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ABSTRACT

Previously, we developed two NMF algorithms named QL1-
NMF using quasi-L1 norm for analyzing environmental ELF
magnetic field measurements. When the data includes many
outliers, the QL1-NMF algorithms returned better results than
other BSS algorithms using L1 norm. However, the deriva-
tive of cost function in our first algorithm was not based on
a monotonically increasing function. This problem decreased
the validity of algorithm. Our second algorithm had problems
about stability though it was based on a monotonically in-
creasing derivative. The method therefore required improve-
ment of validity and stability. In the work described in this pa-
per, we newly introduced the update functions that were based
on a monotonically increasing derivative. Computer simula-
tion results and real data’s results confirm the new algorithm
works more stable than the previous one.

Index Terms— magnetic field, BSS, outlier, L1 norm

1. INTRODUCTION

Observing environmental electromagnetic (EM) signals has
many possibilities. One of them is that anomalous radiation
has been reported to be a pre-seismic earthquakes [1]. We
has been measuring extremely low frequency (ELF) magnetic
fields 223 Hz all over Japan since 1985. The amount of data
we obtain sometimes becomes large as outliers occur and of-
ten includes important information. Then, the ELF measure-
ments are mixtures of signals associated with thunderclouds,
human activity, and other phenomena. We need to separate
signals for each factor, or extract signals depending on a spe-
cific factor. It is therefore important to develop a blind source
separation (BSS) method that is appropriate for analyzing the
ELF magnetic signals.
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Fig. 1. Derivative of quasi-abs. functions in previous methods

We had concluded that nonnegative matrix factorization
(NMF) [2] is suitable for analyzing our data because of its
mathematical model [3]. In previous research, we developed
two NMF algorithm named QL1-NMF that is based on mini-
mizing the quasi-L1 norm of an error matrix. We found that
QL1-NMF worked better than BSS algorithms using L1 norm
when the data includes many outliers [4]. However, the differ-
ential of cost function in our first algorithm (hereafter call it
QL1-NMF1) is not based on a monotonically increasing func-
tion. Figure 1 shows the derivative of quasi-absolute func-
tions in previous methods. The red solid lines correspond to
absolute function, the green dashed lines correspond to QL1-
NMF1 and the blue dotted lines correspond to QL1-NMF2.
The distortion of function corresponding to QL1-NMF1 may
change the search direction of a solution into an undesirable
one. The derivative function corresponding to QL1-NMF2
monotonically increases. However, the algorithm is not sta-
ble; the solutions it provides sometimes diverge to infinity.
Previously, we controlled stability by small and decreasing
step-size parameters. Nevertheless, when the solutions di-
verged, we restarted algorithm with new initial matrices and
smaller step-size parameter.
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2. NONNEGATIVE MATRIX FACTORIZATION
BASED ON MINIMIZING QUASI-L1 NORM

The NMF algorithm model approximately factorizes a given
nonnegative matrix under nonnegativity constraints. With this
model the n× T matrix X , which has only nonnegative val-
ues, is approximated by NMF as

X ≈ AS X,A,S ≥ 0 (1)

where A is an n × r mixing matrix and S is an r × T com-
ponent matrix. Both A and S have only nonnegative values.
The rank of factorization, r, is chosen as nT > nr + rT .
Eq. (1) can be written column by column as x(t) ≈ As(t),
where x(t) and s(t) correspond to the tth columns in X and
S. This model is an approximation of a linear mixture signal
model (Fig. 2).

NMF finds A and S by using iterative updates based on
an arbitrary cost function. In order to robustly analyze data
including outliers, we newly propose the quasi-absolute func-

tion as follows:

qabs3(x) ≡
√
x2 + 1/α (2)

where α is an approximation parameter. The larger α is, the
more fit the curve to the absolute function. We set α = 1 ten-
tatively. Figure 3 shows the graph of derivative of qabs3(x).

Then, the cost function using quasi-L1 norm becomes

D(X||AS) ≡
∑
i,k

√
E2

ik + 1/α (3)

where Eik is the value of the error matrix E = X − AS
whose index is (i, k).

The nonnegative update functions based on the cost func-
tion Eq. (3) are as follows.

Aij ← (1− βA)Aij +

∑
k Sjk

Xik√
E2

ik+1/α∑
k Sjk

[AS]ik√
E2

ik+1/α

βAAij (4)

Sjk ← (1− βS)Sjk +

∑
i Aij

Xik√
E2

ik+1/α∑
i Aij

[AS]ik√
E2

ik+1/α

βSSjk (5)

where βA and βS are adjustment parameters which behave
like a step size (0 < βA ≤ 1, 0 < βS ≤ 1). Also previous
algorithms have the same parameters, and we set βA = βS =
0.2, and gradually decrease them in iterations in order to im-
prove the algorithm’s stability and convergence. When the
results were diverged to infinity, the initial βs are decreased
to 90 % at the time of algorithm restart. In each iteration, we
standardize matrices as follows:

Sjk ← maxj(A) · Sjk, Aij ←
Aij

maxj(A)
. (6)

Hereafter we call this algorithm QL1-NMF3.

3. COMPUTER SIMULATION

First, we generated four source signals of s(t) like shown in
Fig. 4. In the figure, the horizontal axis indicates the sam-
pling index and the vertical axes indicate amplitudes. Figure
4(a) shows a large common signal observed at all observa-
tion sites. We assumed it as the background signal in the ELF
band. Figure 4 (b) and 4 (c) show common signals observed
at several observation sites. We assumed them as electromag-
netic waves from thunderclouds and artifacts. Figure 4 (d)
shows outliers observed at only one observation site.

Second, we generated a mixing matrix. The values cor-
responding to background signal s1(t) are almost uniform,
while those in the second and third column vary. In the fourth
column, only one value is non-zero. We made 12 observed
signals x(t) by mixture signal of As(t) + e(t), where e(t)



 0

(a) s1(t)

 0

(b) s2(t)

 0

(c) s3(t)

 0
 0  5000  10000  14400

t

(d) s4(t)

Fig. 4. An example of generated source signals
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Fig. 5. The components corresponding to Fig. 4 estimated
using QL1-NMF3

is the signals distributed absolute Gaussian. We applied NMF
to these signals with r = 4.

Third, we evaluated the accuracy of the estimated compo-
nents using a criterion defined as

Cj ≡
100

n

n∑
i=1

∑
t

(
Aijsj(t)− Âij ŝj(t)

)2

∑
t x

2
i (t)

(7)

where Âij is estimated Aij , and ŝj(t) is estimated sj(t).
Larger values of Cj produce more accurate solutions. We
also evaluated the stability of the methods by comparing the
number of restarts.

We processed 100 trials using the same procedure. Of
course we newly generated s(t) and A by each trial.

The components corresponding to Fig. 4 estimated using
QL1-NMF3 are shown in Fig. 5. Though the components are
of different orders, they were accurately estimated.

Table 1 shows the averaged values of Cj for 100 trials.
The method ISRA [5] is a basic NMF algorithm using L2
norm. The methods PRMF [6] and VSMF [7] are NMF al-
gorithms using L1 norm. The phrases β ≤ 0.2 mean that
the method sets βA = βS = 0.2 and decreases them in it-
erations. The phrases β = 1.0 mean that the method sets
βA = βS = 1.0 and does not decreases them in iterations.
Note that the βs are decreased when the algorithm restart.
From this table, the criteria for the QL1-NMF3 are small and
almost the same with the criteria for the QL1-NMF1.

Table 1. Averages of accuracy criteria for 100 trials

Method C1 C2 C3 C4

ISRA 9.90 8.59 13.57 0.27
PRMF 0.74 4.74 1.98 3.51
VSMF 8.84 10.58 8.10 0.10
QL1-NMF1 (β ≤ 0.2) 0.35 6.35 0.97 0.06
QL1-NMF1 (β = 1.0) 0.32 5.43 2.74 0.04
QL1-NMF2 (β ≤ 0.2) 0.33 4.54 0.18 0.05
QL1-NMF2 (β = 1.0) 201.44 71.19 139.65 6.06
QL1-NMF3 (β ≤ 0.2) 0.35 6.35 0.97 0.06
QL1-NMF3 (β = 1.0) 0.28 4.52 0.27 0.04

Table 2. Restart statistics for 100 trials
Trials Average

Method with number of
restarts restarts

QL1-NMF1 (β ≤ 0.2) 0 0.00
QL1-NMF1 (β = 1.0) 100 6.95
QL1-NMF2 (β ≤ 0.2) 2 0.05
QL1-NMF2 (β = 1.0) 100 8.17
QL1-NMF3 (β ≤ 0.2) 0 0.00
QL1-NMF3 (β = 1.0) 0 0.00

We maintained restart statistics to compare the stability of
the methods. The results are shown in Table 2. In the case of
using QL1-NMF1 (β = 1.0), restart were operated in all tri-
als though the case of using the QL1-NMF1 (β ≤ 0.2) did not
need restart. This means the solutions were diverged to infin-
ity when βs were large when using previous method. In the
case of using QL1-NMF2, the stability were low. However,
in the case of using QL1-NMF3, there were no restart. We
can conclude the stability of QL1-NMF3 was quite improved
from previous methods.

4. APPLYING TO ENVIRONMENTAL MAGNETIC
MEASUREMENTS

Figure 6 shows our observed ELF signals (6 of 28 sites) on
March 17 in 2005. Each vertical axis indicates the EM en-
ergy [(pT)2/Hz], and each horizontal axis indicates the time
course [hour]. They have common changes that are the effect
of background signal. An anomalous signal was observed at
Unzen (e) before the 2005 Fukuoka Earthquake (M 7.0, on
March 20). This site is 112 [km] from the epicenter.

Figure 7 shows source signals estimated by QL1-NMF3
(β = 1.0). Each vertical axis indicates the amplitude of sig-
nals, and each horizontal axis indicates the time course [hour].
The signal s1(t) is similar to common change. The signal
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Fig. 6. ELF observed signal
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Fig. 7. Source signals estimated by QL1-NMF3

s2(t) is similar to anomalous signal observed at Unzen. There
is a possibility that s2(t) is earthquake-related source signal.

For numerical comparison, we calculate GICs [3]. The
smaller the GIC is, the better the background signal esiti-
mation is. The calculated GICs and number of restarts are
shown in Fig. 3. The GICs of QL1-NMF3 were a little worse
than QL1-NMF1, but stabilities were quite better.

5. CONCLUSION

This paper detailed how we improved QL1-NMF algorithm
and we named QL1-NMF3. The cost function of algorithm
was based on a monotonically increasing derivative unlike in
the case of QL1-NMF1. About the estimation accuracy of

Table 3. GICs and number of restarts
Method GIC Restarts
ISRA 0.1656 -
PRMF 0.1000 -
VSMF 0.1032 -
QL1-NMF1 (β ≤ 0.2) 0.0939 0
QL1-NMF1 (β = 1.0) 0.0901 5
QL1-NMF2 (β ≤ 0.2) 0.0938 0
QL1-NMF2 (β = 1.0) 0.1021 8
QL1-NMF3 (β ≤ 0.2) 0.0996 0
QL1-NMF3 (β = 1.0) 0.0944 0

results of QL1-NMF3, they were the same level with QL1-
NMF1 in computer simulations, and they were a little worse
when applying to ELF observed signals. The stability of QL1-
NMF3 was quite improved from previous method.

Subjects for future work will include researching charac-
teristics of QL1-NMF3, e.g. optimizing parameter α. Addi-
tionaly, we will apply to other kinds of signals.
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