progress at the
value around slightly higher pressure than the solid branch,
except for the case of N = 2048.

B. Melting from a fcc initial configuration at a fluid
density

We now study the speed of melting into the equilib-
rium liquid phase at ν = 0.490 from a fcc crystalline initial
configuration for N = 131 072. From the global order param-
eter Q6, as shown in Fig. 3, the initial fcc configuration
(Q6 ∼ 0.575) rapidly becomes unstable for the three algo-
rithms and approaches the liquid branch, where the global
orientational order approaches zero. Melting is much faster
for ECMC and EDMD than for LMC. ECMC is found to be
somewhat faster than EDMD.

C. Crystallization from a fluid initial condition at a
solid density

In Fig. 4, we show the evolution toward crystallization of
EDMD and of ECMC with different chain lengths Lc. Results

are averaged over 100 samples for N = 131 072 (left of Fig. 4)
and over 5 samples for N = 1 048 576 (right of Fig. 4). Results
for three trial runs in which we changed the chain length Lc are
alsoshownFig.4.TheefficiencyofECMCnaturallydependson
Lc. For both methods, the pressure remains somewhat above the
configurational equilibrium pressure P∗ ∼ 11.934. The relative
advantage of ECMC with optimal chain length is evident.

In Figs. 5 and 6, we show the evolution of the local q6 and
global Q6 order parameters in crystallization runs of EDMD
and ECMC with three chain lengths. The number of samples
is again 100 for N = 131 072 and 5 for N = 1 048 576. In the
early stage of relaxation, q6 and Q6 are increasing functions of
CPU time. In the perfect fcc configuration, the local and global
order parameters agree to q6 = Q6 = 0.574 52. Due to thermal
fluctuations, actual numerical simulation at fcc equilibrium
estimates the order parameters to (q6,Q6) = (0.505,0.483) in
(N, ν) = (1 048 576,0.548). Although the crystallization still
proceeds, our final averaged q6 and Q6 reach around 0.488
and 0.432, respectively. The inconsistency between the fcc
crystal structure and the (finite) simulation box may well be
responsible for the reduction in order parameter.

FIG. 5. Crystallization at ν = 0.548 from a fluid initial configuration with N = 131 072, tracked by the evolution of local q6 and global Q6 order parameters by
LMC, EDMD, and ECMC with different chain lengths Lc. Data averaged over 100 samples.
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FIG. 6. Crystallization at ν = 0.548 from a random initial configuration with N = 1 048 576 tracked by the evolution of local q6 and global Q6 order parameters
in LMC, EDMD, and ECMC with different chain lengths Lc. Data averaged over 5 samples. Note that LMC is much slower than the other two methods.

Order parameters decay towards higher order in time, and
ECMC with optimal chain length Lc/(2σ) = 23.46 needs 48.6
CPU hours to reach at q6 = 0.4863 in N = 131 072, however
EDMD needs 165 CPU hours. Both smaller and larger Lc

result in the inefficiency of relaxation. After 165 h, one quarter
of ECMC simulations had almost reached the equilibrium
state (i.e, q6 > 0.99 × q6eq.) whereas for EDMD, only 10% had
reached such values. The results for LMC are also shown in
Fig. 5, and they show that it is much slower than ECMC and
EDMD. For example, our LMC simulation on average reaches
q6 = 48.25 after O(107) LMC sweeps corresponding to 152
CPU hours. At this q6 = 48.25, ECMC and EDMD need only
about 11 and 28 CPU hours, respectively. The decay of Q6
has the same tendency as that of q6; however, its values are
lower than that of q6. Since the whole system is slower to order
than to establish local order, the global orientation also grows
more slowly than the local orientation. In the larger case N
= 1 048 576, ECMC with optimized chain length and EDMD
need 416 and 1000 CPU hours to reach q6 = 0.4897, respec-
tively. Note that if chain length is not optimized, the perfor-
mance of ECMC changes drastically and becomes comparable

to or slower than that of EDMD. As for q6 and Q6, ECMC
with optimal length is faster than that of EDMD for a certain
factor depending on the target point, which will be discussed
in Section III D.

D. Relative speed of ECMC and EDMD

To further quantify the equilibration speed of ECMC and
EDMD, rather than the observables as a function of time O(t),
we consider the elapsed CPU time T (O) from the beginning
of the simulation t = 0 at which the observable O is reached.
This allows us to define the relative efficiency Rs,

Rs(O) = TEDMD(O)/TECMC(O), (5)

and analogously for any pair of algorithms, where O is an
observable, in our case the pressure P∗, or the local and global
order parameters q6 and Q6.

For the melting case (not shown) at ν = 0.490, Rs for
observables takes around 3.2 (t = 0) to 1 at the end of simula-
tion. EDMD is slightly slower than that of ECMC. This relative
speed remains rather unchanged during the melting process.

FIG. 7. Relative speed Rs (see Eq. (5)) of LMC, ECMC and EDMD as a function of normalized observables Ô = (O−Oinitial)/(Oequil.−Oinitial), (left) O = P∗
and (right) O =Q6 for N = 1 048 576. As also shown in Fig. 6, both ECMC and EDMD are orders of magnitude faster than LMC. ECMC shows considerable
advantage over EDMD in the later times of the evolution, when large-scale structures are built up.
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The situation changes drastically for the crystallization pro-
cess. Fig. 7 shows Rs as a function of normalized observables
as Ô = (O − Oinitial)/(Oequil. − Oinitial) at ν = 0.548 in the crys-
tallization process, at which each data can be estimated by
Figs. 4–6. Oinitial and Oequil. are the values at t = 0 and at
the equilibrium, respectively. Those are obtained by indepen-
dent runs at the perfect fcc crystal which are q6 = 0.505, Q6
= 0.483, and P∗ = 11.934. In all cases, Rs(O) is increasing
function and growing drastically near the crystal (i.e., Ô > 0.8)
as a hockey stick curve. The relative efficiency Rs depends
rather weakly on system size. We did not compute variations
precisely, as the running times T were only averaged over
5 samples for N = 1 048 576. The different algorithmic com-
plexities of our methods might marginally contribute to the
size dependence of Rs: Our EDMD algorithm is implemented
in O(N log N) per N collisions and ECMC as O(N) per N
collisions. At q6 = 0.47, Rs(q6) takes 1.33 (N = 131 072) and
1.49 (N = 1 048 576), respectively.

IV. CONCLUSION

In this paper, we compared hard-sphere Monte Carlo and
molecular dynamics algorithms that coincide in their equi-
librium properties. In large systems with up to one million
spheres, we recovered the known phase diagram and especially
the coexistence region. We quantified the approach towards
equilibrium, namely, towards the fcc crystal from the liquid-
like initial configuration at packing ν = 0.548 or the stable
liquid from a fcc initial configuration at packing ν = 0.490.
We clearly showed that the EDMD and ECMC are orders of
magnitude faster than the LMC algorithm for both the melting
and the crystallization. ECMC needs optimization for chain
length Lc, and we generally find that the individual chains
should wrap a few times around the simulation box. The effect
of the chain length is rather drastic, and Lc must be optimized
carefully. The optimal chain length for the crystallization pro-
cess is estimated around Lc/(2σ) ∼ 25 (N = 131 072) and 50
(N = 1 048 576). With a fixed Lc/(2σ), the actual chain length
⟨xfinal − xinitial⟩ /(2σ) can be obtained by trial and error before
the production runs. It may also be estimated by the ECMC
pressure formula, Eq. (2), as

⟨xfinal − xinitial⟩
2σ

=
P∗(Lc/(2σ))π

6ν
(6)

which is evolving during simulation according to pressure
relaxation. In case of the optimal chain length Lc/2σ = 23.46
∼ Lx/2, the chain winds around 6 times around the periodic
box. While doing so, very few spheres get hit more than
once.

We conclude that ECMC with well-chosen chain lengths
is far superior to LMC, although it can be implemented just
as easily.29,30 Even with respect to molecular dynamics, it per-
forms very well. The clearest advantage of ECMC over EDMD
shows up in the crystallization, that is, in the buildup of long-
range correlations. We expect the ECMC algorithm and its
extension to continuous potentials to be helpful to investigate

jamming and to estimate accurate nucleation rate31,32 and to
analyze the full scenario of nucleation and precursor crystalli-
zation.33 Of particular interest might be that ECMC remains
event-driven even for continuous potentials and very simple
to implement. Molecular dynamics, on the other hand, must
be implemented as a time-driven algorithm for continuous
potentials. The discretization of the equations of motion then
makes molecular dynamics rather awkward to implement.
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