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Abstract—This work discusses what an (independent) rein-
forcement learning agent can do in a multiagent environment. In
particular, we consider a stateless Q-learning agent in a Prisoner’s
Dilemma (PD) game. Although it had been shown in the literature
that stateless, independent Q-learning agents had been difficult to
cooperate with each other in an iterated PD (IPD) game, we gave
a condition of PD payoffs and Q-learning parameters that helps
the agents cooperate with each other. Based on the condition,
we also discussed the ratio of mutual cooperation happening in
IPD games. It supposed that mutual cooperation was fragile, i.e.,
one misfortune defection would have the agents slide down the
spiral of mutual defection. However, it is not always correct.
Mutual cooperation will reinforce itself and thus it will be robust
and resilient. Hence, this work analytically derives how long a
series of mutual cooperation continues once it happened while
considering the resilience. It gives us further comprehension of
the process of reinforcement learning in IPD games.

I. INTRODUCTION

In this paper, we consider an (artificial) learning agent
that chooses appropriate actions in a multiagent environment.
The most popular learning method for agents is reinforcement
learning [1]. In a reinforcement learning process, an agent is
given a reward from the environment according to its action,
the state of the environment, etc., and learns to take actions
that maximize the rewards.

Many reinforcement learning algorithms for a multiagent
environment that explicitly consider the other agents have
been proposed (e.g., [2]–[9]). Such an algorithm sees the
actions of all agents, called joint actions, and changes its
action according to the joint actions. However, the number
of the joint actions becomes intractable when the number of
agents in the environment and/or that of actions each agent
can choose increase. Hence, in this work, we discuss what an
“independent” reinforcement learning algorithm, which is for a
single-agent environment, can do in a multiagent environment.

Game theory [10], which gives a model of such a mul-
tiagent environment, analyzes interactions among rational
decision-makers who decide behaviors according to payoffs.
Prisoner’s Dilemma (PD), the most famous two-person two-
action game in game theory, has been attracting many re-
searchers for decades [11], [12] because it has an interesting
property that both players obtain larger payoffs when they
“cooperate” although the (individually) rational action is to
“defect”. We humans often “cooperate” with each other in
this game. In an iterative context, called iterated PD (IPD),
researchers explain these cooperative behaviors as a result of
reciprocity, reputations, etc. that will appear in the following

turns [11]. For the reciprocity, reputations, etc., we have to
remember who did what in the past.

When players who do not remember who did what in the
past play an IPD, it may result in mutual defection because
it is identical to a one-shot PD. Then, what happens when
two independent reinforcement learning agents play an IPD?
Sandholm and Crites [13] conducted various experiments in
which Q-learning [14] agents played an IPD, and investigated
whether mutual cooperation occurred or not. They reported
that mutual cooperation did not occur when both agents did
not take their past actions into account, i.e., when they were
independent and “stateless”. On the other hand, Wunder et al.
[15] showed that stateless Q-learning with an infinitesimal
learning rate might escape from mutual defections in an IPD,
owing to initial settings.

Those works tell us that stateless, independent Q-learning
agents are difficult to cooperate in certain IPDs; however, it
is not correct in all IPDs. We gave a necessary condition of
the payoffs of PD and parameters of Q-learning that achieves
mutual cooperation of stateless Q-learning agents [16], [17].
In other words, there exist IPD games in which stateless Q-
learning agents can cooperate with each other. Those works
show conditions where the Q-value of cooperation exceeds
that of defection after one mutual cooperation occurred by
“mistakes”. Taking cooperation will be reinforced after the
mistaken mutual cooperation, and finally, the agent will con-
tinue to choose cooperation “intentionally”.

Similarly, such a series of intentional mutual cooperation
will be ended after misfortune (unilateral) defections. Here
we consider how long the intentional mutual cooperation
continues. More precisely, when both agents have Q-values
that prefer defection to cooperation, how many times will
the intentional mutual cooperation appear during the period
from the mistaken mutual cooperation to the next intentional
defection? We have discussed the expected duration of a
series of mutual cooperation in order to derive the expected
ratio of mutual cooperation [17]. As a result, the expected
ratio is indeed larger than that calculated from the “mistake”
probabilities.

In that discussion, we supposed that an action pair except
for mutual cooperation always caused at least one agent to take
a series of intentional defection afterward. However, according
to numerical simulations, such a misfortune defection did
not always cause the intentional defection, because mutual
cooperation had reinforced itself and thus became robust and
resilient. Hence, in this work, we investigate the duration



more precisely; we directly derive the expected duration of
mutual cooperation from its mistaken start until the intentional
defection comes again.

This paper consists of five sections. In Section II, we briefly
introduce a PD game and Q-learning, and review the expected
ratio of mutual cooperation of Q-learning agents in an IPD
game. In Section III, we derive the expected duration of mutual
cooperation. In Section IV, the derived duration is verified by
numerical experiments. We conclude this paper in Section V.

II. PREPARATION

This section introduces a PD game and Q-learning, which
are used in the following sections. After that, we review
our previous work that derived the expected ratio of mutual
cooperation in an IPD game played by two stateless Q-learning
agents.

A. Prisoner’s Dilemma

A Prisoner’s Dilemma (PD) game [11], [12] is a two-
person two-action game and is often shown by a payoff matrix
(Table I). Each player has two actions: C (cooperation) and
D (defection). The players choose actions from rows and
columns of the matrix, respectively. After choosing its action,
each player obtains a payoff (T,R, P, or S) in the matrix.
For example, when the row player chooses C and the column
player chooses D, they obtain payoffs S and T , respectively.

TABLE I. PRISONER’S DILEMMA PAYOFFS

Row \ Column C D

C R,R S, T

D T, S P, P

PD has the following relations among the payoffs:

T > R > P > S.

Under the relations, each player obtains a larger payoff when
he/she chooses D regardless of the opponent’s action. As a
result, both players choose D and obtain P . However, it is
more desirable for them to choose C and obtain R that is
larger than P .

B. Q-learning

Suppose that an agent chooses an action at at time t
following a probability distribution called a policy π on the
available action set A. A reinforcement learning agent updates
its policy to obtain the optimal policy π∗. To evaluate a policy,
an action value function is defined as an expected return, which
is a sum of future rewards discounted by γ ∈ [0, 1) when the
agent follows the policy. Q-learning [14] has a function Q and
updates it to make it approach the optimal action value function
Q∗ under π∗. Although Q is a function of states and actions in
general, in the following sections, we use a stateless version of
Q-learning in which Q has only one argument showing actions.
Then, the update rule of stateless Q-learning is

Qt+1(a) =

{
Qt(at) + α δt if a = at,

Qt(a) otherwise,
(1)

δt ≡ rt+1 + γ max
a′∈A

Qt(a
′)−Qt(at),

where rt+1 ∈ R is a reward obtained at t, α ∈ (0, 1] is a
parameter called the learning rate and δt is called TD error
that approaches 0 when Q approaches Q∗. Q is proved to
converge to Q∗ with probability one when several conditions
hold [14].

If Q∗ is known, the agent can choose an optimal action a∗
from Q∗ by a∗ = argmaxa′′∈AQ

∗(a′′). However, if the agent
always chooses such actions during learning, Q may converge
to a local optimum because the convergence conditions are
violated. To avoid it, the agent uses a stochastic method like
ε-greedy [1] to choose actions. The ε-greedy method chooses
an action having the maximum Q with probability 1− ε, or a
random action.

C. Expected ratio of mutual cooperation in an IPD game

Suppose that there are two stateless Q-learning agents that
play an IPD game. We have derived the expected ratio of
mutual cooperation Ecc in the IPD game as follows [17].

Ecc = p1(1− p2) + p1p2d,

d =
1− (1− p3)

1− p3
=

p3

1− p3
(2)

where p1 is the probability that the first mutual cooperation
appears by chance when Q(D) > Q(C) in both agents, p2 is
the probability that the first mutual cooperation makes Q(C) >
Q(D) in both agents, and p3 is the probability that the agents
take mutual cooperation when Q(C) > Q(D) in both agents.
The expected length d of mutual cooperation while Q(C) >
Q(D) in both agents is from the expected number of failures
before the first success in the geometric distribution with the
success probability 1− p3.1

Note that the premise of Eq. 2 is restrictive because it only
considers the length of mutual cooperation. One misfortune
defection will reset everything, i.e., it will have the agents slide
down the spiral of mutual defection. However, the numerical
verification in that work showed that such a misfortune defec-
tion did not always cause the spiral, i.e., mutual cooperation
itself had resilience to some extent. Hence, the derived ratio
is underestimated.

III. EXPECTED DURATION OF MUTUAL COOPERATION

We saw that the expected ratio of mutual cooperation in an
IPD game played by two stateless Q-learning agents derived in
the previous work was underestimated because it ignored the
resilience of mutual cooperation. Hence, in order to incorporate
the effect of resilience, here we change the definition of mutual
cooperation from the actions the agents take to the intention
the agents have. That is, we say that mutual cooperation ends
when Q(D) exceeds Q(C) in at least one agent. Then we
derive the expected duration of the mutual cooperation instead
of d of Eq. 2. More precisely, this work analytically derives
the expected number of games from the beginning of a series
of the mutual cooperation to its end in an IPD game played by
two stateless Q-learning agents with the ε-greedy method. The
procedure is as follows. Note that the available action set A is
{C,D}. We derive the expected duration from an agent’s view,
i.e., we call one agent the target and the other the opponent,

1Here the “success” means the end of mutual cooperation.



and the parameters used are only those of the target. Hereafter,
XY stands for the action pair of both players when the target
chooses X and the opponent chooses Y .

1) Derive the change of Q(D) caused by the payoff T , the
result of unilateral defection of the target (DC).

2) Derive the number of unilateral defection until the end
of the mutual cooperation, and the expected number of
games necessary for the derived number of unilateral
defection. There are two cases due to the cause of the
end:

a) Ended by a series of DCs, and
b) Ended by one unilateral defection of the opponent

(CD) after a series of DCs.
3) Derive the probabilities pa and pb corresponding to the

above cases, respectively. Finally, derive the expected
duration d until the end of the mutual cooperation.

This work supposes that Q(D) becomes the minimum
value P/(1 − γ) before the first CC, and Q(C) becomes
the maximum value R/(1 − γ) before the first DC after a
series of CCs. Also, it supposes that the opponent does not
choose D except in the above case 2b from the beginning of
the mutual cooperation to its end.2 The learning rate of the
target is α ∈ (0, 1).

A. Change of Q(D)

Let t be the start time of the mutual cooperation and tk be
the time from t to the k-th DC (t0 = 0). Then, from Eq. 1, the
change of Q(D), or ∆k(D), caused by the k-th DC becomes

∆k(D) ≡ Qt+tk+1(D)−Qt+tk(D)

= α
(
T + γQt+tk(C)−Qt+tk(D)

)
= α

(
T + γ

R

1− γ
−Qt+tk(D)

)
, (3)

because Qt+tk(C) > Qt+tk(D). Since Q(D) only changes at
t+ tk + 1 (k = 1, 2, 3, ...),

Qt+tk(D) = Qt+tk−1+1(D)

= (1− α)Qt+tk−1
(D) + α

(
T + γ

R

1− γ

)
= (1− α)Qt+tk−2+1(D) + α

(
T + γ

R

1− γ

)
= (1− α)2Qt+tk−2

(D) + α

(
T + γ

R

1− γ

)(
(1− α) + 1

)
= (1− α)3Qt+tk−3

(D) + α

(
T + γ

R

1− γ

)
×
(
(1− α)2 + (1− α) + 1

)
= . . .

= (1− α)k−1Qt+t1(D) + α

(
T + γ

R

1− γ

) k−1∑
j=1

(1− α)j−1

= (1− α)k−1Qt(D) + α

(
T + γ

R

1− γ

) k−1∑
j=1

(1− α)j−1.

(4)

2In other words, Q(C) = R/(1− γ) in the whole duration except for the
last game in the “ended by the opponent” case, because CD does not happen.

Finally, by substituting Eq. 4 in Eq. 3 and from the following
equation

α

k−1∑
j=1

(1− α)j−1 = 1− (1− α)k−1, (5)

we get ∆k(D) as follows.

∆k(D) = α(1− α)k−1

(
T + γ

R

1− γ
−Qt(D)

)
= α(1− α)k−1

(
T +

γR− P
1− γ

)
. (6)

Note that T + (γR− P )/(1− γ) > 0.

B. Duration of the mutual cooperation ended by the target

Based on the above result, let us derive la that satisfies

Qt+tla+1(D) > Qt+tla+1(C) =
R

1− γ
.

Since

Qt+tla+1(D) = Qt(D) +

la∑
k=1

∆k(D),

we get
la∑

k=1

∆k(D) >
R− P
1− γ

. (7)

From Eqs. 5, 6, and 7, we get

(1− α)la < 1− R− P
(1− γ)T + γR− P

=
(1− γ)(T −R)

(1− γ)T + γR− P
.

Since log(1− α) < 0, we get

la >
1

log(1− α)
log

(1− γ)(T −R)

(1− γ)T + γR− P
. (8)

Let the righthand side of Eq. 8 be linf
a . Then, the minimum

integer La that satisfies Eq. 8 is dlinf
a e.3

Next, the expected duration between two DCs when
Q(C) > Q(D) in both agents, or ndc, is

ndc =
1

εs
2

(
1− εo

2

) =
4

εs(2− εo)
,

where εs and εo are the parameter of ε-greedy method in the
target and the opponent, respectively.

Therefore, the expected duration from the start of the
mutual cooperation to its end caused by the target, or da, is

da = ndc × La.

3If linf
a is an integer, La = linf

a + 1.



C. Duration of the mutual cooperation ended by the opponent

Here we consider the case where the mutual cooperation
ends due to one CD. It means that Q(C) > Q(D) in both
agents before CD, but the difference of them of the target is
smaller than the reduction of Q(C) caused by the payoff S.

First of all, let us derive lb that satisfies

Qt+tlb+1(D) > Qt+tlb+1(C)

= (1− α)Qt+tlb
(C) + α(S + γQt+tlb

(C))

= (1− α+ αγ)Qt+tlb
(C) + αS.

Similar to the previous subsection, we get

lb >
1

log(1− α)
log

(1− γ){T − (1− α)R− αS}
(1− γ)T + γR− P

. (9)

Let the righthand side of Eq. 9 be linf
b . Then, the minimum

integer Lb that satisfies Eq. 9 is dlinf
b e.4 Note that linf

a > linf
b .

Next, the expected duration ncd from the Lb-th DC to the
final CD when Q(C) > Q(D) in both agents is

ncd =
1(

1− εs
2

) εo
2

=
4

εo(2− εs)
.

Hence, the expected duration from the start of the mutual
cooperation to its end caused by the opponent, or db, is

db = ndc × Lb + ncd.

D. Expected duration of the mutual cooperation

The above two subsections derive the duration of the
mutual cooperation for each case: “ended by the target” and
“ended by the opponent”. Here we derive two probabilities pa
and pb corresponding to the former and the latter, respectively,
and finally, the expected duration of the mutual cooperation
from its start to end. Since the opponent does not choose D
except for the last game of the latter case where the target
chooses C, there is no mutual defection (DD) in the whole
duration.

The latter case happens when the opponent chooses D
while the target agent has chosen it not less than Lb but less
than La times. Thus, the expected duration where the latter
case happens, or ∆n, is

∆n = ndc × (La − Lb).

Hence, the former, “ended by the target agent”, case hap-
pens when the opponent consecutively chooses the cooperation
∆n times. Then,

pa =
(

1− εo
2

)∆n

.

Since there is no mutual defection, the latter, “ended by
the opponent”, case happens when the former case does not
happen. That is,

pb = 1− pa = 1−
(

1− εo
2

)∆n

.

4If linf
b is an integer, Lb = linf

b + 1.

Consequently, the expected duration of the mutual cooper-
ation from its start to end, or d, is

d = pada + pbdb. (10)

IV. NUMERICAL VERIFICATION

We conducted an experiment 100 times in each of which
two stateless Q-learning agents with ε-greedy method played a
PD game 1000 times. Each agent updated its Q-function after
every game. Here we look at the result and compare it to the
derived values in the previous section. Both agents have same
parameters: α = 0.25, γ = 0, and ε = 0.1. The payoffs used
in the experiment are as follows: T = 5, R = 4.1, P = 1,
S = 0.5

TABLE II. AGENTS’ BEHAVIORS IN THE 100000 GAMES IN TOTAL

Row \ Column C D

C 11091 2894

D 2643 83372

Table II shows how many the action pairs appeared in the
experiment. This table shows that CC appeared in about 11%
of games. Since the agents used the ε-greedy method for action
selection, the probability of CC should be ε2/4 = 0.25% when
Q(D) > Q(C) in both agents. The difference is from the fact
that one CC from a chance sometimes made Q(C) > Q(D)
in both agents and the agents took CC in the probability of
(1 − ε)2/4 = 90.25% afterward. However, such CC is not
continued forever, because a unilateral defection from a chance
(in the probability of 9.5%) sometimes made Q(D) > Q(C) in
an agent again and they went back mutual defection afterward.

TABLE III. COMPARISON BETWEEN DERIVED, EXPERIMENTAL, AND
PREVIOUS RESULTS

Derived Experimental Previous
La 6 4 —
Lb 3 1.992 —
ndc 21.05 — —
ncd 21.05 — —
d 85.86 73.13 9.26

da 126.32 93.86 —
db 84.21 74.66 —
∆n 63.16 — —
pa 0.039 0.14 —
pb 0.961 0.793 —
pab — 0.067 —

Table III shows the derived and the experimental results,
with the result of the previous work (Section II-C) for compari-
son. The values of the experimental result in the table are given
as follows. First we found sequences where Q(C) > Q(D)
in both agents from the whole result. Each sequence was
categorized by the reason of its end: “by the target” and
“by the opponent”.6 La was calculated from the sequences
in the “by the target” group, by dividing the total number of

5The previous work (Section II-C) [17] requires R > 4 in this setting.
If not, p2 becomes 0 that means the first mutual cooperation cannot make
Q(C) > Q(D) at all. We also know the payoff values directly influence
Q-learning agents’ behaviors. See that work [17] for details.

6More precisely, if the agents that took the final unilateral defection and
had Q(D) > Q(C) after the defection were identical, the sequence was
into the “by the target” group. If they were different, it was into the “by the
opponent” group. Note that there was another case where both agents had
Q(D) > Q(C), which was ignored in the discussion of Section III.
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Fig. 1. Learning curves where the mutual cooperation was ended by the
target. The x-axis shows the number of games and the y-axis shows the Q-
values the agent had. The arrows in the closeup view indicate when DC
happens. We can see that the sixth DC makes Q(D) > Q(C).

unilateral defection of the target by the number of sequences.
Lb was calculated similarly from the sequences in the “by the
opponent” group. The value d is the average length of all of
the sequences. The values da and db are the average lengths of
the sequences in the “by the target” group and in the “by the
opponent” group, respectively. The values pa and pb are the
ratio of the sequences in the “by the target” group and in the
“by the opponent” group, respectively, to all of the sequences.
The value pab shows the ratio of another case where the final
unilateral defection made Q(D) > Q(C) simultaneously in
both agents. The value d of the previous work was calculated
from Eq. 2, where p3 = (1− ε/2)2.

Figure 1 shows learning curves of one agent in a certain
run. It shows the “ended by the target” case. We can see that
Q(C) > Q(D), i.e., the agent became to prefer C to D, at the
665th game due to CC at the game. Note that Q(D) was about
1, approximately minimum at that time. After that, the agent
took five Ds as indicated by the arrows, and at the sixth D at
the 790th game (indicated by the last arrow), the agent became
to prefer D again and the mutual cooperation was ended. Note
that the number of D is identical to the derived La.
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Fig. 2. Learning curves where the mutual cooperation was ended by the
opponent. The x-axis shows the number of games and the y-axis shows the
Q-values the agent had. The arrows except for that with an asterisk in the
closeup view indicate when DC happens. We can see that the asterisked
arrow in the closeup view, showing the time of CD, makes Q(D) > Q(C)
of the agent.

Figure 2 shows learning curves of one agent in another
certain run. It shows the “ended by the opponent” case. We
can see that Q(C) > Q(D), i.e., the agent became to prefer
C to D, at the 433rd game due to CC at the game. Note
that Q(D) was about 1, approximately minimum value at that
time. After that, the agent took three Ds as indicated by the
arrows. Finally, at the 574th game (indicated by the asterisked
arrow), the opponent took D, Q(C) of the agent fell down
suddenly, and the agent became to prefer D again. Note that
the number of D before the opponent took D is identical to
the derived Lb.

The derived numbers of games until the end of the mutual
cooperation after it appears (da, db, and d) are larger than the
experimental results. It is due to the premise of the deriving
process. In this work, we suppose that Q(D) is minimum when
the mutual cooperation starts and Q(C) is maximum at the
first defection after the mutual cooperation has started. This
premise is satisfied in some cases as shown in the figures, but
not always. As we can see in Fig. 2b, Q(C) did not decrease
very much immediately because the agent did not choose C for



a while after the end of the mutual cooperation. On the other
hand, Q(D) decreased quickly due to mutual defection. Thus,
Q(D) fell below Q(C) soon and the agent started to choose
C again. Furthermore, the agent chose D by chance before
Q(D) did not decrease so much, which made Q(D) > Q(C).
Hence, it was not necessary to choose D for La nor Lb times in
order to make Q(D) > Q(C) again. Indeed, the experimental
result in Table III shows that La and Lb were smaller than the
derived values. It shortened the duration until the end of the
mutual cooperation. It may also be the reason why pa in the
experiment was larger than the derived value.

On the other hand, the duration d of the previous work is
much smaller than the experimental value. As we discussed
in Section II-C, it is because the premise of Eq. 2 does not
consider the resilience of mutual cooperation played by Q-
learning agents at all. Thus, we can say that this work is more
appropriate than the previous work.

Note that, in the previous section, we ignored the case
where mutual defection appears when Q(C) > Q(D) in both
agents. Indeed, the experimental result shows that it happened
only five times in the whole experiment.

V. CONCLUSION

It had been shown in the literature that stateless, inde-
pendent Q-learning agents had been difficult to cooperate
with each other in an iterated Prisoner’s Dilemma (IPD)
game. However, there is a case where one mutual cooperation
occurred by “mistakes” sometimes helps the agents change to
prefer cooperation. Mutual cooperation will reinforce itself,
and finally, the agent will continue to choose cooperation
“intentionally” for a while.

In the previous work, we had discussed the ratio of mutual
cooperation in an IPD game played by stateless Q-learning
agents, but had not considered the resilience of mutual coop-
eration at all. Thus, this work derived the expected number of
games from such a mistaken mutual cooperation to the end of
intentional mutual cooperation, i.e., an intentional defection of
one agent, in an IPD game played by two stateless Q-learning
agents.

We compared the expected duration of mutual cooperation
and that from the experimental result. The derived duration
was slightly longer than the experimental results because the
premise did not always hold. For example, when the preference
of cooperation and that of defection were different from the
premise, the number of unilateral defections necessary to
end intentional mutual cooperation was less than the derived
one. Nevertheless, this work is more appropriate than the
previous work that showed the duration much shorter than the
experimental result.

As a future work, we will relax the premise and include
factors omitted in this work in order to derive the expected
duration of mutual cooperation precisely and get further
comprehension of the process of reinforcement learning in
multiagent systems.
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