
Mocha:Automatically Applying Content Security
Policy to HTML hybrid applicationlication on

Android Device

Abstract—An HTML hybrid applicationlication is a type of
application running on mobile devices. It is popular but may
have Cross Site Scripting(XSS) vulnablitiy risks. Content Se-
curity Policy(CSP) is a security mechanism that can prevent
XSS attacks. Developers can only apply CSP to applications,
therefore user’s safety depends on them. In this paper, we propose
Mocha, automatically applying CSP to applications on Android
device. Mocha uses static analysis to automatically infer CSP
policies, and modifies HTML and JavaScript source code for
applying CSP. Mocha can protect users and their HTML hybrid
applications from XSS. We confirmed that Mocha is effective
with real applications.

Index Terms—cross-site scripting, CSP, security, Android,
HTML hybrid application

I. INTRODUCTION

HTML hybrid applications that consist of HTML, JavaScript
and CSS files are one of applications runnning on mobile
devices. They have a cross platform aspect, and operate using
WebView which is common to each OS of mobile devices.
However there is concerned about XSS vulnerabilities because
HTML and JavaScript are used in HTML hybrid application.

XSS is an attack using vulnerabilities that crackers can
execute an arbitrary JavaScript in a web application. Attackers
can alter HTML pages and steal cookies from browsers.
XSS attacks are just aimed at JSON formatted data and
strings received from HTTP GET and POST methods in case
of non-HTML hybrid applications. However, HTML hybrid
application have many channels for XSS, because they can
recieve various data, including meta information of images
and audio files, SMS, Contact, Wi-Fi, access point names of
Bluetooth, etc[1]. Therefore, countermeasures against XSS are
more important in HTML hybrid applications.

There are several countermeasure methods against XSS
vulnerabilities in general. HTML hybrid applications can use
them as well. Representative methods are ”escaping”, which
is the way to escape special characters included in the in-
put/output HTML data, and an XSSfilter in browsers[2][3].
However, the methods cannot protect the applications per-
fectly. For instance, ”escaping” can overlook vulnerabili-
ties and mistake how escape them. Moreover, it has been
reported[4] that there is an attack which can pass through the
filter. Finally, existing countermeasure cannot preserve users
from all XSS attacks.

Content Security Policy(CSP)[5] exists as a complete de-
fense against XSS. CSP restricts HTML contents and offers
comprehensive protection against XSS. CSP is supported by

major browsers[6] and is also widely used in Web applications,
Twitter and Facebook. To use CSP on applications, developers
write the CSP header and declare the policy in the HTTP
response header. HTML contents permitted by this policy
are only contained in the applications. Although CSP is an
effective defense mechanism against XSS, protection of users
is dependant on developers who set CSP in applications[7]. In
addition, it is difficult to protect from XSS by browser exten-
sions applying CSP to applications because CSP restricts the
action and affects the behavior and structure of applications[8].
In this paper we focus on the fact that the source code of
HTML hybrid applications exists on Android devices and
propose Mocha that automatically applies CSP to applications
in the user side.

Mocha can run on Android devices and automatically apply
CSP to HTML hybrid applications specified by users. It
statically analyzes the HTML hybrid applications on Android
devices, automatically declares the policy, modifies HTML
and JavaScript files caused by the policy declareation, and
reinstalls the application on the device. Mocha makes it easy
for users to take measures against inadequate setting and
implementation by developers.

The rest of paper is organized as follows: Section 2 gives
a brief overview of CSP. Section 3 explains about Mocha and
details of it. Section 4 talks about implementation of Mocha
and Section 5 discusses evaluation of it. Related works are
surveyed in Section6 and the paper is summarized in Section
7.

II. CSP

This section describes CSP. We first provide an overview
of CSP. Second we discuss about policy directive, the basis of
CSP, and then discribe problems of CSP.

A. Overview

CSP is a mechanism that can prevent XSS attacks and
restricts the origin destination of the web contents based on the
whitelist in the application. CSP takes effect when the HTTP
response header as ”Content-Security-Policy” are used and the
policy of the contents as the policy directive are declared in
the header. The WebView in HTML hybrid applications read
the application’s HTML files, recieve policy directives in the
header, and forces scripts in the HTML files to execute under
the environment declared by the policy directive.



B. Policy Directives

Policy directives are declaration for restricting the source
of web page contents. The announcement of the server host-
name in the policy directive limits the sender of JavaScripts,
external plug-ins, and CSS to the server. The format of
the policy directive takes the form ”directive-name
resource-domain”. A multiple ”directive-name”
can be declared. The contents providers repeat enough declare-
tions and can specify the policies in detail. Also, you need to
separate policy directives with semicolons in repeating.

An example of policy directives using a meta tag is
shown in the Figure 1. The policy directives declared
in Figure 1 include three types as ”default-src *”,
”script-src ’self’ ’http://www.test.jp’”
and ”style-src ’self’ ’unsafe-inline’”. The
script-src directive-name limits the origin host of
scripts. Similarly, the style-src directive-name
restricts the source host of the styles. The part of
”resource-domain” defines the host name allowed
to send scripts and styles. For example, if you need to
load the http://www.test.jp/test/index.js
file, you have to describe http://www.test.jp in the
resource-domain. In the resource-domain, it is
possible to use keywords as well as host names. There are
four kinds of keywords: none, self, unsafe-inline
and unsafe-eval. The none keyword refuses to read
from all host. The self keywords only allows to recieve
contents from oneself. In HTML hybrid applications, it
means only to permit loading contents in the package of
the application. The unsafe-inline keyword is available
only when directive-name is script-src and
style-src, and allows inline scripts and inline styles in
HTML files. The unsafe-eval keyword can be accepted
only when directive-name is script-src, and
permits using some JavaScript methods such as ”eval” and
”Function()”, which evaluate strings as JavaScript. Using
keyword unsafe-inline and unsafe-eval, inlines
and evals are freely available and are not restricted by
CSP. As show in Figure 1, the resource-domain can
use metacharacters ”*”. It means that CSP allows loading
from any host. To summarize, the policy directive shown in
Figure 1 permits reading JavaScript from its own domain and
www.test.jp, reading CSS from its own domains, using inline
styles, and reading other content from any domain.

DOM based XSS in HTML hybrid applications
can be prevented by not including unsafe-inline
and unsafe-eval in the script-src of the
directive-name of the policy directive.

C. Problems of CSP

In order to apply CSP to applications, two procedures are
required. First, developers declare policy directives for all
HTML files. Next developers modify HTML and JavaScript
files to follow the policy directive declarations. Problems
on the both sides of developers and users arise from these
procedures. In order for application developers to apply CSP,

Fig. 1. example of policy directive

it takes time for setting policy directives and source code
modifications. In addition, an error accompanying correction
can also occur. Therefore the procedures is a burden on
the developers. Also, when users apply CSP with extended
function of the browser[2][3], there is a concern that the
operation of the application will be affected, since the source
code can not be modified. Because inline scripts are currently
used in many applications[8], it is difficult to prevent XSS
only by declaring policy directives.

III. PROPOSAL AND DESIGN

In this chapter, we talk about overview of Mocha which
applies CSP to HTML hybrid applications at Android devices
in III-A. Section III-B and subsequent sections describe items
that need to be implemented.

A. OverView

We propose Mocha that automatically applies CSP to exist-
ing HTML hybrid applications. Using Mocha makes it possible
to apply CSP regardless of application developers and users,
and to prevent XSS in HTML hybrid applications.

Server side programing languages can dynamically output
HTML. Hence contents of the HTML are interpreted when the
web application is executed. However, because HTML hybrid
applications do not use the server side programing languages
such as php or perl, there are few elements to be determined
dynamically. Therefore it is possible to apply CSP on Android
deveices only by static analysis. Further, the time required
for developing applications can be shortened because it is not
necessary to perform a preliminary dynamic analysis.

The process for applying CSP to an HTML hybrid applica-
tion on an Android device is shown in Figure 2. First, 1)Mocha
displays a list of applications excepted pre-installed on the
Android device at the setting screen. When users select an
application and push the applying CSP button, Mocha starts
to apply CSP to it. 2)It decompiles an apk file and extracts
HTML, JavaScript and CSS files. 3)It statically analyzes
HTML and JavaScript files and sets policy directives. 4)It
modifies HTML files of the application to conform them to
the policy directive, and 5)modifies JavaScript files as well.
6)Finally it compresses the changed source code in apk and
installs the new compressed apk on the Android device.

B. Setting of Mocha

We designed a setting interface to select an application to
apply CSP and its certificate. We described the certificate in
Section IV-E



Fig. 2. Overall view of Mocha

C. Decompile of apk
It is necessary to decompile apk in order to set the policy

directive and modify the source code related it. An entity of
apk is a zip archive file. HTML, JavaScript and CSS files
exist in the directory after extracted apk. Mocha uses these
files for setting policy directives, fixing HTML and modifying
JavaScript. Also if the application selected by the user isn’t
HTML hybrid application, Mocha notifies that CSP is not
available for it.

D. Declare Policy Directive
Mocha sets a policy directive to prevent XSS. There-

fore, Mocha doesn’t include keywords unsafe-inline
and unsafe-eval in script-src as described in
Section II-B. Also, Mocha doesn’t include the keyword
unsafe-inline in style-src. If contents required for
the application are on the external host, Mocha acquires the
host name by analyzing HTML and JavaScript files.

E. Modifying HTML
By setting the policy directive described in Section III-D,

inline scripts, inline styles, event handlers and javascript:URI
styles can not be performed in HTML. Therefore, it is neces-
sary to modify them.

F. Modifying JavaScript
As in Section III-E, it is necessary to modify the JavaScript

files too. A method for dynamically generating JavaScript and
a method for evaluating a character string as JavaScript can
not be performed, hence they are modified by Mocha.

G. Recompile of apk
In order to install the application after applying CSP,

Mocha compresses corrected files up to Section III-F into the
zip archive and signs it. Then, Mocha uninstall the original
application and install the application which applied CSP and
signed.

IV. IMPLEMENT

In this chapter, we describe implementation of Mocha.
We describe methods of decompiling the apk file, setting
policy directives, modifying HTML and JavaScript files and
rebuilding the apk file. In modifying HTML and JavaScript
files, Mocha overwrites original files.

Fig. 3. Example of external host with jQuery

A. Decompiling the original apk file

An apk file is a zip archive file described in Section III-C.
The apk file of the installed application is stored in the
/data/app/ directory of the Android device. Mocha copies the
apk file of application selected by the user to Mocha’s working
directory, extracts the copied apk file, and stores the HTML,
JavaScript and CSS files for setting policy directives.

B. Setting policy directives

To set the policy directive, Mocha prepares the ba-
sic policy directive and extended one. The basic policy
directive is ”default-src *; script-src ’self’;
style-src ’self’;” and means to restrict loading
JavaScript and CSS files from outside the package. Also,
XSS can be defended by not including unsafe-inline
and unsafe-eval in script-src of the basic policy
directive. Mocha does not include unsafe-inline in
style-src hence XSS does not occur even when the
application is diverted to the environment using the Internet
Explorer browser[9].

The server name described in the resource-domain is
obtained by analyzing the HTML and JavaScript files. The
way to acquire the host name consists of analyses of HTML
files and JavaScript files. In HTML files, Mocha can acquire
it from the src attribute of the script tag or the style tag. In
JavaScript files, Mocha can get it from the url for jQuery. An
example of the external host using jQuery is show in Figure
3. Mocha acquires the host name described in the url of the
fourth line in Figure 3.

C. Modifying HTML files

In this section, we describe modification of HTML files.
Mocha modifies them using JSOUP[10]. JSOUP is an HTML
parser written in Java and provides a set of API which can be
used for analyzing and modifying HTML files using DOM.

Mocha needs to adjust inline scripts, inline styles, event
handlers and javascript:URI according to policy directives.
First, inline scripts are JavaScript written in HTML files using
<script> tags. Mocha extracts JavaScript in script tags with
regular expression and writes them to an external file. Then
Mocha changes the original HTML file to load the external
file. A modification example is shown in Figure 4. As shown
in Figure 4, the JavaScript in the script tag is written to an
external file and loaded by the src attribute of the script tag.



Fig. 4. Example of inline script modification

Fig. 5. Example of event handler modification

Next, inline styles are a CSS written in HTML files using
<style> tags or a style attribute. Mocha detects a CSS in
HTML files using regular expression, converts them to inline
style, and writes them into an external file. The original HTML
files are modified to get them from the external file as well as
modification of inline script.

Next, We describe modification of event handling, which is
a method for giving specific processing to the user’s action
such as click or double click. Mocha alters event handlers
to the way using the addEventListener function that uses
DOM as shown in Figure 5. Event names which are used
with addEventListener differs from the names used in event
handlers, but the correspondence between names is defined in
W3C[11].

Finally, we describe modification of javascript:URI which
executes JavaScript when using ”javascript:...” in the href
attribute of the HTML tag. Mocha alters it by the same method
as the evnet handler. However, when javascript:URI and an
event handler exists in the same HTML tag, Mocha considers
the pre-defined priority order between them[12] and modifies
the HTML files.

Fig. 6. example of modfying document.write

D. Modifying JavaScript file

We describe the modification of JavaScript files. First of
all, we develope and use the original parser with Java to
modify JavaScript files. Our parser provides a set of APIs to
get the user-specified methods and variables in the JavaScript
files. There are two targets to alter JavaScript files to fit the
policy detectives; dynamic HTML tags and string-evaluation
functions.

At first, we illustrate how to alter dynamic HTML tags.
There are four methods dynamically to create HTML tags
in DOMAPI: document.write, document.writeln, innerHTML
and outerHTML[1]. It is necessary to modify JavaScript
files when generating script tags with these methods. Mocha
modifies the tags to loading external files. Figure 6 shows
the example of modification when document.write is used and
Figure 7 shows the example of modification when innerHTML
is used.

Next, we explain the modification of string-evaluation func-
tions. There are four methods which evaluate strings as
JavaScript: setInterval, setTimeout, eval and Function(). Of
these, setInterval and setTimeout can take character strings
and a function as an argument. Taking strings as an arugment
violates the policy directive. Hence, Mocha changes the strings
to the function as an argument. Because eval and Function()
have multiple usage, Mocha modifies JavaScript files for each
usage. There are 10 kinds of usage according to Richard et
al[13]. Since the four of 10 methods are not describe how to
modify them, encoding JavaScript, which converts arguments
of eval and Function() to Unicode, can prevent XSS. Therfore
Mocha performs it. If Mocha fixes this way, Mocha has to use
unsafe-eval for script-src of the policy directive.

E. rebuild of apk

We describe the recompilation of an apk file to reinstall
the application applied CSP on the Android device. Mocha
compresses files except files in the META-INF/ directory to
the zip archive file and signs it with jarsigner. Users can choose
which certificate, a Mocha provided or a user generated, at the
setting screen described in Section III-B

V. EVALUATION

In this section, we describe evaluation Mocha on the An-
droid device. We consider measurement of processing-time



Fig. 7. example of modifying innerHTML

TABLE I
ENVIRONMENT OF EVALUATION

Android device Zenfone 3
Android OS AndroidOS 5.1.1

required applying CSP to the appliation, application behavior
after applying CSP, the number of modified source code, and
the installed policy directives.

A. Experiment setup

We apply CSP to HTML hybrid applications using Mocha.
We used 26 HTML Hybrid applications published on
Fossdroid[14]. First, we measure the time taken applying CSP
using the currentTimeMillis() function of Java and
confirm whether CSP works or not on the Android device.
Finally, we investigate the number of modified source code
required applying CSP and details of the installed policy
directives. We classify modified source code into HTML files
and JavaScript files and count the number of modifications
independently. The Android device we used for evaluation is
shown in Table I.

Fig. 8. Relationship between time for applying CSP and file size

Fig. 9. Relationship between time for applying CSP and number of files

B. Time required applying CSP

We measure the time taken to apply CSP to the application
after the user pushes the button applying CSP. The result
time is 11.896 seconds on the average, and 125.786 seconds
at the longest. Figure 8 shows the relationship between the
processing time and the apk file size, and Figure 9 shows
the relationship between the time and number of HTML and
JavaScript files. Figure 8 demonstrates that the processing time
becomes longer in proportion to the apk file size because the
time includes decompiling, rebuilding, and signing the apk
file and their times are all proportional to the size. Figure 9
represents that the processing time is proportion to number of
HTML and JavaScript files because static analysis for HTML
and JavaScript files spends the most part of the time and its
analysis time is proportion to the number of files. There are a
deviational application from the proportional relation in Figure
8 and an application which has over 200 files in Figure 9.
These are the same application. From this, it can be said that
the influence on the processing time is longer by the file size
of apk than the number of HTML and JavaScript files.

C. Result of modified source code

We examined the number of alterations in the source code.
The number of changes in HTML files is shown in Table II
and the number of changes in the JavaScript files is shown in
Table III. All applications which we used for evaluation can
run after applying CSP. There are only nine applications that
don’t need to be modified for both HTML and JavaScript files.
Therefore, it can be said that modifying HTML and JavaScript
files are needed to correctly apply CSP directives.

We discuss the installed policy directives in this paragraph.
Seting the policy directives are correctly done because the
external files were not restricted by the CSP policy. How-
ever, because the security of the external host may not be
guaranteed[15], it is necessary to download files on external
hosts and include them in the apk file in the future.

In modifying HTML files, no abnormality occurs in op-
erations of applications after modification, because there is
no server side languages in HTML hybrid applications. Re-
garding modification of JavaScript files, since contents of
JavaScript may be determined dynamically, in some cases,



TABLE II
NUMBER OF MODIFYING HTML FILES

number of violations number of applications
0 17

1-5 7
6-10 2

11-30 1

TABLE III
NUMBER OF MODIFYING JS FILES

number of violations number of applications
0 15

1-10 8
11-30 3

31- 1

abnormality may occur in the operations of the modified
applications. For this reason, it is necessary to implement a
mechanism to change their behavior depending on contents
of dynamic elements at the runtime. Moreover, Mocha can
not handle JavaScript compression and obfuscation. Therefore,
these points are future tasks.

VI. RELATED WORK

In this Chapter, we describe related works. We describe
techniques on CSP’s approach to applications and compare
with Mocha.

A. AutoCSP

AutoCSP[16] is a method of applying CSP automatically
to Web applications using PHP. It uses dynamic taint analysis
and realizes advanced defense against stored XSS by running
with judging whether JavaScript is reliable or not. It also
supports developers when writing HTML using PHP. However,
AutoCSP does not provide modification of JavaScript files and
its users can not use it independently. These are different from
Mocha.

B. UserCSP

UserCSP[8] is implemented as an extension of FireFox, and
it is a mechanism that dynamically analizes and applies CSP
when a Web browser loads HTML. UserCSP has proposed
to help developers to apply CSP and users to protect from
XSS attacks. However, since UserCSP can not modify the
source code, it can not be said that protection of the Web
application using inline scripts and evals from XSS is not
sufficient. Mocha can provide higher protection than UserCSP
because source code can be modified.

C. CSPAider

CSPAider[17] is a mechanism for presenting better policy
direcitives for developers of web applications. CSPAider sets
the appropriate policy directive with analyzing the Web ap-
plication. Because the CSPAider was proposed at the CSP
plannning stage, the form of the policy directive is different
from what is currently used. Also, CSPAider suggests only

policy directives. It differs from Mocha in no modification of
HTML and JavaScript files.

VII. CONCLUSION

In this paper, we proposed Mocha, automatically applying
CSP with only static analysis for HTML hybrid applications
on Android devices. Mocha became possible for users to
prevent XSS attacks by automatically applying CSP. As a
result of evaluating HTML hybrid applications using Mocha,
we confirmed that setting policy directives and modifying
HTML files could be correct by only static analysis. Regarding
JavaScript modification, there are four problems to be solved;
receiving data from outer servers, dynamic arguments of
functions, compression, and obfuscation but we confirmed that
other modifications are possible. In the future, we will consider
a method to investigate and resolve dynamically determined
arguments just before executing the function.

REFERENCES

[1] X. Jin, X. Hu, K. Ying, W. Du, H. Yin, and G. N. Peri, “Code injection
attacks on html5-based mobile apps: Characterization, detection and
mitigation,” in Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security, pp. 66–77(2014).

[2] D. Bates, A. Barth, and C. Jackson, “Regular expressions considered
harmful in client-side xss filters,” in Proceedings of the 19th interna-
tional conference on World wide web, pp. 91–100(2010).

[3] P. Saxena, D. Molnar, and B. Livshits, “Scriptgard: automatic context-
sensitive sanitization for large-scale legacy web applications,” in Pro-
ceedings of the 18th ACM conference on Computer and communications
security, pp. 601–614(2011).

[4] G.Heyes, “Bypassing xss auditor,” http://www.thespanner.co.uk/2013/
02/19/bypassing-xss-auditor/.

[5] W3C, “”Content Security Policy 2.0”,” http://www.w3.org/TR/CSP.
[6] caniuse, “Can i use content security policy?”

http://caniuse.com/contentsecuritypolicy.
[7] H. Kour and L. S. Sharma, “Browser compatibility issues in imple-

menting content security policy to prevent cross site scripting attacks,”
International Journal of Modern Computer Science, pp.108-112(2012).

[8] K. Patil and B. Frederik, “A measurement study of the content security
policy on real-world applications.” IJ Network Security, vol. 18, no. 2,
pp. 383–392(2016).

[9] Ruby, “Ruby on rails security guide,” http://guides.rubyonrails.org/
security.html#css-injection.

[10] jsoup, “jsoup: Java html parser,” http://jsoup.org.
[11] W3C, “Ui events specification,” https://www.w3.org/TR/DOM-Level-3-

Events/.
[12] CodeDay, “Detailed html a label href and onclick usage, distinction,

priority level,” https://www.codeday.top/2017/06/17/25323.html.
[13] G. Richards, C. Hammer, B. Burg, and J. Vitek, “The eval that men

do,” in ECOOP 2011–Object-Oriented Programming. Springer, pp.
52–78(2011).

[14] D. Simonin, “Fossdroid,” https://fossdroid.com/.
[15] G. S. Blog, “Csp evaluator,” https://security.googleblog.com/2016/09/

reshaping-web-defenses-with-strict.html.
[16] M. Fazzini, P. Saxena, and A. Orso, “Autocsp: Automatically retrofitting

csp to web applications,” in the Proceedings of the 37th International
Conference on Software Engineering (ICSE), 2015.

[17] A. Javed, “Csp aider: An automated recommendation of content security
policy for web applications,” in IEEE Symposium on Security and
Privacy, 2011.


