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The Distributed Constraint Optimization Problem (DCOP) lies at the foundations of multiagent cooperation.
With DCOPs, the optimization in distributed resource allocation problems is formalized using constraint optimiza-
tion problems. The solvers for the problem are designed based on decentralized cooperative algorithms that are
performed by multiple agents. In a conventional DCOP, a single objective is considered.

The Multiple Objective Distributed Constraint Optimization Problem (MODCOP) is an extension of the
DCOP framework, where agents cooperatively have to optimize simultaneously multiple objective functions. In
the conventional MODCOPs, a few objectives are globally defined and agents cooperate to find the Pareto optimal
solution. However, such models do not capture the interests of each agent. On the other hand, in several practical
problems, the share of each agent is important. Such shares are modeled as preference values of agents. This class
of problems can be defined using the MODCOP on the preferences of agents. In particular, we define optimization
problems based on leximin ordering and Asymmetric DCOPs (Leximin AMODCOPs). The leximin defines an
ordering among vectors of objective values. In addition, Asymmetric DCOPs capture the preferences of agents.
Since the optimization based on the leximin ordering improves the equality among the satisfied preferences of
the agents, this class of problems is important. We propose several solution methods for Leximin AMODCOPs
generalizing traditional operators into the operators on sorted objective vectors and leximin. The solution methods
applied to the Leximin AMODCOPs are based on pseudo trees. Also, the investigated search methods employ the
concept of boundaries of the sorted vectors.

Key words: leximin, preference, multiple objectives, Distributed Constraint Optimization, multiagent,
cooperation.

1. INTRODUCTION
The Distributed Constraint Optimization Problem (DCOP) lies at the foundations of

multiagent cooperation (Farinelli et al., 2008; Modi et al., 2005; Petcu and Faltings, 2005;
Zivan, 2008). With DCOPs, the optimization in distributed resource allocation including
distributed sensor networks (Zhang et al., 2005), meeting scheduling (Maheswaran et al.,
2004), disaster response (Ramchurn et al., 2010) and smart grids (Miller et al., 2012)
is formalized using constraint optimization problems. In a conventional DCOP, a single
objective is optimized. The solvers for the problem are designed based on decentralized
cooperative algorithms that are performed by multiple agents. The solution methods are
categorized into complete and incomplete methods. Several complete methods employ
techniques including dynamic programming and tree search that are performed based on
a graph structure called pseudo tree. DPOP (Petcu and Faltings, 2005) is a solution method
based on dynamic programming, which performs bucket elimination (Dechter, 1999) on
a pseudo tree. ADOPT (Modi et al., 2005) performs a tree search with memory-bounded
dynamic programming. On the other hand, several incomplete methods are based on local
search approach (Zivan, 2008; Vinyals et al., 2011).

The Multiple Objective Distributed Constraint Optimization Problem (MODCOP) is an
extension of the DCOP framework, where agents cooperatively have to optimize simul-
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taneously multiple objective functions (Delle Fave et al., 2011). For the case of multiple
objectives, evaluation values are defined as vectors of objective values. Agents cooperate to
find the Pareto optimal solution. In Delle Fave et al. (2011), a bounded Max-Sum algorithm
for MODCOPs has been proposed. A solution method based on tree-search and dynamic
programming has also been applied to MODCOPs (Matsui et al., 2012).

In conventional MODCOPs, a few objectives are globally defined for the whole system.
However, such models do not capture the interests of each agent. In several practical
problems, the share of each agent is important. Such shares are modeled as preference values
of agents. This point of view recently has been addressed in the context of DCOPs which
are designed for dedicated resource allocation problems (Netzer and Meisels, 2011; Matsui
and Matsuo, 2012; Netzer and Meisels, 2013a,b). These problems define multiple objective
functions, optimizing the preferences for all the agents.

In this work, we address a class of MODCOPs on the preferences of agents. In particular,
we focus on problems where the importance of objective functions is based on the leximin
ordering (referred to as Leximin AMODCOPs). Leximin (Moulin, 1988; Bouveret and
Lemaı̂tre, 2009) is a well-known social welfare. Since the optimization based on the leximin
ordering improves the equality among the satisfied preferences of the agents, this class of
problems is important. The solution methods applied to the Leximin AMODCOPs are based
on pseudo trees. Also, the investigated search methods employ the concept of boundaries
of the sorted vectors. Our major contributions are as follows. i) We define the Leximin
AMODCOP that is similar to classes of Asymmetric DCOPs and MODCOPs in (Netzer and
Meisels, 2011, 2013a), while its criteria of optimization is based on leximin ordering. ii) We
show that the proposed problem can be solved using a dynamic programming based solution
method on a modified pseudo tree, and an extension of DPOP (Petcu and Faltings, 2005) is
applied to the problem. iii) To employ a tree search based method, we define boundaries on
leximin, and present a solution method which is basically similar to ADOPT (Modi et al.,
2005).

The rest of the paper is organized as follows. In Section 2, we introduce the backgrounds
of the study including Distributed Constraint Optimization Problem, multiple objective
problem, preferences of agents, and related works. We propose the Leximin Asymmetric
Multiple Objective DCOP (Leximin AMODCOP) in Section 3. Then in Section 4 we show
how solution methods based on pseudo trees can be applied to Leximin AMODCOPs. A
dynamic programming method (also known as bucket elimination) and an asynchronous
tree search method are generalized for Leximin AMODCOPs. In Section 5, we describe an
additional method that employs the individual information of agents. The proposed methods
are experimentally investigated in Section 6. In Section 7, we present discussions and future
works, before concluding our study in Section 8.

2. PRELIMINARY

2.1. Distributed Constraint Optimization Problem
A Distributed Constraint Optimization Problem (DCOP) is defined as follows.

Definition 1 (Distributed Constraint Optimization Problem): A Distributed Constraint Op-
timization Problem is defined by (A,X,D, F ) where A is a set of agents, X is a set of
variables, D is a set of domains of variables, and F is a set of objective functions. Variable
xi ∈ X represents a state of agent i ∈ A. Domain Di ∈ D is a discrete finite set of values
for xi. An objective function fi,j(xi, xj) ∈ F defines a utility extracted for each pair of
assignments to xi and xj . The objective value of assignment {(xi, di), (xj , dj)} is defined
by the binary function fi,j : Di × Dj → R. For an assignment A of variables, the global
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objective function F (A) is defined as F (A) =
∑

fi,j∈F fi,j(A|xi
,A|xj

). The value of xi is
controlled by agent i. Agent i locally knows the objective functions that relate to xi in the
initial state. The goal is to find a global optimal assignment A∗ that maximizes the global
objective value.

The computation to find the optimal solution is a distributed algorithm. We assume
that each pair of agents has a communication route on an overlay network. For the sake
of simplicity, we assume that all the objective functions are binary. Also, the state of each
agent is represented by only one variable. While several studies address the problems with
n-ary functions and agent states represented by multiple variables (Yokoo and Hirayama,
1998; Pecora et al., 2006; Vinyals et al., 2011), we concentrate on the primitive case for
simplicity.

2.2. Multiple objective problem
The Multiple Objective DCOP (MODCOP) is a generalization of the DCOP frame-

work (Delle Fave et al., 2011). With MODCOPs, multiple objective functions are defined
over the variables. The objective functions are simultaneously optimized based on appropri-
ate criteria. The tuple with the values of all the objective functions for a given assignment is
called objective vector.

Definition 2 (Objective vector): An objective vector v is defined as [v0, · · · , vK ]. Here,
vk is an objective value. The Vector F(X) of objective functions is defined as
[F 0(X0), · · · , FK(XK)] , where Xk is the subset of X on which F k is defined. F k(Xk)
is an objective function for objective k. For assignment A, the vector F(A) of the functions
returns an objective vector [v0, · · · , vK ]. Here, vk = F k(Ak) for each objective k.

For two vectors v and v′ of k objectives, v > v′ denotes that vk > v′k for all objectives k.
Similarly, v ⩾ v′ denotes that vk > v′k ∨ vk = v′k for all objectives k.

Objective vectors are compared based on Pareto dominance. For maximization prob-
lems, the dominance between two vectors is defined as follows: Vector v dominates v′ if
and only if v ⩾ v′, and vk > v′k for at least one objective k. Similarly, Pareto optimality on
the assignments is defined as follows: Assignment A∗ is Pareto optimal if and only if there
is no other assignment A, such that F(A) ⩾ F(A∗), and F k(A) > F k(A∗) for at least one
objective k. In previous studies of MODCOPs (Delle Fave et al., 2011), each objective func-
tion fi,j(xi, xj) in the original DCOPs is extended to a vector [f0

i,j(xi, xj), · · · , fK
i,j(xi, xj)].

F k(Ak) is therefore defined as
∑

fk
i,j∈Fk fk

i,j(Ak
|xi
,Ak

|xj
) for each objective k. Also, all the

objectives are evaluated for the same assignment. Namely, A0 = A1 = · · · = AK . Multiple
objective problems generally have a set of Pareto optimal solutions that form a Pareto front.
With an appropriate social welfare that defines an order on objective vectors, traditional
solution methods for single objective problems find a Pareto optimal solution.

2.3. Social welfare
There are several criteria of social welfare (Sen, 1997) and scalarization methods (Marler

and Arora, 2004). A well-known social welfare function is defined as the summation∑K
k=0 F

k(Ak) of objectives. The maximization of this summation ensures Pareto optimality.
This summation is a ‘utilitarian’ criterion, since it represents the total value of the objectives,
while it does not capture the equality on these objectives. On the other hand, the minimization
minKk=0 F

k(Ak) on objectives emphasizes the objective of the worst value. Although the
maximization of the minimum objective (maximin) reduces the worst complaint among
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all the objectives, the optimal assignment on the maximin is not Pareto (but weak Pareto)
optimal. To improve maximin, the summation welfare function is additionally employed. A
social welfare is defined as a vector [minKk=0 F

k(Ak),
∑K

k=0 F
k(Ak)] with an appropriate

definition of dominance. When the maximization on the minimization part dominates that on
the summation part, it can be considered as a (partial) lexicographical ordering that yields the
Pareto optimal solution, similar to the lexicographic weighted Tchebycheff method (Marler
and Arora, 2004).

Another social welfare, called leximin (Moulin, 1988; Bouveret and Lemaı̂tre, 2009), is
defined using a lexicographic order on objective vectors whose values are sorted in ascending
order.

Definition 3 (Sorted vector): A sorted vector based on vector v is the vector where all the
values of v are sorted in ascending order.

Definition 4 (Leximin): Let v and v′ denote vectors of the same length K + 1. Let
[v0, · · · , vK ] and [v′0, · · · , v′K ] denote sorted vectors of v and v′, respectively. Also, let
≺leximin denote the relation of the leximin ordering. v ≺leximin v′ if and only if ∃t, ∀t′ <
t, vt′ = v′t′ ∧ vt < v′t.

Example 1 (Example of leximin): Consider two sorted vectors v = [1, 1, 3] and v′ =
[1, 2, 2]. Note that, for both vectors, the summation of elements are the same value 5. While
the first elements v0 and v′0 of the vectors are the same value 1, the second elements v1 and
v′1 are compared as 1 < 2. Therefore, v ≺leximin v′. On the other hand, for v = [2, 2, 2] and
v′ = [1, 2, 3], the sorted vectors are compared as v′ ≺leximin v, since v′0 < v0.

The maximization on the leximin ordering ensures Pareto optimality. The leximin is an
‘egalitarian’ criterion, since it reduces the inequality on objectives. It is also considered as
an improved version of maximin. The above property of the leximin is important for the
preferences of agents. We focus on the leximin social welfare.

2.4. Preferences of agents
While previous studies address MODCOPs (Delle Fave et al., 2011; Matsui et al., 2012),

their goal is to optimize a few global objectives. Agents cooperate with each other to optimize
those global objectives. On the other hand, in practical resource allocation problems, such as
power supply networks, each agent has a strong interest for its share of the result. Hence there
is the need for a more appropriate model where the objectives represent the preferences of
agents. This class of problems has two key characteristics: 1) Each agent individually has its
set of objective functions whose aggregated value represents its preferences, while several
agents are related, since subsets of their variables are in the scope of the same function.
2) The problem is a MODCOP where a solution is characterized by an objective vector
consisting of objective values that are individually aggregated for different agents.

In Matsui and Matsuo (2012), a resource constrained DCOP, which is designed for
resource allocation on power supply networks, is extended to a MODCOP on the preferences
of agents. In that study, min-max as well as min-max with the additional summation was
introduced for minimizing problems. In addition, to reduce inequality among agents, a few
first methods that consider the variance of objective values were shown. A general repre-
sentation of the objectives of individual agents has been proposed as Asymmetric DCOP
(ADCOP) in Grinshpoun et al. (2013). In the ADCOP, two different objective functions are
asymmetrically defined for a pair of two agents. Here, each objective function represents
the valuation for one of the agents. Several classes of ADCOPs with multiple objectives
for individual agents have been proposed in Netzer and Meisels (2011, 2013a,b). We focus
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on a class of ADCOPs optimizing the leximin social welfare. Since the leximin is known
to reduce the inequality among agents, it helps define an important class of MODCOPs on
preferences of agents.

2.5. Related works
In the Asymmetric DCOP shown in Grinshpoun et al. (2013), each value of a function is

defined by a pair of values that correspond to different directions on an edge of a constraint
graph. Therefore, an agent has its local view based on the direction of connected edges.
However, its optimal solution corresponds to the maximum summation over all functions
and directions. A major issue of the study is privacy-loss.

In Netzer and Meisels (2011, 2013a,b); Matsui and Matsuo (2012), resource allocation
problems similar to ones in this study have been addressed. On the other hand, we addressed
an extension of ADCOPs based on the leximin social welfare. While Theil based social
welfare has been addressed in Netzer and Meisels (2011), that solution method is a local
search. A search algorithm based on a total order on variables has been proposed in Netzer
and Meisels (2013a), while here we generalize the common computation to pseudo trees.

Several variations of DCOPs (Maheswaran et al., 2004; Petcu et al., 2008) model private
interests of agents. In Petcu et al. (2008), the VCG mechanism is employed with DCOPs.
On the other hand, our interest in this study is the optimization problems on leximin social
welfare.

Several solution methods for a centralized constraint optimization problem on the
leximin ordering have been proposed in Bouveret and Lemaı̂tre (2009). In the previous study,
the definition of the problem is an extension of constraint optimization problem, where a
part of variables represent the values of objectives, while we mainly focus on a variant
of Asynchronous DCOPs with objective vectors. The previous solution methods employ
several techniques including branch-and-bound with leximin ordering and several types of
constraints to represent relationships of leximin. The techniques are integrated into solution
methods for centralized solvers. While how those techniques can be decomposed into dis-
tributed algorithms are an interesting issue, we mainly investigate a dynamic programming
approach on objective vectors that can be applied to several existing techniques for DCOP
solvers, as the first study.

3. LEXIMIN MULTIPLE OBJECTIVE OPTIMIZATION ON PREFERENCES OF
AGENTS

3.1. Problem definition
A Leximin MODCOP on preferences of agents (Leximin AMODCOP) is defined as

follows.

Definition 5 (Leximin Asymmetric MODCOP on preferences of agents): A leximin MO-
DCOP on preferences of agents is defined by (A,X,D, F ), where A, X and D are similarly
defined as for the DCOP in Definition 1. Agent i ∈ A has its local problem defined on
Xi ⊆ X . Here, ∃(i, j), i ̸= j ∧Xi ∩Xj ̸= ∅. F is a set of objective functions fi(Xi). The
function fi(Xi) : Di0 × · · · ×Dik → R represents the objective value for agent i based on
the variables in Xi = {xi0 , · · · , xik}. For an assignmentA of variables, the global objective
function F(A) is defined as [f0(A0), · · · , f|A|−1(A|A|−1)]. Here, Ai denotes the projection
of the assignmentA on Xi . The goal is to find the assignmentA∗ that maximizes the global
objective function based on the leximin ordering.
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FIGURE 1. Pseudo tree for local problems

We concentrate on the case where each agent has a single variable and primitively relates
to its neighborhood agents with binary functions, for simplicity. On the other hand, the
functions are asymmetrically defined and locally aggregated.

As shown in Definition 5, each agent i has a function fi(Xi) that represents i’s local
problem. In a simple case, the local problem is defined as a part of an ADCOP where
fi(Xi) is the summation of the corresponding functions in the ADCOP. In an ADCOP,
variable xi of agent i relates to other variables by objective functions. When xi relates
to xj , agent i evaluates an objective function fi,j(xi, xj). On the other hand, j evaluates
another function fj,i(xj , xi). Based on this ADCOP, a local problem is represented as
fi(Xi) =

∑
j∈Nbri

fi,j(xi, xj) for agent i, aggregating objective functions among i and
its neighborhood agents Nbri.

4. SOLUTION METHOD BASED ON PSEUDO TREE
In this section, we propose solution methods for Leximin AMODCOPs. The solution

methods are extensions of DCOP solution methods on pseudo trees. For our solution
methods, a modified pseudo tree is described in Subsection 4.1. Then, in Subsection 4.2,
we present a dynamic programming based method, which is an extension of DPOP (Petcu
and Faltings, 2005). Several operations are generalized with sorted vectors, and we show
that the sorted vectors can be decomposed and aggregated with dynamic programming. As
another approach, we propose a search method similar to ADOPT (Modi et al., 2005) by
adding several components. In Subsection 4.3, we present a tree search method, which is a
reorganization in time of the solution based on dynamic programming. Here, we introduce
boundaries on sorted vectors to compare partially unknown vectors. The search method is
extended in Subsection 4.4 with pruning that employ the global lower bound of objective
vectors. To reduce the delay of the search method, in Subsection 4.5 it is shown how to
employ top-down shortcut messages. In the rest of the section, we also address several issues
including the representation of objective vectors, correctness and complexity. Further, the
search method can be extended with bottom-up shortcut messages, integrating individual
preferences of agents. This extension will be shown in Section 5.

4.1. Pseudo tree for local problems
Several solution methods for DCOPs are based on pseudo trees on constraint net-

works (Modi et al., 2005; Petcu and Faltings, 2005). A pseudo tree of the problem is a
depiction of its constraint network (adding directions to edges and levels for the nodes),
based on a spanning tree in which there are no edges between different sub-trees of the
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corresponding spanning tree. Such pseudo trees can be generated using several algorithms,
including the depth-first traversal on the constraint network. Edges of the spanning tree are
called tree-edges, while other edges are called back-edges. Based on the pseudo tree, the
following notations are defined for each agent i.

• pi: parent agent.
• Chi: set of child agents.
• Nbrsi: set of neighborhood agents.
• Nbrsli: set of lower neighborhood agents, i.e. the child and pseudo child nodes.
• Nbrsui : set of upper neighborhood agents, i.e. the parent and pseudo parent nodes.

A partial order on a set of agents is defined based on the tree edges of a pseudo tree. The
priorities induced by this order are used for breaking ties during decision making.

Figure 1(a) shows a pseudo tree for a problem. In the figure, four nodes represent
agents/variables, while four edges represent functions. In our problem, each edge stands
for a pair of two asymmetric objective functions. Since an objective function is evaluated by
only one related agent, each agent has to evaluate all the related objective functions. Namely,
each agent has to manage all the assignments for its local problem. Therefore, the value of
a variable xi is decided by the highest neighborhood agent whose variable relates to the
variable xi with an edge. Hence a modification of pseudo trees is necessary. Figure 1(b)
shows the pseudo tree modified from (a). The priority on decisions of assignments is
represented as shown in (b).

To set up the data structures needed for this pseudo tree, agent i computes the following
information.

• XXupr
i : A set of pairs of variables. (xk, xh) ∈ XXupr

i specifies that xk relates to xh in a
higher level, with a function. This data structure is employed to compute the highest agent
that has to be a decision maker for each variable.
• Xdcd

i : The set of variables whose values are determined by agent i.
• Xsep

i : The set of separator variables that are shared between the sub-tree rooted at i and
another part of the problem.

Each agent needs Xdcd
i and Xsep

i to perform solution methods shown later. To compute these
sets, XXupr

i is updated with Xdcd
i and Xsep

i in a bottom-up manner on a pseudo tree. Except
at the root agent in the pseudo tree, the information is recursively computed as follows.

XXupr
i =

∪
h∈Nbrsui

{(xi, xh)} ∪ {(xa, xb)|(xa, xb) ∈
∪

j∈Chi

XXupr
j ∧ xb ̸= xi} (1)

Xdcd
i = {xa|(xa, xi) ∈

∪
j∈Chi

XXupr
j ∧ ∄b, (xa, xb) ∈ XXupr

i } (2)

Xsep
i =

{xi} ∪ ∪
h∈Nbrsui

{xh} ∪
∪

j∈Chi

Xsep
j

 \Xdcd
i (3)

Equation (1) enables defining the agent assigning xi as the highest placed agent in the set
of those having a relation with some node in the sub-tree rooted as xi (upper neighbors
of i and upper neighbors of variables in sub-trees defined by its children, and found above
i). Equation (2) defines the variables assigned by agent i as the lower neighbors of xi in
sub-trees defined by children, and which do not have upper neighbors above i. Equation (3)
defines the separator variables as those in the upper neighbors of xi and its sub-tree, and
of that are not controlled by agent i or its children. Intuitively, (xk, xh) ∈ XXupr

i means
that the value of xk may be determined by xh, since xk and xh relate by an asymmetric
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function, and xh is in a higher level than xk. Note that for the same xk, different xh may
exist at the same time. XXupr

i is aggregated in a bottom-up manner for the sub-tree rooted
at agent i, while agent i eliminates all (xa, xi) from XXupr

i (Equation (1)). If at least one
child agent j of i has (xa, xi) ∈ XXupr

j and i does not have any (xa, xb) ∈ XXupr
i such

that xb ̸= xi, xa is never referred by any agents in higher levels than xi. Therefore, Xdcd
i

must contain xa (Equation (2)). Other variables that will be determined by agents in higher
levels are contained in Xsep

i (Equation (3)). Note that xi ∈ Xsep
i and xi /∈ Xdcd

i , unlike the
standard definition of separators on pseudo trees.

On the other hand, in the root agent, XXupr
i = ∅, Xdcd

i = {xi} ∪ {xa|(xa, xi) ∈∪
j∈Chi

XXupr
j } and Xsep

i = ∅. Note that the root agent also determines the value of its
own variable. The actual computation is performed as a distributed processing, after the
preprocessing of generating a pseudo tree. Each non-root agent i sends XXupr

i , Xdcd
i and

Xsep
i to its parent agent pi in a bottom-up manner.

For the example shown in Figure 1, XXupr
i , Xdcd

i and Xsep
i are as follows.

• XXupr
2 = {(x2, x0), (x2, x1)}, Xdcd

2 = ∅, Xsep
2 = {x0, x1, x2}.

• XXupr
3 = {(x3, x1)}, Xdcd

3 = ∅, Xsep
3 = {x1, x3}.

• XXupr
1 = {(x1, x0), (x2, x0)}, Xdcd

1 = {x3}, Xsep
1 = {x0, x1, x2}.

• XXupr
0 = ∅, Xdcd

1 = {x0, x1, x2}, Xsep
1 = ∅.

To generate pseudo trees, several heuristics with depth first search traversal can be
applied. Here, we employ maximum-degree heuristic (Hamadi et al., 1998) as a well-known
one, where the node connected to the largest number of other nodes, ignoring directions of
edges, is selected at first in the traversal. Since variables of high-degree nodes are influential
in the modification of decision makers, we prefer them to be the decision makers in higher
levels, if possible.

4.2. Computation of the optimal objective vector
We apply a computation of the optimal objective value, which is employed in the solution

method DPOP (Petcu and Faltings, 2005), to the Leximin AMODCOP. The computation is
performed on the modified pseudo tree shown in Subsection 4.1.

In this computation, a problem is decomposed into sub-problems with parts of objec-
tives, and objective vectors for the sub-problems are aggregated. When the total number of
objectives is K, a vector v such that |v| ⩽ K is called a partial objective vector .

For the aggregation of objective values, we define an addition on vectors that is different
from the common definition. The addition is the operator concatenating all the values.

Definition 6 (Addition on vectors): Let v and v′ denote vectors [v0, · · · , vK ] and
[v′0, · · · , v′K′ ]. The addition v⊕ v′ of the two vectors gives a vector v′′ = [v′′0 , · · · v′′K+K′+1]
where each value in v′′ is a distinct value in v or v′. Namely, v′′ consists of all values in v
and v′. As a normalization, the values in v′′ are sorted in ascending order.

The computation of the optimal objective vector is recursively defined. The optimal ob-
jective vector g∗i (A

sep
i ) for assignment Asep

i of variables Xsep
i whose values are determined

by i’s ancestor nodes and parent node is represented as follows.

g∗i (A
sep
i ) = max

Adcd
i for Xdcd

i

gi(Asep
i ∪ Adcd

i ) (4)

gi(A) = [fi(A|Xi
)]⊕

⊕
j∈Chi,Asep

j ⊆A

g∗j (A
sep
j ) (5)
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Here,Adcd
i denotes an assignment of the variables in Xdcd

i whose values are determined
by i. The operator⊕ denotes aggregation of objective values. While the summation operator
is used in common DCOPs, we aggregate objective vectors using the operator shown
in Definition 6. Similarly, max denotes the maximization on the leximin ordering. This
computation is a dynamic programming based on the following proposition.

Proposition 1 (Invariance on leximin relation): Let v and v′ denote vectors of the same
length. Also, let v′′ denote another vector. If v ≺leximin v′, then v ⊕ v′′ ≺leximin v′ ⊕ v′′.

Proof. Let [v0, · · · , vK ] and [v′0, · · · , v′K ] denote values in the sorted vectors of v and v′,
respectively. From the definition of leximin, there is a value t such that ∀t′ < t, vt′ =
v′t′ ∧ vt < v′t. Let t′′ denote the value such that vt′′ < vt ∧ vt′′+1 = vt. Namely, vt′′ is the
value just before the sequence of values equal to vt. Note that t′′ + 1 ⩽ t. In the case of
t = 0, the value of t′′ is generalized using −1. Consider the values in the sorted vectors of
v⊕v′′ and v′⊕v′′. When vector v′′ contains k values smaller than vt, then there are t′′ + k
such values in both sorted vectors of v ⊕ v′′ and v′ ⊕ v′′. Namely, the sequences of values
less than vt are the same in both of the sorted vectors. When vector v′′ contains k′ values
equal to vt, v ⊕ v′′ contains a sequence of at least (t − t′′) + k′ values equal to vt. On the
other hand, v′ ⊕ v′′ contains a sequence of (t − 1 − t′′) + k′ values equal to vt. The above
property also holds in the cases where k = 0 and/or k′ = 0. Now, we can conclude that the
sequences of the first (t′′ + k) + (t− 1− t′′) + k′ values are the same in both sorted vectors
of v ⊕ v′′ and v′ ⊕ v′′, while the next values are the value equal to vt and a value greater
than vt, respectively. Therefore, v ⊕ v′′ ≺leximin v′ ⊕ v′′.

The maximization in Expression (4) compares objective vectors for the same assignment
Asep

i that will produce the same partial objective vector. The above computation therefore
correctly calculates the globally optimal objective vector.

After the computation of the optimal objective vector, the root agent i determines its
optimal assignment Adcd∗

i such that gi(∅ ∪ Adcd∗
i ) = g∗i (∅). A

sep∗
j ⊆ Adcd∗

i is then
computed for each child j ∈ Chi. Similarly, any non-root agent i computes Adcd∗

i such
that gi(Asep∗

i ∪ Adcd∗
i ) = g∗i (A

sep∗
i ), and Asep∗

j ⊆ Asep∗
i ∪ Adcd∗

i for each child j ∈ Chi.
The protocol of the modified version of DPOP is basically the same as the original one. The
original DPOP performs two phases of computation on a pseudo tree. In the first phase, each
agent computes the optimal objective value for each assignment to its separator variables
and all assignments to the variables in the sub-tree rooted at the agent, propagating UTIL
messages in a bottom-up manner. Then, in the second phase, each agent computes the
optimal assignment propagating VALUE messages in a top-down manner. See Petcu and
Faltings (2005) for details of the protocol. The modified version of DPOP also employs two
types of messages UTIL and VALUE shown in Figure 1(c). In the modified version, a UTIL
messages contains a table of assignments and sorted objective vectors, while the original
one contains a table of assignments and objective values. In addition, separator variables
are also different from original ones due to the modification of decision makers. After the
processing of the modified pseudo tree, agents compute the optimal objective vector. In this
computation, UTIL messages are propagated in a bottom-up manner. Each agent i sends
g∗i (A

sep
i ) to its parent pi using a UTIL message. Then the optimal assignment is computed

propagating VALUE messages in a top-down manner. Each agent i sends Asep∗
j to its child

agents j ∈ Chi using VALUE messages. While the protocol of DPOP is simple, the size
of UTIL messages and memory used to store g∗i (A

sep
i ) of all the assignments exponentially

increases with the size |Xsep
i | of i’s separator.
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4.3. Search method
As another type of solution methods on pseudo trees, we apply solution methods based

on tree search and partial dynamic programming to the Leximin AMODCOPs. The methods
are variations of ADOPT (Modi et al., 2005; Yeoh et al., 2008; Matsui and Matsuo, 2012).
First, we show a simple search method, which is basically a time division of DPOP. While
this method employs messages named VALUE and UTIL shown in Figure 1(c), they are
different from those of DPOP. Similar to DPOP, the method consists of two phases of
computations.

In the first phase, the optimal objective vector is computed in a manner of tree search.
The root agent i chooses an assignment Adcd

i,j for variables in Xdcd
i ∩ Xsep

j for its child
j ∈ Chi. Then the root agent sends the current assignment Asep

j = Adcd
i,j to its child node

j using a VALUE message. When non-root agent i receives Asep
i from its parent pi, agent i

chooses an assignment Adcd
i,j for variables in Xdcd

i ∩Xsep
j for its child j. Agent i then sends

Asep
j ⊆ Asep

i ∪Adcd
i,j for variables in Xsep

j to its child j. Namely, an assignment is expanded
for all children of a node in a pseudo tree, in the same time. The current assignment Asep

i is
called current context. In the root agent, the current context is always ∅.

For the current contextAsep
i , each agent computes g∗i (A

sep
i ). Then g∗i (A

sep
i ) is sent to i’s

parent pi using a UTIL message. When agent i receives g∗j (A
sep
j ) from its child j, g∗i (A

sep
j )

is stored in the agent, if Asep
j is compatible with Asep

i . When the current context changes to
new assignment Asep′

i, objective vector g∗j (A
sep
j ) whose Asep

j is incompatible with Asep′
i is

deleted.
While the computation of g∗i (A

sep
i ) is based on Equations (4) and (5), the computation is

generalized to the case where agent i has not received g∗j (A
sep
j ) from child j. In such cases,

the lower and upper limit values of unknown objective values are introduced. With the limit
values, the objective values are separated into lower and upper bound values. For the leximin
ordering, we define the upper and lower bounds of objective vectors.

Definition 7 (Boundaries of unknown vector): For an objective vector v of K unknown
values, lower bound v⊥ and upper bound v⊤ are vectors of K values, whose values are
−∞ and∞, respectively.

These boundaries are obviously reasonable, since they are the minimum vector and the
maximum vector on the leximin ordering. Operators ⊕ and ≺leximin are applied to the
boundaries of vectors without any modifications. For a vector v = [v0, · · · , vK ] and the
lower bound v′⊥ = [−∞, · · · ,−∞] of unknown vector v′, the vector v ⊕ v′⊥ consists of
−∞, · · · ,−∞ and v0, · · · , vK . Similarly, v ⊕ v′⊤ consists of v0, · · · , vK and∞, · · · ,∞.
We consider these vectors as (v ⊕ v′)⊥ and (v ⊕ v′)⊤, respectively.

Proposition 2 (Lower bound of partially unknown vector): Let v⊥ denote a vector whose
values are v0, · · · , vK and K ′ values of −∞. For any vector v whose values are v0, · · · , vK
and K ′ values greater than −∞, v⊥ ≺leximin v.

Proof. While the first value in the sorted vector of v⊥ is −∞, that of v is greater than −∞.
Therefore, v⊥ ≺leximin v.

Proposition 3 (Upper bound of partially unknown vector): Let v⊤ denote a vector whose
values are v0, · · · , vK and K ′ values of∞. For any vector v whose values are v0, · · · , vK
and K ′ values less than∞, v ≺leximin v⊤.
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Proof. Consider a vector v⊤[v′0] where one of values∞ in v⊤ is replaced by a value v′0 less
than∞. Both sorted vectors of v⊤[v′0] and v⊤ contain the same sequence of k values less than
v′0, since v′0 does not affect this sequence. When v⊤ contains k′ values of v′0, v⊤[v′0] contains
k′ + 1 values of v′0. We can conclude that the sequences of the first k + k′ values are the
same in both sorted vectors of v⊤[v′0] and v⊤, while the next values are the value equal to v′0
and a value greater than v′0, respectively. Therefore, v⊤[v′0] ≺leximin v⊤. Consider a vector
v⊤[v′0,v

′
1] where one of values∞ in v⊤[v′0] is replaced by a value v′1 less than∞. Similar to

v⊤[v′0] ≺leximin v⊤, we can conclude v⊤[v′0,v
′
1] ≺leximin v⊤[v′0]. Based on the mathematical

induction, we can conclude that v = v
⊤[v′0,···v′K′−1

] ≺leximin · · · ≺leximin v⊤[v′0] ≺leximin

v⊤ for any combination [v′0, · · · v′K′−1] of values that replace the values of∞ in v⊤.

In addition, with a bottom-up preprocessing, the lower and upper limit values for each
function fi(Xi), (i.e. min fi(Xi) and max fi(Xi)) can be aggregated to vectors of limit
values instead of the vectors of −∞ and ∞. Namely, each agent i learns a pair of limit
of limit vectors g⊥lmt

j and g⊤lmt
j for each child j using a bottom-up preprocessing. g⊥lmt

j

is consisting of values min fk(Xk) for all agents k in the sub-tree rooted at i’s child j.
Similarly, g⊤lmt

j consists of maximum values of objectives. g⊥/⊤lmt
j are employed as the

default lower and upper bound vectors. As a result of the bottom-up preprocessing, each
agent i also knows the limit vectors g⊥/⊤lmt

i for its own sub-tree.
g∗i (A

sep
i ) is extended to a pair of g∗⊥i (Asep

i ) and g∗⊤i (Asep
i ) that are simultaneously

computed. To introduce the boundaries, an agent has to know the number of descendants
of each sub-tree rooted at each child. The information of the descendants is additionally
computed in the preprocessing. When the number of descendants for a child j is dcdj ,
g∗⊥j (Asep

j ) for unknown g∗j (A
sep
j ) is a vector of dcdj values of −∞. Similarly, g∗⊤j (Asep

j ) is
a vector of dcdj values of∞.

Based on the boundaries, agents complete the tree search for sub problems. When
g∗⊥j (Asep

j ) = g∗⊤j (Asep
j ) for child j ∈ Chi, agent i completes the tree search for the

assignment Asep
j . Then i chooses another assignment Asep′

j such that g∗⊥j (Asep′
j) ≺leximin

g∗⊤j (Asep′
j). While there are several search strategies on the assignments, we employ a depth-

first search based on the pseudo tree.
Now, a UTIL message carries a pair of vectors for both boundaries. Since the boundaries

are narrowed with the true objective values that are propagated in a bottom-up manner on the
pseudo tree, agents repeatedly send UTIL messages. When agent i receives new vectors of
g∗⊥j(A

sep
j ) and g∗⊤j(A

sep
j ) from child j ∈ Chi, those vectors update the previous vectors.

While g∗⊥j(A
sep
j ) is maximized, g∗⊤j(A

sep
j ) is minimized with the new vectors based on

the leximin ordering.
When g∗⊥i (∅) = g∗⊤i (∅) in the root agent i, agent i compute the optimal assignment

Adcd∗
i such that g⊥i (∅∪Adcd∗

i ) = g⊤i (∅∪Adcd∗
i ) = g∗⊥i (∅) = g∗⊤i (∅).Asep∗

j ⊆ Adcd∗
i is then

sent to each child j ∈ Chi using a VALUE message with a flag of the termination. When
g∗⊥i (Asep∗

i ) = g∗⊤i (Asep∗
i ) in non-root agent i, the agent similarly computes the optimal

assignment Adcd∗
i such that g⊥i (A

sep∗
i ∪ Adcd∗

i ) = g⊤i (A
sep∗
i ∪ Adcd∗

i ) = g∗⊥i (Asep∗
i ) =

g∗⊤i (Asep∗
i ), and Asep∗

j ⊆ Asep∗
i ∪ Adcd∗

i for each child j ∈ Chi under Asep∗
i . As a result,

all the agents determine their optimal assignment.
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4.4. Pruning
Next, we introduce the pruning based on the global lower bound of objective vectors. The

global lower bound is g∗⊥r (∅) in the root agent r. g∗⊥r (∅) is propagated in a top-down manner
using VALUE messages. An assignment Asep

j for agent j is pruned if g∗⊥r (∅) ⊀leximin

g∗⊤j (Asep
j ). However, the length of g∗⊤j (Asep

j ) is the number of agents in the sub-tree rooted
at j, while the length of g∗⊥r (∅) equals the number of all the agents |A|. In this case,≺leximin

is applied as follows. Since g∗⊤j (Asep
j ) is an upper bound, unknown objective values are

represented by∞. Therefore, with padding of∞, g∗⊤j (Asep
j ) and g∗⊥r (∅) can be compared

as the same length of vectors. Let g∗⊤⊤
j (Asep

j ) denote the vector g∗⊤j (Asep
j ) with the padding

of∞. In actual computation, the padding can be omitted, since the sequence of∞ is the last
part of vectors. When g∗⊥j (Asep

j ) = g∗⊤j (Asep
j ) ∨ g∗⊥r (∅) ⊀leximin g∗⊤⊤

j (Asep
j ) for child

j ∈ Chi, agent i completes the tree search for the assignment Asep
j .

Moreover, to improve the effects of the pruning, we introduce an upper bound for other
parts of the problem. Namely, for each child agent j ∈ Chi, agent i computes the upper
bound of objective vector h+⊤

j (Asep
j ) for sub-trees except one rooted at j.

h+⊤
j (Asep

j ) = h+⊤
i (Asep

i )⊕ max
Adcd′

i for Xdcd
i \Xsep

j

h⊤i (A
sep
i ∪ Adcd′

i ∪ A
sep
j ) (6)

h⊤i (A) = [fi(A|Xi
)]⊕

⊕
k∈Chi\{j},Asep

k ⊆A

g∗⊤k (Asep
k ) (7)

Note that the maximization in Equation (6) is not the maximization of objective values but
the selection of the widest boundary. SinceAsep

j is a part of an assignment for Xsep
i ∪Xdcd

j ,
there are several assignments compatible with Asep

j . For such compatible assignments, the
widest boundary prevents an over estimation. h+⊤

j (Asep
j ) is sent from agent i to its child j

using VALUE messages. When g∗⊥j (Asep
j ) = g∗⊤j (Asep

j ) ∨ g∗⊥r (∅) ⊀leximin h+⊤
j (Asep

j ) ⊕
g∗⊤j (Asep

j ) for child j ∈ Chi, agent i completes the tree search for the assignment Asep
j .

Similar to g
⊥/⊤lmt
j shown in Subsection 4.3, for child j and h+⊤

j , a default upper bound
limit vector h+⊤lmt

j can be computed. The aggregation is performed and propagated in a

top-down manner using g
⊥/⊤lmt
j as follows.

h+⊤lmt
j = h+⊤lmt

i ⊕ [max fi(Xi)]⊕
⊕

k∈Chi\{j}

g⊤lmt
k (8)

As a result, each agent i knows h+⊤lmt
i except the root agent whose h+⊤lmt

i and h+⊤
i (Asep

i )

are empty vectors. Similarly, h+⊥lmt
i is computed for minimum objective values. With

h+⊥lmt
i , the default values of g∗⊥r (∅) is represented as h+⊥lmt

i ⊕g+⊥lmt
i instead of the vector

of −∞.
Actually, in this computation, we choose an inexact context Asep

i for h+⊤
i . Since h+⊤

i
depends on other sub-trees rooted at i’s siblings, the context should contain assignments
for all ancestor agents. However, such a context reveals assignments for other sub-trees in
the case where several ancestors are decision makers for other sub-trees. Therefore, we still
employ partial assignment Asep

i . With the partial assignments, agent i may fail to reset h+⊤
i

to a default upper limit vector. There are two cases of incorrect pruning. 1) If the pruning does
not work, the search processing continues. 2) If the pruning works, the search processing
is blocked. However, g∗⊥/⊤

i is correct, while the current context is compatible. In addition,
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g
∗⊥/⊤
i will be reset if the current context is changed. Eventually, an agent correctly computes
h+⊤
i and propagates the correct h+⊤

i . Therefore, the search processing resumes. We need to
keep the propagation of ‘fresh’ information including h+⊤

i .

4.5. Shortcut VALUE messages for modified pseudo tree
In several search methods (Modi et al., 2005; Yeoh et al., 2008), additional VALUE

messages are sent from ancestor agents to descendant agents taking shortcut paths. The
shortcut VALUE messages directly carry assignments to deep levels of the pseudo tree. Then
the assignments are propagated in a bottom-up manner using extended UTIL messages to
update contexts. Similarly, we introduce shortcut VALUE messages (VALUESC messages).
In our solution methods, the shortcut messages are particularly important to reduce the
delay in updating the contexts, since the decision makers of most variables are the agents in
higher levels of the pseudo tree. In the conventional methods, the paths of shortcut VALUE
messages are back edges. On the other hand, in our cases, back edges may not directly
connect the decision maker and the deepest agent which relate to the same variable. In
the example of Figure 1(c), with VALUESC messages, the root agent sends x0, x1 and
x2 to the agent of x2, and sends x1 to the agent of x3, respectively. Note that the root
agent and the agent of x3 are not directly connected. Therefore, we compute the deepest
related agent for each variable in a bottom-up preprocessing, which is integrated to the
preprocessing. The information on the deepest agent is stored in the corresponding decision
maker. Agent i knows a set Sci of agents, to which VALUESC messages are sent. For each
agent k ∈ Sci, i computes Asc

k containing assignments for k based on Asep
j , where child

j ∈ Chi is an ancestor of k. In addition, we employ timestamps based on the logical clock
of the assignment for each variable, to compare the freshness of the assignment.

4.6. Pseudo code of search method
Figure 2 shows the pseudo code of the search method for agent i. Here i∗ denotes agent

i’s copy of ∗. Also, ∗⊥/⊤ denotes a pair of ∗⊥ and ∗⊤. Here we represent limit vectors of
infinity values. −−→−∞ and −→∞ denote the vectors consisting of −∞ and∞, respectively. The
length of these vectors is the same as the length of the vectors to be assigned. In addition,
null represents the undefined element. pi = null means that agent i is the root agent (line 2).
For non-root agent i, assignmentAsep

i is initialized as null to show that no assignment to the
separator variables has been received (line 3). Agent i also maintains frags ptrmi and trmi

that take Boolean values. ptrmi shows that parent agent pi has terminated its processing. At
the root agent i, ptrmi is always true. trmi inherits the value of ptrmi and represents the
termination of agent i. After the initialization (lines 2-4), agents repeatedly receive messages
and maintain their status (lines 5-8). Note that the message passing is initiated by the root
agent when it first enters the Maintenance state (line 8). When an agent receives a message,
the agent updates its status based on the type of messages (lines 10-22). Then the agent
maintains other data structures ig

∗⊥
r (∅), A∗dcd

i , Asep
j for each child j, and Asc

k for each
lower agent in k ∈ Sci (lines 25-29, 31 and 32). The root agent i updates the global lower
bound ig∗⊥r (∅), when it evaluates new global lower bound g∗⊥i (∅) greater than the current
one (line 25). ig∗⊥r (∅) is propagated to all agents by VALUE messages (lines 30 and 12). If
the termination condition is achieved, each agent i determines its optimal assignmentA∗dcd

i ,
and changes its frag trmi to true (lines 26 and 27). A∗dcd

i is employed to determine the
optimal assignment to the separators for child agents (line 29). trmi is sent to each child
agent j, and stored as ptrmj (lines 30 and 12). Then, agent i determines assignment Asep

j

to the separators for each child agent j. When agent i is terminating, Asep
j is determined
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1 Main{
2 if(pi = null){ Asep

i ← ∅. h+⊤
i (Asep

i )← [ ]. ptrmi ← true. }
3 else{ Asep

i ← null. ptrmi ← false. }
4 ig∗⊥r (∅)← −−→−∞. trmi ← false.
5 while(forever){
6 until(receive loop exits){
7 if(¬trmi){ receive a message. }else{ purge all messages. } }
8 if(Asep

i ̸= null ∧ ¬trmi){Maintenance. } }

10 Receive(VALUE, A, g, h, trm){
11 update Asep

i by A. if(Asep
i =A){ h+⊤

i (Asep
i )← h.}else{ h+⊤

i (Asep
i )← −→∞. }

12 ig∗⊥r (∅)← g. ptrmi ← trm. Consistent. return. }

14 Receive(VALUESC, A){
15 if(Asep

i ̸= null){
16 update Asep

i by A. if(Asep
i is updated){ h+⊤

i (Asep
i )← −→∞. }

17 Consistent. } return. }

19 Receive(UTIL, j, A, g⊥/⊤){
20 update Asep

i by A. if{Asep
i is updated){h+⊤

i (Asep
i )← −→∞. }

21 if(Asep
i is compatible with A){store/update ig

∗⊥/⊤
j (A) by g⊥/⊤. }

22 Consistent. return. }

24 Maintenance{
25 if(pi = null ∧ ig

∗⊥
r (∅) ≺leximin g

∗⊥
i (∅)){ig

∗⊥
r (∅)← g

∗⊥
i (∅).}

26 if(ptrmi∧ g∗⊥i (Asep
i ) = g∗⊤i (Asep

i )){
27 determine A∗dcd

i corresponding to the termination condition. trmi ← true. }
28 foreach(j ∈ Chi){
29 if(trmi){ determine Asep

j from A∗dcd
i and A∗sep

i . }else{ choose Asep
j with a strategy. }

30 send (VALUE, Asep
j , ig∗⊥r (∅), h+⊤

j (Asep
j ), trmi) to j. }

31 foreach(k ∈ Sci){
32 determine Asc

k from Asep
j of k’s ancestor j. send (VALUESC, Asc

k ) to k. }
33 if(¬ptrmi){ send (UTIL i, Asep

i , g∗⊥/⊤
i (Asep

i )) to pi. }
34 return. }

36 Consistent{
37 foreach(A incompatible with Asep

i ){delete ig
∗⊥/⊤
j (A).}

38 return. }

FIGURE 2. Distributed search for leximin AMODCOP (agent i)

from the optimal assignment A∗dcd
i and A∗sep

i (the last Asep
i from pi). Otherwise, Asep

j is
determined with a strategy (line 29). Each Asep

j is sent to child agent j with corresponding
bounds of objective vectors h+⊤

j (Asep
j ) using a VALUE message (line 30). The child agent j

updates itsAsep
j based on the assignment from its parent pj , while it also updates h+⊤

j (Asep
j )

ifAsep
j is compatible with the one from pj (line 11). Note that a part ofAsep

j may be updated
to a newer (and prior) one by a VALUESC message. In such a case, Asep

j may be partially
updated by the assignment from parent pj . As a result, Asep

j can be temporally incompatible
with (delaying) assignment from parent pj , and h+⊤

j (Asep
j ) is reset to the default bounds (line

11). In addition to assignments that are sent using VALUE messages, agent i determines an
assignment for a shortcut message to each lower agent k ∈ Sci. Then the assignments are
sent using VALUESC messages (lines 31 and 32). Finally, agent i sends bounds of objective
vectors g∗⊥/⊤

i (Asep
i ) for the currentAsep

i to its parent agent using a UTIL message (line 33).
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When agent i receives messages, it updates assignment Asep
i (lines 11, 16 and 20). Then, it

resets the information of bounds of objective vectors ig
∗⊥/⊤
j (A), if A is incompatible with

Asep
i (lines 12, 17, 22 and 36-38). Similarly, h+⊤

i (Asep
i ) is reset, if Asep

i is updated (lines
11, 16 and 20).

4.7. Representation of objective vectors
In the whole computation of objective vectors, sorted vector can be employed. With

the sorted vectors, the objective values of individual agents are not directly identified. The
length of the objective vectors is upper bounded by the number of agents |A|. On the
other hand, the sorted vector is compressed with run-length encoding, as a sequence of
pairs (objective value, length). This reduces both the size of the representation and the
computation of ≺leximin, when there are a number of the same objective values.

4.8. Correctness and Complexity
Both, the extended DPOP and the search method, are variations of previous solution

methods (Modi et al., 2005; Petcu and Faltings, 2005), while we use a representation without
any subtraction. Therefore, their correctness is proven with the same reasoning as for the
previous methods, replacing the assignment concept with the proposed vectors (since we
proved above that it satisfies the same additive properties). We have addressed how the
computation is extended to Leximin AMODCOPs. Propositions 1, 2 and 3 show that the
monotonicity in the computation resembles the conventional solution methods based on
addition. The properties on the computational/communication complexity of the proposed
methods are also the same as those of the previous methods. On the other hand, the modified
pseudo tree implicitly increases the induced width (Petcu and Faltings, 2005), which is∏

xi∈Xsep
i
|Di| for agent i. The worst case of the basic tree search is as follows. 1) The tree is

a single sequence of agents. 2) The decision maker is only the root node. 3) The evaluation
is only made in the single leaf node. 4) No pruning works. Therefore, the maximum number
of message cycles is 2(|A| − 1)

∏
xj∈X |Dj |. However, this is an inherent property of the

AMODCOPs. One can address large size problems using approximation methods. The
maximum length of objective vector is the same as the number of agents |A|. With the
representation using pairs of a value and its length, the size of the representation is between 2
and 2|A|. This representation can be implemented with several tree structures, including Red-
Black trees whose major operations are performed in O(log n) time. The size of messages
increases, since their scalar values are replaced by vectors.

5. INDIVIDUAL PREFERENCES
In the definition of objective vectors, objective values are sorted regardless of the

individuality of agents. While such objective vectors potentially can help to improve privacy
of agents, they also restrict effective pruning methods in search algorithms. When solution
methods distinguish the preferences of individual agents, additional pruning methods are
available. In this section, we apply a partial inference method based on the individuality of
objectives.

5.1. Basic idea
In the tree search algorithm, we introduced top-down shortcut VALUE messages to

reduce the delay of search processing. As another approach, a type of bottom-up shortcut
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FIGURE 3. Short cut message in bottom-up aggregation

messages are employed to reduce backtracking and related search processing (Matsui et al.,
2005). This kind of message propagation relates to back jumping on (Distributed) Constraint
Satisfaction Problems. In such methods, each agent knows/detects its ancestor agent that
effectively improve the current partial assignment. However, this approach needs several
extensions for asymmetric DCOPs and leximin optimization problems due to the following
reasons.

i) Since an objective vector inferred by an agent i is a part of another vector in i’s
ancestor agent, the shortcut needs identification of conflicting objective values to integrate
both vectors.

ii) The asymmetricity restricts the evaluation in the agents. In the asymmetric problems,
each agent can locally evaluate assignments for its variable and its neighborhood variables
including several lower neighborhood variables. On the other hand, for an agent i other
than the root, i’s parent/ancestor agents are the ones who decide assignments for i and i’s
lower neighborhood agents. Therefore, the destination of a shortcut message is determined
considering the decision makers. In addition, the inference of partial objective vector for a
shortcut is complex. Therefore, it is reasonable to employ the shortcut messages for single
objectives.

iii) We employ a pair of lower and upper bounds of a partial sorted objective vector to
prune the tree search. If one aggregates a bound of partial sorted vector inferred by agent i
with another bound of partial sorted vector in i’s ancestor agent h, ignoring the aggregations
in intermediate agents between h and i, the resulting bound of partial sorted vector does
not assure the monotonic increase/decrease of the lower/upper bound. Therefore, it needs a
safe lower/upper bound that assure the monotonicity. As shown below, it also supports the
inferences used to restrict the shortcut messages for single objectives.

Considering the above reasons, we employ the following techniques.

5.2. Individuality on Objectives
To employ the individuality of agents, we relate identifiers of agents to objective values.

Definition 8 (Indexed Sorted Vector): An indexed sorted vector is a sorted vector which
allows for identifying each objective with a set of indices.

There are opportunities to employ run-length encoding for a part of a vector by modifying
an indexed sorted vector, since the identifiers are necessary only for the objectives related to
the shortcut. For simplicity, we used a implementation that has sorted objective values and
another array of non-sorted objective values In the following, we focus on the effect of the
identification of objectives employing indexed sorted vectors.
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5.3. Additional relationship among agents
For the shortcut messages, each agent has to determine a destination ancestor agent. Here

we consider the shortcut for single objectives. Since each objective directly corresponds to
an agent, a single objective relates with a variable of an agent and its neighborhood variables.
Namely, a single objective depends on the assignments for its local problem. Therefore, the
destination agent of the shortcut is determined as the lowest decision maker for variables in
the local problem.

As shown in Subsection 4.1, each agent i knows a set Xdcd
i of variables whose values

are assigned by agent i. After that, an additional top-down preprocessing is performed.
Here, for each agent i, a list of ancestor agents Ancsti, including a parent, and XXdcd

i =
{(xh, Xdcd

h )|xh ∈ Ancsti} is propagated. Each agent i aggregates decision makers xd in
Dcdnbrsi for each xk ∈ {i} ∪Nbrsi as follows.

Dcdnbrsi = {(xk, xd)|xk ∈ {i} ∪Nbrsi, (xd, X
dcd
d ) ∈ XXdcd

i , xk ∈ Xdcd
d } (9)

Each agent i also aggregates depth depth(xd) of each decision maker xd in Dcdnbrsi in a
pseudo tree. For agent i, the destination of the shortcut message is the agent of xdcdi such that

xdcdi = argmaxxdin Dcdnbrs
i

depth(xd). (10)

If such a decision maker is the parent agent (the root agent if the sender agent is also
the root agent), there is no opportunity for the shortcut. Figure 3(a) shows an example of the
lowest decision maker in each agent. While the lowest decision maker in the agent of x2 is
its ancestor x0, other agents’ decision makers are their parents or the root agent. Therefore,
only the agent of x2 sends shortcut messages on backtracking.

5.4. Shortcut on Backtracking
In addition to UTIL messages, each agent sends shortcut messages (UTILBJ messages)

to one of its ancestor agents. Since we consider the shortcut for single objectives, a UTILBJ
message transfers a pair of lower and upper bounds for a single objective value of the sender
agent. Each agent i computes its objective vbj⊥i and vbj⊤i for the UTILBJ message as follows.

vbj⊥i = min
Adcd

i

fi((Asep
i ∪ Adcd

i )|Xi
) (11)

vbj⊤i = max
Adcd

i

fi((Asep
i ∪ Adcd

i )|Xi
) (12)

vbj⊥i is the minimum value of objective i for the current context, since vbj⊥i is an lower bound
value. Similarly, upper bound value vbj⊤i is the maximum value of objective i for the current
context.

In addition, a partial assignment Abj
i that supports vbji is computed.

Abj
i = (Asep

i )|Xi\Xdcd
i

(13)

v
bj⊥/⊤
i depends on assignment Abj

i that is a part of the current context. Note that the agent
of xdcdi shown in Expression (10) should determine one of assignments in Asc

i . If the lowest
decision maker (agent of xdcdi ) is i’s ancestor agent, agent i sends vbj⊥/⊤

i and corresponding
Abj

i as a UTILBJ message to the agent of xdcdi . In the example of Figure 3(b) the agent of x2
sends a UTILBJ message to x0.

When an agent i receives a UTILBJ message from a descendant agent l, agent i stores
the copy (ivbj⊥/⊤

l , iAbj
l ) of the received information for each l. Since iv

bj⊥/⊤
l depends on
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assignment iAbj
l , the assignment iAbj

l must be compatible with the current context. When
iAbj

l is incompatible with the current context, the pair (ivbj⊥/⊤
l , iAbj

l ) is eliminated. When a
new compatible pair (vbj⊥/⊤

l , Abj
l ) is received, ivbj⊥/⊤

l is updated by a maximization/mini-
mization to narrow a partial lower/upper bound.

5.5. Integration of Shortcut Utility

Now each agent i has a pair (ivbj⊥/⊤
l , iAbj

l ) for descendant agent l. ivbj⊥/⊤
l is a correct

lower/upper bound value for the objective of agent l. Let us concentrate on the case of upper
bound. For upper bound ivbj⊤l , there is an upper bound vector ig∗⊤j (A) that has been received

from i’s child j and objective l is an element of ig∗⊤j (A). Note that A and iAbj
l must be

compatible.
However, in general cases, ivbj⊤l cannot be directly integrated with ig∗⊤j (A). One can

incorrectly think that objective value vl in ig∗⊤j (A) is narrowed by min(ivbj⊤l , vl). Such an
integration is incorrect, since it ignores the aggregation and maximization of sorted vectors
between agents i and l. It also reveals the fact that the integration of “shortcut” partial sorted
vectors is more complicated than the case of single objectives. Therefore, we choose the
shortcut for single objectives as shown above.

To integrate ivbj⊤l into ig∗⊤j (A), an additional step is necessary. In Subsection 4.3, we

introduced default lower/upper limit vectors g⊥/⊤lmt
j for i’s child agent j. The integration is

defined using the default upper limit vector g⊤lmt
j .

Definition 9 (Upper Bound Vector with Shortcut): Let ivbj⊤l , ig∗⊤j (A) and g⊤lmt
j denote an

upper bound objective value received with a shortcut message, an upper bound objective
vector containing a value vl for objective l, and the default upper limit objective vector for
ig∗⊤j (A), respectively. The integration of ivbj⊤l and ig∗⊤j (A) is represented as follows

(1) v⊤ ← g⊤lmt
j . Update vl in v⊤ by ivbj⊤l (Note that ivbj⊤l = min(vl,

i vbj⊤l )).
(2) v⊤⊤ ← minleximin(v

⊤,i g∗⊤j (A)).

v⊤⊤ is a upper bound vector with shortcut.

Proposition 4 (Monotonicity of Upper Bound Vector with Shortcut): Upper bound vectors
with shortcut do not exceed the correct upper bound vectors.

Proof. Let denote g∗∗⊤j (A) a new vector of ig∗⊤j (A) that will be received in future.
Also, let vl denote the value of objective l in g∗∗⊤j (A). Since g∗∗⊤j (A) is a new vector,
g∗∗⊤j (A) ⪯leximin

ig∗⊤j (A). In particular, consider the case that an objective l has been
evaluated in the aggregation of g∗∗⊤j (A). Namely, the value vl of objective l in g∗∗⊤j (A) is

not a default limit value. If an upper bound value ivbj⊤l has been received, vl is equal to or
less than ivbj⊤l . Note that ivbj⊤l is the maximum value of objective l that has been maximized
ignoring the aggregation of sorted vectors.

Consider v⊤ in Definition 9. For each objective m ̸= l, v⊤m in v⊤ is the upper limit value
of objective m. Therefore, for vm in g∗∗⊤j (A), vm ⩽ v⊤m. In addition, for vl in g∗∗⊤j (A),
vl ⩽ ivbj⊤l = v⊤l . Namely, all pairs of corresponding objectives are bounded. When the
values in g∗∗⊤j (A) are sorted in ascending order from position t = 0, for each value vl of
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1 Main{
2 if(pi = null){ Asep

i ← ∅. h+⊤
i (Asep

i )← [ ]. ptrmi ← true. }
3 else{ Asep

i ← null. ptrmi ← false. }
4 ig∗⊥r (∅)← h+⊥lmt

i ⊕ g⊥lmt
i . trmi ← false.

5 while(forever){
6 until(receive loop exits){
7 if(¬trmi){ receive a message. }else{ purge all messages. } }
8 if(Asep

i ̸= null ∧ ¬trmi){Maintenance.} }

10 Receive(VALUE, A, g, h, trm){
11 update Asep

i by A.
12 if(Asep

i =A){ h+⊤
i (Asep

i )← h. }else{ h+⊤
i (Asep

i )← h+⊤lmt
i . }

13 ig∗⊥r (∅)← g. ptrmi ← trm. Consistent. return. }

15 Receive(VALUESC, A){
16 if(Asep

i ̸= null){
17 update Asep

i by A. if(Asep
i is updated){ h+⊤

i (Asep
i )← h+⊤lmt

i . }
18 Consistent. } return. }

20 Receive(UTIL, j, A, g⊥/⊤){
21 update Asep

i by A. if(Asep
i is updated){h+⊤

i (Asep
i )← h+⊤lmt

i . }
22 if(Asep

i is compatible with A){ store/update ig
∗⊥/⊤
j (A) by g⊥/⊤. }

23 Consistent. return. }

25 Receive(UTILBJ, j, A, v⊥/⊤){
26 update Asep

i by A. if(Asep
i is updated){ h+⊤

i (Asep
i )← h+⊤lmt

i . }
27 if(Asep

i is compatible with A){ store/update iAbj
j and iv

bj⊥/⊤
j by A and v⊥/⊤. }

28 Consistent. return. }

30 Maintenance{
31 if(pi = null ∧ ig

∗⊥
r (∅) ≺leximin g

∗⊥
i (∅)){ ig

∗⊥
r (∅)← g

∗⊥
i (∅). }

32 if(ptrmi∧ g∗⊥i (Asep
i ) = g∗⊤i (Asep

i )){
33 determine A∗dcd

i corresponding to the termination condition. trmi ← true. }
34 foreach(j ∈ Chi){
35 if(trmi){ determine Asep

j from A∗dcd
i and A∗sep

i . }else{ choose Asep
j with a strategy. }

36 send (VALUE, Asep
j , ig∗⊥r (∅), h+⊤

j (Asep
j ), trmi) to j. }

37 foreach(k ∈ Sci){
38 determine Asc

k from Asep
j of k’s ancestor j. send (VALUESC, Asc

k ) to k. }
39 if(¬ptrmi){
40 send (UTIL, i, Asep

i , g∗⊥/⊤
i (Asep

i )) to pi.
41 send (UTILBJ, i, Abj

i , vbj⊥/⊤
i ) to the agent of xdcd

i . }
42 return. }

44 Consistent{
45 foreach(A incompatible with Asep

i ){ delete ig
∗⊥/⊤
j (A). }

46 foreach(iAbj
j incompatible with Asep

i ){ delete iAbj
j and iv

bj⊥/⊤
j . }

47 return. }

FIGURE 4. Distributed search for leximin AMODCOP with UTILBJ (agent i)

objective l in g∗∗⊤j (A) at position t, the corresponding value v⊤l in v⊤ cannot be v⊤l < vl at
any position t′ such that t′ ⩽ t. Therefore, g∗∗⊤j (A) ⪯leximin v⊤.

From g∗∗⊤j (A) ⪯leximin
ig∗⊤j (A), g∗∗⊤j (A) ⪯leximin v⊤ and step (2) in Definition 9,

it is concluded that g∗∗⊤j (A) ⪯leximin v⊤⊤ = minleximin(v
⊤,i g∗⊤j (A)).
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Similarly, An integration is correctly defined for lower bound ivbj⊥l with a maximization.
In the case that a decision maker receives multiple shortcut messages from different descen-
dants, the above integration is naturally extended to the case of multiple objectives. Since
iv

bj⊥/⊤
l is the minimum/maximum value of each objective l under the current context, it is

independent from the minimum/maxim values of other objectives. Therefore, the integration
of Definition 9 is correctly applied for each ivbj⊤l (and ivbj⊥l ) at the same time.

As shown above, for a correct upper bound, only the single objective in a default upper
limit vector is replaced. However, it may prune the search when an upper bound vector has
been reset into the default upper limit vector due to a change of the current context. Since
leximin compares the first different elements of sorted vectors, it generates opportunities for
pruning.

5.6. Pseudo code of search method with shortcut on backtracking
Figure 4 shows an extended version of the search method with shortcut messages on

backtracking. The pseudo code is based on the algorithm shown in Figure 2. Here we
represent limit vectors h+⊥lmt

i ⊕ g⊥lmt
i and h+⊤lmt

i instead of −−→−∞ and −→∞. Each agent
sends additional messages UTILBJ (line 41). UTILBJ messages are handled similar to UTIL
messages (lines 25-28). Since assignments in A of a UTILBJ message are also employed
to update the current context (line 26), A actually has a corresponding set of logical time
stamps, similar to assignments of UTIL messages. iAbj

j and ivbjj are stored while iAbj
j is

compatible with current context Asep
i (lines 27 and 46).

In the algorithm, indexed sorted vectors are employed instead of sorted vectors. More-
over, as shown in in Definition 9, each ig∗⊤j is replaced by v⊤⊤ in the comparison com-

putation if corresponding ivbjj exists. Similarly, ig∗⊥j is replaced. Therefore, the overhead
of the algorithm is larger than that of the base algorithm. Our main interest in this method
is a technical challenge to generalize shortcut utility messages for the operations on sorted
vectors and leximin.

6. EVALUATION
The proposed method was experimentally evaluated. In our experiments with Lex-

imin AMODCOPs (see Subsection 3.1) each problem consists of n ternary variables (i.e.
|Di| = 3) and c pairs of asymmetric objective functions. Here we employed (n, c) ∈
{(10, 9), (10, 12), (10, 15), (20, 19), (20, 22), (40, 39)}. The constraint network is randomly
generated by first creating a spanning tree and then adding additional edges1.

For each assignment, the objective function fi,j(xi, xj) returns an integer value w from
[0, 1] or [0, 10] based on a uniform distribution. Note that we treat the aggregated function
fi(Xi) as a black-box which cannot be decomposed. For each type of problem, the results are
averaged over 50 instances. Since the difficulty of the problems cannot be exactly controlled,
we show the average performance on these instances.

Tables 1 and 2 shows the comparison between leximin and other optimization criteria.
The following optimization criteria are compared.

• max-leximin: leximin

1The spanning tree assures that the constraint network is connected. For the selection of edges, we randomly weighted all
pairs of variables (i.e. edges of a complete graph) with uniform distribution. Based on the weight values, a minimum spanning
tree is generated. Similarly, additional edges are selected with ascending order on the weight values.
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TABLE 1. Comparison between max-leximin and other optimization criteria (w = [0, 1])

≺: the number of cases where (result of max-leximin)≺(result of max-sum/min/LWT) on
sum/min/max/variance/leximin/Pareto dominance.

comparison sum min

optimization max-sum max-min max-LWT max-sum max-min max-LWT

n, c ≺ = ≻ ≺ = ≻ ≺ = ≻ ≺ = ≻ ≺ = ≻ ≺ = ≻
10, 15 25 25 0 0 5 45 19 31 0 0 35 15 0 50 0 0 50 0
20, 22 33 17 0 0 0 50 29 21 0 0 31 19 0 50 0 0 50 0
40, 39 33 17 0 0 0 50 16 34 0 0 9 41 0 50 0 0 50 0

comparison max variance

optimization max-sum max-min max-LWT max-sum max-min max-LWT

n, c ≺ = ≻ ≺ = ≻ ≺ = ≻ ≺ = ≻ ≺ = ≻ ≺ = ≻
10, 15 25 25 0 3 24 23 18 32 0 37 13 0 13 6 31 26 24 0
20, 22 25 25 0 3 20 27 23 27 0 44 6 0 9 0 41 43 7 0
40, 39 20 30 0 7 14 29 14 36 0 50 0 0 1 0 49 34 16 0

comparison leximin Pareto

optimization max-sum max-min max-LWT max-sum max-min max-LWT

n, c ≺ = ≻ ≺ = ≻ ≺ = ≻ ≺ = ≻ ≺ = ≻ ≺ = ≻
10, 15 0 13 37 0 4 46 0 24 26 0 50 0 0 23 27 0 50 0
20, 22 0 6 44 0 0 50 0 7 43 0 50 0 0 19 31 0 50 0
40, 39 0 0 50 0 0 50 0 16 34 0 50 0 0 26 24 0 50 0

• max-sum: summation
• max-min: maximin
• max-LWT: maximin with additional summation

The results are computed using a dynamic programming based solution method shown in
Subsection 4.2. Other criteria were also applied to the solvers based on pseudo trees, similar
to the previous solvers (Matsui and Matsuo, 2012).

Since these criteria can be decomposed and aggregated using a dynamic programming
manner, we employed variants of DPOP whose objective values and aggregation operators
are replaced for the criteria.

Each cell of Tables 1 and 2 shows the number of cases of dominance (≺ or≻) or tie (=).
Here, max-leximin is in the left hand side of the comparison symbols. For each comparison,
we emphasized the preferred side of three columns, except the results of the maximum values
‘max’ that are shown as a reference. Namely, in the criteria except variance, greater values
are preferred. On the summation of objective values, max-sum and max-LWT are never
dominated by max-leximin. The results are reasonable, since those methods maximize the
criteria including summation values. Max-leximin, max-min and max-LWT give the same
minimum objective value. The results show that these criteria are subsets of maximin. For
max-sum and max-LWT, max-leximin relatively decreases the variance of objective values.
Max-min is not Pareto optimal, while the other criteria are Pareto optimal.

We also evaluated search methods on the modified pseudo trees and the leximin ordering.
The following solution methods were evaluated.

• b: the basic search method shown in Subsection 4.3.
• gl: b with the pruning based on the global lower bound shown in Subsection 4.4.



22 COMPUTATIONAL INTELLIGENCE

TABLE 2. Comparison between max-leximin and other optimization criteria (w = [0, 10])

≺: the number of cases where (result of max-leximin)≺(result of max-sum/min/LWT) on
sum/min/max/variance/leximin/Pareto dominance.

comparison sum min

optimization max-sum max-min max-LWT max-sum max-min max-LWT

n, c ≺ = ≻ ≺ = ≻ ≺ = ≻ ≺ = ≻ ≺ = ≻ ≺ = ≻
10, 15 48 2 0 5 6 39 38 12 0 0 13 37 0 50 0 0 50 0
20, 22 50 0 0 5 0 45 48 2 0 0 4 46 0 50 0 0 50 0
40, 39 50 0 0 1 0 49 49 1 0 0 0 50 0 50 0 0 50 0

comparison max variance

optimization max-sum max-min max-LWT max-sum max-min max-LWT

n, c ≺ = ≻ ≺ = ≻ ≺ = ≻ ≺ = ≻ ≺ = ≻ ≺ = ≻
10, 15 42 5 3 25 8 17 33 15 2 48 2 0 31 4 15 39 9 2
20, 22 45 4 1 23 6 21 39 8 3 50 0 0 27 0 23 49 1 0
40, 39 47 1 2 19 7 24 36 9 5 50 0 0 21 0 29 49 0 1

comparison leximin Pareto

optimization max-sum max-min max-LWT max-sum max-min max-LWT

n, c ≺ = ≻ ≺ = ≻ ≺ = ≻ ≺ = ≻ ≺ = ≻ ≺ = ≻
10, 15 0 2 48 0 4 46 0 9 41 0 50 0 0 46 4 0 50 0
20, 22 0 0 50 0 0 50 0 1 49 0 50 0 0 47 3 0 50 0
40, 39 0 0 50 0 0 50 0 0 50 0 50 0 0 49 1 0 50 0

• glou: bl with the upper bound for other part of the problem shown in Subsection 4.4.
• glousv: glou with shortcut VALUE (VALUESC) messages shown in Subsection 4.5.
• lvb, lvgl, lvglou, lvglousv: solution methods with the vectors of lower and upper

limit values for each function fi(Xi) addressed in Subsection 4.3 2.
• lvglousvbj: lvglousv with shortcut UTIL (UTILBJ) messages shown in Section 5.

We employed a depth first strategy for each variables. On the other hand, a value of each
variable is optimistically selected so that the value corresponding to largest upper bound
vector is chosen.

The experiments were performed using simulation programs based on message cycles.
Here we focused on the main processing of proposed methods, since it iteratively performs
relatively complex message passing, and mainly relates the consumption of computational
resources. The preprocessing is emulated using an equivalent sequential processing that
performs depth first search traversal on constraint network and propagation on a pseudo
tree to determine decision makers and default bounds of objective vectors. The simulation
program repeats message cycles, where all agents are executed in a round robin manner. In
the first message cycle, agents initialize their status. In a message cycle, each agent receives
messages from its message queue. Then the agent updates its status and sends messages
if necessary. The messages are exchanged by the simulator. A simulation is interrupted

2In this case, to avoid over estimation, we modified the condition of the pruning in the second phase using a flag. Agent i
completes the tree search for the assignment Asep

j when g∗⊥j (Asep
j ) = g∗⊤j (Asep

j )∨h+⊤
j (Asep

j )⊕g∗⊤j (Asep
j ) ≺leximin

g∗⊥r (∅) for child j ∈ Chi (e.g. ≺leximin is used instead of ⪯leximin when agents determine the optimal assignment).
Additional flags in VALUE messages switch the pruning mode.
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TABLE 3. Number of iterations (w = [0, 1]) (trm.: number of completed instances)

n, c 10, 9 20, 19

alg. msg. ncop. ncst. trm. msg. ncop. ncst. trm.
cyc. [s] cyc. [s]

b 901 118380 0.022 50 13820 1504919 0.367 43
gl 715 110374 0.0215 50 11151 1382353 0.338 45
glou 404 295626 0.049 50 5926 4599000 0.752 49
glousv 243 261805 0.040 50 2620 3326015 0.575 50

lvb 285 66132 0.012 50 8200 922458 0.231 46
lvgl 246 63040 0.011 50 7001 865591 0.204 47
lvglou 122 148461 0.0210 50 1343 2154010 0.339 50
lvglousv 88 146986 0.023 50 622 1851827 0.280 50
lvglousvbj 88 146986 0.064 50 622 1851827 1.007 50

n, c 10, 12 20, 22

b 14864 5406728 1.015 44 41136 15711705 3.163 16
gl 9352 4303904 0.843 49 35555 13993149 3.082 25
glou 4208 6472761 0.969 50 27399 38337847 6.722 33
glousv 2909 6679108 1.037 50 21177 39958924 7.591 41

lvb 12943 4536151 0.866 46 37863 15003390 3.110 23
lvgl 7799 3533306 0.707 50 31895 13381399 3.023 30
lvglou 2332 4410715 0.656 50 9067 23771553 4.011 49
lvglousv 1742 5043808 0.807 50 6364 25350356 4.380 50
lvglousvbj 985 4220513 1.781 50 4548 23614979 13.895 50

n, c 10, 15 40, 39

b 43056 44511576 6.706 17 40099 6669717 1.706 16
gl 31963 40362659 6.921 34 37604 6516241 1.743 17
glou 21423 51906214 7.895 45 30422 26902314 3.430 28
glousv 18450 67587148 10.444 48 20754 23319660 3.369 40

lvb 42309 42243988 7.171 17 30576 5662956 1.538 26
lvgl 28172 37222882 6.858 39 28815 5580486 1.631 29
lvglou 14682 43229508 6.644 48 9615 14243382 1.754 47
lvglousv 13159 58524454 9.209 48 3802 9221296 1.221 50
lvglousvbj 3919 16839045 8.205 50 3802 9221296 5.490 50

Due to space limitation, we show the results of pairwise t-test for the number of message cycles as a verification.
Except the same number of message cycles of ‘lvglousv’ and ‘lvglousvbj’, in the cases of trees, the following pairs are
undistinguished under 95 percent confidential interval. (n, c , alg., alg.)=(10, 9, glousv, lvb), (10, 9, glousv, lvgl), (20, 19,
glou, lvgl), (40, 39, glou, lvb), (40, 39, glou, lvgl).

after a number of 50000 cycles. Additionally, the number of non-concurrently performed
operations (ncops) relating to objective functions and assignments is also evaluated. While
it resembles ncccs (Meisels et al., 2002), we also consider several operations that involve
a (partial) assignment. Moreover, the longest chain of actual computation time of agents,
ignoring communication time, (denoted by ‘ncst’) is shown. For this result, five trials for the
same instance are averaged. We performed the experiments on a single computer with Core
i7-4930 @ 3.40GHz, 28GB memory, Linux 2.6.32 and g++ 4.4.7.
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Note that our current implementations of search methods redundantly repeat similar
computations in the internal processing of agents. Namely, several equations on bounded
vectors including evaluation of objective vectors and pruning methods are separately com-
puted, while they contain similar parts. Moreover, the search methods also repeat the
distributed search processing. Therefore, the ncops obtained for the search methods is larger
than that obtained with simple implementation of dynamic programming based solution
methods when the dynamic programming is applicable. For example, in the case of (n, c) =
(20, 22) and w = [0, 1], the dynamic programming method required 99874 ncops, while
lvglou required 25350356 ncops in average. Since our current interest is the interaction
among the agents on new boundaries based on sorted vectors and leximin, the optimized
internal processing will be addressed in future work as a common issue of similar search
methods. On the other hand, we reduced the number of redundant messages that transfer the
same information. We mainly focus on the impact that new solutions have on the number of
message cycles and messages, as a measure of the interaction among agents.

Tables 3 and 4 shows the number of iterations and several results on computational
performances. In these results, the best value in each column is emphasized. The efficient
methods reduce the number of message cycles. gl prunes the search, and its effect is
improved by glou and glousv. In particular, glou is effective, since it prunes branches
with full information of boundaries. Although glou employs the limit values −∞ and∞,
the pruning works. The effect comes from the property that leximin partially compares values
in two vectors. Also, the additional shortcut VALUE messages (glousv and lvglousv)
reduces message cycles. In the case of asymmetric DCOPs, there are opportunities to send
the shortcut VALUE messages even if an original pseudo tree is an exact tree as shown in
the cases of (n, c)=(10, 9), (20, 19) and (40, 39) in both tables. Note that this is caused
by the modification of decision makers. As a simple example, consider a tree of linear
graph consisting of nodes/variables xi, xj , xk, where xi and xk are the root and leaf nodes,
respectively. Since xi refers the values of its child xj , xi decides the value of xj . On the other
hand, xk refers the values of its parent xj . Hence, there are the opportunities of the shortcut
VALUE messages from xi to xj .

In addition, lv* that employ the lower and upper limit values for each function fi(Xi)
are effective in the case of trees and less effective for cyclic networks. For example, in the
case of (n, c)=(10, 9) in Table 3, the number of message cycles of lvb is less than that of
b. However, in the case of (n, c)=(10, 12) and (10, 15) the ratio of those values is relatively
small. This reveals the need for better bounding methods, as available with conventional
DCOP solvers. Such methods are, however, domain specific, since the decomposition of
fi(Xi) and the identification of the preferences of the agents is necessary.

lvglousvbj employs such an identification of the preferences of the agents to transfer
shortcut UTIL (UTILBJ) messages. For the problem instances of cyclic graphs, the shortcut
UTILBJ messages reduce message cycles, as shown in the cases of (n, c)=(10, 12), (10, 15)
and (20, 22). On the other hand, in the case of trees, there are no opportunities to send the
UTILBJ messages, and lvglousvbj is the same as lvglousv.

Advanced methods need more ncops than basic methods. For example, as shown in the
most results of b and lvglousv, lvglousv needs more ncops than b even if lvglousv
reduces the number of message cycles. Therefore, there are several trade-offs between
computation and communication. In these results, lvgl relatively well reduced both the
number of message cycles and ncops. For heavy methods such as lvglousvbj, the effect
on the number of message cycles is important to mitigate the trade-offs, as shown in the
case of (n, c)=(10, 15). On the other hand, there are opportunities to reduce ncops in our
implementation.

The results of computation time ‘ncst’ is still affected by the perturbation of computer
environment due to the limitation of trials. On the other hand, those relatively similar to
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TABLE 4. Number of iterations (w = [0, 10]) (trm.: number of completed instances)

n, c 10, 9 20, 19

alg. msg. ncop. ncst. trm. msg. ncop. ncst. trm.
cyc. [s] cyc. [s]

b 578 108958 0.02445 50 10827 1480711 0.474 46
gl 483 100642 0.02790 50 8432 1314528 0.436 46
glou 285 249952 0.051 50 3253 4106505 0.974 50
glousv 185 231108 0.043 50 1385 3224723 0.665 50

lvb 412 88892 0.02789 50 8532 1233105 0.492 47
lvgl 344 82610 0.02448 50 6481 1082643 0.433 48
lvglou 199 202010 0.040 50 1262 2851531 0.679 50
lvglousv 135 191823 0.044 50 641 2519020 0.607 50
lvglousvbj 135 191823 0.096 50 641 2519020 1.688 50

n, c 10, 12 20, 22

b 13300 5661150 1.464 46 39620 18234099 5.335 20
gl 5705 3715226 0.889 50 30975 13432645 4.149 29
glou 2918 4649116 0.825 50 21114 30493686 7.169 39
glousv 2050 4964571 0.915 50 14751 33158647 8.224 46

lvb 12697 5422566 1.626 47 38172 17700952 6.866 23
lvgl 4923 3409258 1.018 50 28846 12981207 5.233 32
lvglou 2000 3571027 0.833 50 10480 20413559 6.388 47
lvglousv 1499 4199580 1.014 50 7085 22026501 7.333 49
lvglousvbj 915 3539162 1.945 50 6035 21069540 17.487 50

n, c 10, 15 40, 39

b 42199 52022404 9.682 18 37055 7540898 2.763 20
gl 26976 38610222 8.000 40 33627 7202239 2.902 26
glou 19449 44551099 7.544 46 19496 25948196 7.292 39
glousv 16721 56891746 9.347 47 10826 20088109 4.763 48

lvb 41956 51168367 13.207 18 33544 7200254 3.229 25
lvgl 23694 37399351 10.836 42 30144 6833475 3.220 31
lvglou 15064 42115210 10.201 49 11851 20341194 5.650 46
lvglousv 12987 54435512 13.316 49 5581 14697514 3.556 49
lvglousvbj 3525 14889248 9.333 50 5581 14697514 10.430 49

Due to space limitation, we show the results of pairwise t-test for the number of message cycles as a verification.
Except the same number of message cycles of ‘lvglousv’ and ‘lvglousvbj’, in the cases of trees, the following pairs are
undistinguished under 95 percent confidential interval. (n, c , alg., alg.)=(10, 9, gl, lvb), (10, 9, glousv, lvglou), (10, 12,
glousv, lvglou), (10, 15, glousv, lvglou), (20, 19, gl, lvb), (40, 39, gl, lvb), (40, 39, glousv, lvglou).

the results of ncops, except the cases of lvglousvbj. For example, in the case of (n,
c)=(10, 12) in Table 3, lvglousvbj needs more ncst than lvglous, while its ncops is
less than that of lvglous. This result reveals an implementation issue of the vectors that
is not captured by ncops. In lvglousvbj, the run-length encoding of vectors cannot be
made available, since it has to distinguish individual objectives for the UTILBJ messages.
Moreover, indices of the objectives are also necessary. Hence, its trade-offs are tighter than
other methods.
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FIGURE 5. Number of message cycles
(w = [0, 10], n = 10)
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blvblvgllvgloulvglousv(bj )

FIGURE 6. Number of message cycles
(w = [0, 10], tree)
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FIGURE 7. ncops. (w = [0, 10], n = 10)
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FIGURE 8. ncops. (w = [0, 10], tree)

Table 4 shows the case of w = [0, 10]. The results resemble the ones in the case of
w = [0, 1].

We also show the number of message cycles and ncops for several problem settings in
the case of w = [0, 10], and solution methods in Figs. 5-8. Figures 5 and 6 show the number
of message cycles for the density of constraints in the case of n = 10, and the number of
nodes in the case of trees, respectively. These results show that the scalability of the solution
methods resemble conventional ones. The number of message cycles exponentially grows
with the density of the problems and the number of agents. Figures 7 and 8 show ncops
for the same settings. While the results resemble the cases of the number of message cycles,
the efficiencies of solution method are various, since those depend on the trade-offs between
ncops in a message cycle, and the number of message cycles.

Tables 5 and 6 shows the number of messages per cycle. Since we employed a rule that
reduce redundant messages that repeatedly transfer the same information, the number of
messages is relatively small. While the number of shortcut VALUE (VALUESC) messages
are relatively large even in the cases of trees, relatively small number of shortcut UTIL
(UTILBJ) messages are transferred.

Table 7 shows the size of the pseudo trees. There are a number of agents with an empty
Xdcd

i . These agents only evaluate their objective values. While there are opportunities to
reduce this redundancy by revealing the objective functions of the agents, it will also be
domain specific.

Table 8 shows the size of the vectors. The actual size (2sz.) of the representation of the
vectors is relatively smaller than the length (len.) of the vectors in the case of w = [0, 1].
In these results, the computation of leximin is reduced, since the number of pairs (sz.) to be
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TABLE 5. Number of messages per cycle (w = [0, 1])

n, c 10, 9 10, 12 10, 15

alg. VAL VALSC UTL UTLBJ VAL VALSC UTL UTLBJ VAL VALSC UTL UTLBJ

b 2 2 2 2 2 2
gl 2 2 2 2 2 2
glou 2 2 2 2 2 2
glousv 3 2 3 3 4 3 3 4 3

lvb 2 2 2 2 2 2
lvgl 2 2 2 2 2 2
lvglou 3 2 2 2 2 3
lvglousv 4 3 3 3 5 4 3 4 4
lvglousvbj 4 3 3 0 4 5 4 1 4 6 4 1

n, c 20, 19 20, 22 40, 39

alg. VAL VALSC UTL UTLBJ VAL VALSC UTL UTLBJ VAL VALSC UTL UTLBJ

b 2 2 2 2 3 2
gl 2 2 2 2 3 3
glou 3 3 3 3 4 4
glousv 4 4 4 5 6 5 6 6 5

lvb 3 3 2 2 4 3
lvgl 3 3 3 2 4 4
lvglou 4 4 4 4 7 7
lvglousv 7 6 6 7 8 7 12 11 10
lvglousvbj 7 6 6 0 8 9 7 1 12 11 10 0

enumerated is less than the length of vectors. On the other hand, lvglousvbj employs
indexed sorted vectors. In our experiment, we simply implemented the indexed objective
values using an additional array of length “lng.”.

The results show that the sorted objective vectors and leximin ordering are success-
fully generalized with the pseudo tree based solution methods. Also, the monotonicity on
boundaries of the sorted objective vectors correctly works with search methods. On the
other hand, the results reveal the necessity of more sophisticated methods including several
implementation techniques to reduce overheads.

7. DISCUSSIONS AND FUTURE WORKS
In this study, we investigated two types of solution methods based on pseudo trees.

The aim of our study is to clarify the decomposition of problems and the generalization
of boundaries on Leximin AMODCOPs through these solution methods. In the current
results shown in the evaluations, the dynamic programming method is promising for the
problems with relatively small size of separators, while the search methods require high
computational overhead. Since several causes of overhead in search methods relate to
optimizations of algorithms and implementation techniques, they are above the main scope
of this study. However, the additional computations for the search increase computation time.
The efficiency of the techniques to handle sorted objective vectors should be improved. The
optimized internal processing and the identification of appropriate pruning operations on
promising classes of problems will be included in future work.

In our proposed search methods, the high induced width exponentially increases the
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TABLE 6. Number of messages per cycle (w = [0, 10])

n, c 10, 9 10, 12 10, 15

alg. VAL VALSC UTL UTLBJ VAL VALSC UTL UTLBJ VAL VALSC UTL UTLBJ

b 2 2 2 2 2 2
gl 2 2 2 2 2 2
glou 2 2 2 2 2 3
glousv 3 2 3 3 4 3 3 5 3

lvb 2 2 2 2 2 2
lvgl 2 2 2 2 2 2
lvglou 2 2 2 2 2 3
lvglousv 4 3 3 3 5 4 3 5 4
lvglousvbj 4 3 3 0 4 5 4 1 4 6 4 1

n, c 20, 19 20, 22 40, 39

alg. VAL VALSC UTL UTLBJ VAL VALSC UTL UTLBJ VAL VALSC UTL UTLBJ

b 2 2 2 2 3 3
gl 3 2 3 3 3 3
glou 3 3 3 3 5 5
glousv 5 5 4 5 7 5 8 8 7

lvb 3 2 2 2 3 3
lvgl 3 3 3 3 4 3
lvglou 4 4 4 4 6 5
lvglousv 6 6 5 6 8 6 10 10 8
lvglousvbj 6 6 5 0 7 8 6 1 10 10 8 0

TABLE 7. Size of pseudo tree

n, c max. max. max. max. max. num. of agents max.
depth |Chi| |Xsep

i | |Xi| |Xdcd
i | s.t. |Xdcd

i | = 0 |Sci|
10, 9 5 3 2 4 4 4 4
10, 12 6 2 5 5 5 6 5
10, 15 7 2 7 6 6 6 6

20, 19 8 4 2 5 5 9 5
20, 22 9 3 5 6 6 10 6

40, 39 11 5 2 6 6 17 6

number of search iterations. For addressing this issue, a promising direction is to investigate
more aggressive modifications of graphs (Vinyals et al., 2011). Also, there are opportunities
to approximate the problems (Rogers et al., 2011; Delle Fave et al., 2011). While existing
efficient techniques including forward-bounding may improve the efficiency of solution
methods (Netzer and Meisels, 2013a), it will require higher computational/communication
overhead.

In Netzer and Meisels (2013a), a class of Asymmetric DCOP similar to ones in this study
has been addressed, where its objective is the minimization of envy among agents. In that
study, a synchronous search algorithm based on a total order on variables employs a forward
bounding technique with shortcut messages, while we employed shortcut messages that are
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TABLE 8. Size of vector

w [0, 1] [0, 10]

n, c 20, 22 40, 39 20, 22 40, 39

alg. len. sz. 2sz. len. sz. 2sz. len. sz. 2sz. len. sz. 2sz.

lvb 4 2 4 3 2 3 4 3 7 3 3 5
lvgl 9 3 5 16 2 5 10 6 12 16 7 14
lvglou 11 3 6 21 3 6 11 7 15 21 10 19
lvglousv 11 3 6 22 3 6 11 7 15 22 10 20
lvglousvbj 11 3 6 22 3 6 11 7 15 22 10 20

sent beside an asynchronous search on a pseudo tree. The comparison of both approaches is
an interesting issue and will be included in future works.

In Bouveret and Lemaı̂tre (2009), several solution methods for a centralized constraint
optimization problem on the leximin ordering have been proposed. The solution methods
employ several techniques including branch-and-bound with leximin ordering and several
types of constraints to represent relationships of leximin. On the other hand, the solution
methods are dedicated centralized algorithm for constant solvers. How those techniques can
be decomposed into distributed algorithms to construct efficient solution methods is also an
interesting issue.

In general cases of optimization problems with criteria of equality, agents are interested
in the comparison between their utilities. On the other hand, identifying the utility of a
particular agent is useful for the solution methods that handles objective vectors. This
tradeoff between the privacy of agents and effectiveness of the solution method will be
important.

We discussed our solution methods on a basic Leximin AMODCOP for the sake of
simplicity. For future works, we address several motivation domains below.

Example 2 (Resource allocation on a power supply network): In a resource allocation prob-
lem on a power supply network (Miller et al., 2012; Matsui and Matsuo, 2012), each agent
represents a node of the network. An agent i has several input links, output links and its
resource. Given the amount xli,j of transferred resource on each input/output link (i, j) and xri
of its own resource, the total amount must satisfy resource constraint ci :

∑
xl
j,i∈Xin

i
xlj,i =

xri+
∑

xl
i,k∈X

out
i

xli,k. Here, Xin
i and Xout

i corresponds to input and output links, respectively.
In addition, agent i has an objective function f r

i (x
r
i ) of its own resource use xri . Using

a sufficiently small objective value for the violation of hard constraint ci, this problem is
represented by fi(Xi) for agent i, where Xi consists of {xir} ∪ Xin

i ∪ Xout
i . The value of

fi(Xi) is f r
i (x

r
i ) if assignments for Xi satisfy ci. Otherwise, fi(Xi) takes the sufficiently

small value. Each agent desires to improve its local objective value under the resource
constraints and preferences of other agents.

While this modeling is very simplistic, it represents a basic structure in resource con-
straint DCOPs related to (leximin) Asynchronous Multi-objective problems.

Example 3 (Variation of Coalition Structure Generation): A Coalition Structure Generation
problem is represented as a DCOP (Ueda et al., 2010). An agent i has two variables xi and
xgi . xgi represents a group to which agent i belongs. xgi takes a value ‘alone’ when agent
i belongs to a group of single agent. xi represents i’s decision. Depending on xgi , utility
values that relate to xi are defined as follows. fv

i,j(xi, xj , x
g
i , x

g
j ) = vi,j(xi, xj) if xgi ̸=
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‘alone′ ∧ xgi = xgj . Otherwise, fv
i,j(xi, xj , x

g
i , x

g
j ) = 0. fv

i (xi, x
g
i ) = vi(xi) if xgi = ‘alone′.

Otherwise, fv
i (xi, x

g
i ) = 0. Based on this DCOP, a local problem is represented as fi(Xi) =

fv
i (xi, x

g
i ) +

∑
j∈Nbri

fv
i,j(xi, xj , x

g
i , x

g
j ) for agent i aggregating utility functions among i

and its neighborhood agents Nbri.

For the problems above, several extensions of the solution method will be necessary to
handle specific structures and large solution spaces efficiently.

8. CONCLUSIONS
In this work, we presented a multiple objective DCOP that considers preferences of

agents, and its solution method based on the leximin ordering on multiple objectives. To
solve the problem, the solution methods based on a pseudo tree of a constraint network are
applied to the leximin ordering on objective vectors.

As addressed in the previous section, our future work will include improvements of
solution methods, reducing redundant computation, evaluations in practical domains, and
analysis on various types of problems.
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