
Initial Study of a Phase-Aware Scheduling
for Hardware Transactional Memory

Tomoki TAJIMI*, Anju HIROTA*, Ryota SHIOYA†, Masahiro GOSHIMA‡ and Tomoaki TSUMURA*

*Nagoya Institute of Technology
Gokiso, Showa, Nagoya, Japan

Email: camp@matlab.nitech.ac.jp

†Nagoya University
Furo, Chikusa, Nagoya, Japan

Email: shioya@nuee.nagoya-u.ac.jp

‡National Institute of Informatics
2-1-2, Hitotsubashi, Chiyoda, Tokyo, Japan

Email: goshima@nii.ac.jp

Abstract—Transactional memory is a promising paradigm for
shared memory parallel programming model. Effective trans-
action scheduling is very important for transactional memory
systems, and a substantial body of work has been conducted.
We have proposed a transaction scheduling which considers
execution path variation in transactions, and it goes well with
many types of programs, but some programs still can not gain
performance. In this paper, we focus on such programs and
investigate the reason for low performance by analyzing conflict
prediction accuracy and typical conflict patterns. Then, we
propose a novel phase-aware transaction scheduling for resolving
one of the harmful conflict patterns. Evaluation result shows that
the phase-aware scheduling can largely improve the performance
of one of the benchmark programs, and indicates its potential
superiority.

I. INTRODUCTION

Parallel programming on shared memory model is now
very important while multi-core processors have become pop-
ular. In shared memory parallel programming, lock has been
commonly used for arbitrating access conflicts on shared
resources, especially the shared memory space. However, lock
has some drawbacks; lock can cause deadlocks, the overhead
for locking/unlocking may degrade the total performance, it is
hard for programmers to find appropriate locking granularity,
and so on.

Transactional memory (TM) is a promising paradigm for
replacing and/or complementing traditional lock-based conflict
management. On TM-managed systems, multiple transactions
running on separate threads can speculatively access the
shared memory in parallel, as long as any access conflict is
not detected. Hardware transactional memories (HTMs) are
implemented on recent commodity processors, such as Intel
Haswell[1], IBM Power8[2], and so on.

Effective transaction scheduling is very important for HTM
performance, and many scheduling algorithms have been pro-
posed and studied. However, any previous algorithms do not
consider execution path variation in transactions. In a previous
work[3], we found that the execution path variation inside
transactions is very important for transaction scheduling, and
proposed a novel conflict prediction algorithm. It works well
with the most of the benchmark programs, but we found that
some programs still can not gain performance.

In this paper, we analyze its reason in detail, and we propose

(a) Predicting a conflict. (b) Avoiding a conflict.

Fig. 1. Conflict prediction based on execution time.

an optimistic conflict detection algorithm and a transaction
scheduling with the algorithm. The contribution of our work
can be summarized as follows:

• We estimate the accuracy of our previous conflict pre-
diction algorithm, and discuss insufficiencies of the algo-
rithm.

• We disclose the access conflict patterns which can hardly
be resolved by previous transaction scheduling algorithms
including our conflict prediction algorithm, and analyze
the transaction structure which will cause such conflicts.

• We propose a novel phase-aware transaction scheduling
based on an optimistic conflict detection, and show its
potential by evaluating it with a benchmark program.

II. CONFLICT PREDICTION ALGORITHM

A. Outline

The performance of HTM can be degraded by stalls of
transactions originating from conflicts. Especially, transactions
which have conflicted once each other tend to conflict re-
peatedly, because the threads often access the same shared
variables when they are executed again. Hence, we have
proposed a transaction scheduling algorithm[4] for reducing
conflicts by a conflict prediction. The algorithm is as follows.

tsumura
テキストボックス
This is the accepted manuscript of a paper published in
Proc. 2017 Pacfic Rim Conference on Communications, Computers, and Signal Processing (PacRim2017)
Copyright (C) 2017 IEEE




Before a thread starts a transaction, the thread predicts
whether the transaction will cause a conflict or not (Fig. 1,
t1). To this end, the thread examines whether the transaction
had conflicted with some running transactions on the other
threads or not in the past. If the transaction had conflicted
with one of the other running transactions, the thread compares
two temporal parameters τ1 and τ2, where τ1 is the predicted
remaining time until the competing transaction commits, and
τ2 is the predicted remaining time until the conflict will be
caused.

If the thread will access the conflicted address after the
competing thread committed, namely τ1 < τ2, the thread
predicts that a conflict will not be caused this time, and starts
the transaction. On the contrary, if τ1 > τ2, the thread waits
for τ1 becomes shorter than τ2 without starting the transaction
(t3).

In order to implement this conflict prediction, two temporal
data of each transaction should be remembered. One is how
long the whole execution time of the transaction is, and the
other is how much time later a conflict will be caused after
the transaction starts. Before starting a transaction, a thread
predicts a conflict using these temporal data.

Stall is also a ‘waiting’ mechanism for conflict resolution.
In contrast to stall, the waiting mechanism before starting
transactions will not cause any other new conflicts, because
the thread waits without accessing any addresses.

B. Execution Path Variation

Although threads can avoid many conflicts by the conflict
prediction as mentioned in Section II-A, threads may still
cause conflicts if threads fail the conflict prediction. Especially,
when the execution path of a transaction varies because of
conditional branches, the past temporal data for the transaction
become unreliable, and the accuracy of the conflict prediction
will largely decline. Therefore, the transaction execution time
should be predicted precisely considering such execution path
variation.

However, unlike branch prediction algorithms, local history
of branch instructions in a transaction can not be used for
conflict prediction, because the execution path of a transaction
needs to be predicted before the transaction starts. Hence,
we have proposed a conflict prediction mechanism[3] which
exploits the idea of global branch prediction[5].

Global branch prediction manages a shared history of all
conditional branches, and predicts the direction of a branch
instruction based on the pattern history of other recent branch
instructions. The idea of global branch prediction can also be
considered as that the execution path after a branch instruction
is predicted from the execution path just before the branch
instruction.

To apply this idea to conflict prediction, we employ pattern
history of load/store accesses as an execution path expression.
We call the pattern of load and store ‘global load/store
history.’ In the conflict prediction mechanism, the execution
time of each transaction is remembered associated with the
global load/store history just before the transaction. When the

TABLE I
SPECIFICATIONS OF THE SIMULATED PROCESSOR

Processor SPARC V9
#cores 32 cores
clock 4 GHz
issue width single
issue order in-order
non-memory IPC 1

D1 cache 32 KBytes
ways 4 ways
latency 3 cycles

D2 cache 8 MBytes
ways 8 ways
latency 20 cycles

Memory 4 GBytes
latency 450 cycles

Interconnect network latency 14 cycles

GEMS Microbench SPLASH-2 STAMP 

R
a

ti
o

 o
f 

c
y
c
le

s

(B) LogTM-SE   (Baseline)

(R) Conflict prediction w/o considering execution path variation

(P) Conflict prediction considering execution path variation

Wait Barrier

Stall Backoff

Aborting Bad_trans

Good_trans Non_trans

Fig. 2. The sum of the total execution cycles ratio.

transaction is executed again, the remembered execution time
associated with the current global load/store history is acquired
and used for conflict prediction. In this way, our conflict
prediction method can consider execution time variation of
a transaction by using global load/store history as a key.

C. Evaluation Results

To evaluate the transaction scheduling based on conflict
prediction, we used a full-system execution-driven functional
simulator Wind River Simics[6] in conjunction with cus-
tomized memory simulators built on Wisconsin GEMS [7]. The
detailed configuration of the simulated processor is shown in
Table I. The topology and the link latency of interconnect
network are defined as same as LogTM-SE[8]. We have
evaluated the execution cycles of 11 workloads from GEMS
microbench, SPLASH-2 benchmark suite [9], and STAMP
benchmark suite [10] with 16 threads. We configured the
length of global load/store history as eight, and the latest eight
memory accesses are used for conflict prediction.

The evaluation results with following three HTM configu-
rations are shown in Fig. 2.

(B) LogTM-SE (baseline)



(R) Reference model; predicts conflicts by using the past
shortest execution time of each transaction, without
considering execution path variation.

(P) Previous method; predicts conflicts by using the
past execution time of each transaction considering
execution path variation.

Fig. 2 shows the total sum of execution cycles of all 16
threads and its breakdown. Each bar in both figures is nor-
malized to LogTM-SE the baseline (B). For simulating multi-
threaded execution on a full-system simulator, the performance
variability must be considered[11]. Hence, we tried 10 times
on each benchmark, and measured 95% confidence interval,
which is illustrated as error bar in Fig. 2.

The legend in Fig. 2 shows the breakdown items of the
total sum of cycles. They represent the waiting cycles before
starting transactions by the proposed conflict prediction (Wait),
the barrier synchronization cycles (Barrier), the stall cycles
(Stall), the exponential backoff cycles (Backoff), the aborting
overheads (Aborting), the execution cycles in the transactions
which are aborted/committed (Bad trans/Good trans), and the
execution cycles out of transactions (Non trans).

As shown in the figure, (P) achieves better performance than
(B) with most of all programs. In summary, the execution
cycles are reduced 61.6% at a maximum, and 13.8% on
average. However, the performance is not improved enough
with some programs. Especially with Contention and Vacation,
Stall still occupies a large part of the total execution time. In
the following, we investigate its reason and introduce an idea
for resolving it.

III. ANALYSIS OF HARMFUL CONFLICT PATTERNS

In this section, we focus on two benchmark programs:
Vacation and Contention, and investigate the reason why
their performance is not improved by our previous conflict
prediction.

A. Vacation

Fig. 3 shows the accuracy of conflict prediction on one of
the transactions in Vacation. The transaction is executed more
times than any other transactions in Vacation, and it can largely
impact the total performance of Vacation. The figure shows
the error distribution of the transaction. The horizontal axis of
the graph shows the error values, and the vertical axis shows
the frequency of that the error value is measured. The error
value is calculated by subtracting actual execution time of the
transaction from predicted execution time of the transaction.

When the error value is positive, as plotted in the right half
area of the Fig. 3, predicted value of execution time is larger
than the actual value, and the transaction will wait futilely
long. On the other hand, when the error value is negative,
as plotted in the left half, waiting time should be not long
enough and the transaction will not avoid a conflict. Both of
large positive and negative errors are frequently observed as
shown in this figure.

Fig. 4 shows the simplified code of the transaction in
Vacation. It includes a switch case statement (line 4..14),

0

10

20

30

40

50

60

70

80

-600 -550 -500 -450 -400 -350 -300 -250 -200 -150 -100 -50 0 50 100 150 200 250 300 350 400 450 500 550 600

m
ea

su
re

d
 f

re
q

u
en

cy

error value

Fig. 3. Error distribution of conflict prediction with Vacation.

1 BEGIN TRANSACTION();
2 for( n = 0; n < numQuery; n++ ){
3 long t = types[n]; // t is a random value.
4 switch( t ){ // execution path is randomly selected.
5 case RESERVATION CAR;
6 :
7 break;
8 case RESERVATION FLIGHT;
9 :

10 break;
11 case RESERVATION ROOM;
12 :
13 break;
14 }
15 }
16
17 if( isFound ){
18 :
19 }
20 // execution path is randomly selected.
21 if( Id[RESERVATION CAR] > 0 ){
22 :
23 }
24 if( Id[RESERVATION FLIGHT] > 0 ){
25 :
26 }
27 if( Id[RESERVATION ROOM] > 0 ){
28 :
29 }
30 COMMIT TRANSACTION();

Fig. 4. Simplified code of a transaction in Vacation.

and the key value for the statement is randomly selected
(line 3). Hence, the execution path in the transaction can
not be accurately predicted from global load/store history
patterns. This is the reason of the low performance of Vacation.
This type of transaction must be difficult to be adequately
scheduled.

B. Contention

Contention is another program whose performance is not
improved enough by our previous conflict prediction. We
measured the error distribution of the sole transaction in
Contention, and found that the error value was zero on almost
all prediction tries. However, the performance is not improved
as shown in Fig. 2.

Now Fig. 5 shows the simplified code of the transaction in



1 int A[1];
2 int B[1024];
3
4 BEGIN TRANSACTION();
5 // phase 1
6 for( i = 0; i < 10; i++ ){
7 if( access type[i] == READ )
8 var = A[index[i]];
9 else

10 A[index[i]] = 0;
11 }
12
13 // phase 2
14 for( i = 10; i < 90; i++ ){
15 if( access type[i] == READ )
16 var = B[index[i]];
17 else
18 B[index[i]] = 0;
19 }
20 for( i = 90; i < 100; i++ ){
21 if( access type[i] == READ )
22 var = B[index[i]];
23 else
24 B[index[i]] = 0;
25 }
26 COMMIT TRANSACTION();

Fig. 5. Simplified code of the transaction in Contention.

Contention. Two array variables A[] and B[] are accessed in
the transaction. The transaction consists of two phases, namely
phase1 and phase2, and they have different memory access
patterns. Specifically, array A[] is accessed in phase1, but is
never accessed in the succeeded phase phase2, as shown in
Fig. 5.

We investigated the behavior of this transaction, and found
that all conflicts in this transaction occurred on A[] and no
confilct on B[], and 95.7% of access requests on A[] was
denied.

When threads execute this transaction in parallel, after a
thread accesses A[] in phase1, other threads can not execute
phase1 until the preceding thread commits the transaction be-
cause of a conflict on A[], although the preceding thread never
accesses to A[] again in the transaction. This will completely
serialize the execution of this transaction on multiple threads,
and leads to the low performance of Contention.

In such a case, granting access requests on A[] from other
threads will not cause any inconsistency on A[] if certain
requirements are met. Hence, we propose a novel phase-aware
transaction scheduling based on an optimistic conflict detection
algorithm. We introduce it in the next section.

IV. PHASE-AWARE TRANSACTION SCHEDULING

As described in Section III-B, some programs including
Contention have multiple phases in its transaction, and mem-
ory access pattern may be different between such phases.
Considering this difference can improve the performance of
HTMs. In this section, we propose a phase-aware transaction
scheduling based on an optimistic conflict detection.

tim
e

Core1

Thread1

Core2

Thread2

store B

t2

p
h
a
se

1

Tx.X

store A

S
ta

ll

load B

Commit

store A

p
h
a
se

1

Tx.X

p
h
a
se

2

t1 Req.A

NACK

Req.A

ACK

p
h
a
se

1

A will not be 

accessed

Denied, although it will not cause

inconsistency on A.

Fig. 6. A frequent conflict pattern in Contention.

tim
e

t4

t2 

Core1

Thread1

Core2

Thread2

store B

t5

p
h
a
se

1

Tx.X

store A

S
ta

ll

load B

Commit

store A
p
h
a
se

1

Tx.X

p
h
a
se

2

store B

p
h
a
se

2

t1 

t3

Req.A

ACK

Req.B

NACK

Req.B

ACK

Fig. 7. Phase-aware trans-
action scheduling by spec-
ulatively granting an access
request.

A. Execution Model

Now assume that transaction Tx.0 consists of two phases,
phase1 and phase2. The transaction accesses address A in
phase1, but will never access the address after finishing
phase1.

Fig. 6 illustrates a frequent conflict pattern in such pro-
grams. When two threads Thr.1 and Thr.2 running in parallel
executes Tx.0, their access on A will cause a conflict. How-
ever, Thr.1 will never access A again after finishing phase1
(t1..t2), and granting the access request on A from Thr.2 (at
t1) will not cause any inconsistency. As shown in Fig. 7, if
the access request from Thr.2 can be speculatively granted
(t2), the stall cycles of Thr.2 will be reduced and the total
performance will increase.

To safely grant the access request from other threads, each
thread should remember when, or in which phase, each shared
variable is lastly accessed in the transaction. We at the moment
assume that phases will be indicated by programmers using
nested transactions.

B. Additional Required Modifications

We must consider additional modification on transaction
management, because speculatively granting access requests as
shown in Fig. 7 is somewhat optimistic on conflict detection.
When Thr.1 speculatively grants an access request on shared
variable A from Thr.2, it is supposed that Thr.1 already
finished modifying the variable A and the modification will
be committed. However, for some reasons such as execution
path variation in the transaction, Thr.1 may access the shared
variable again, and the presupposition may be overthrown. In
such a case, Thr.2 whose access request was speculatively
granted should abort its transaction for consistency on the
shared variable.

Another case is that a thread aborts its transaction after
speculatively granting access requests from others. In the
example shown in Fig. 8, Thr.1 speculatively grants an access
request on variable A from Thr.2, and then it faces a deadlock
on another shared variable with another thread (t1). In this



tim
e

t1

Core1

Thread1

Core2

Thread2

p
h
a
se

1

Tx.X

store A

Abort

store A

p
h
a
se

1

Tx.X

p
h
a
se

2

t2 

Req.A

ACK

Abort

Req.AbortNACK

store B
Req.B

NACK

ACK

Fig. 8. Propagating abort.

tim
e

t4

t3 

Core1

Thread1

Core2

Thread2

store B

t6

store A

Commit

store A

p
h
a
se

1

Tx.X

p
h
a
se

2

t1 

t5

Req.A

ACK

Commit

p
h
a
se

1

Tx.X

p
h
a
se

2

S
ta

ll

W
a

itCommitted

Req.Commit

NACK

t2 

Fig. 9. Required wait and related
message exchange.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

R
a

ti
o

 o
f 

cy
cl

es

(B) LogTM-SE (Baseline)

(P) Conflict prediction considering execution path variation

(PA) Phase-aware conflict prediction

Contention

Wait

Barrier

Stall

Backoff

Aborting

Bad_trans

Good_trans

Non_trans

Fig. 10. The sum of the total execution cycles ratio of Contention.

case, Thr.1 must abort its transaction, and the presupposition
that the modification on A by Thr.1 will be committed is
overthrown. Hence, Thr.2 also must abort its transaction.

To ensure this Domino effect, as shown in the example
of Fig. 8, Thr.1 should remember the ID of Thr.2 when
it speculatively grants the access request from Thr.2, and
send an abort request message to Thr.2 as required (t1). In
addition, Thr.2 can not commit its transaction until Thr.1
commits, even if Thr.2 reaches to the end of transaction earlier
than Thr.1, because Thr.1 may abort its transaction, as shown
in Fig. 9. Hence, before committing, Thr.2 must ask Thr.1
whether Thr.1 already committed the transaction (t5), and
wait for Thr.1 committing the transaction (t6) if not.

V. EXPERIMENTAL EVALUATION

In this section, we conduct experiments to evaluate the
proposed phase-aware transaction scheduling. The evaluation
setup such as platform configuration is as same as shown in
Section II-C. The evaluation results with following three HTM
configurations are shown in Fig. 10.

(B) LogTM-SE (baseline)
(P) Previous method; predicts conflicts by using the

past execution time of each transaction considering
execution path variation.

(PA) Proposed transaction scheduling with phase-aware
conflict prediction.

Breakdown items except for Wait are as same as Fig. 2. Wait
in Fig. 10 represents the waiting cycles before committing
transactions shown in Fig. 9.

The result shows that the proposed transaction scheduling
(PA) can reduce total execution cycles of Contention 63.2%
compared with LogTM-SE (B) the baseline, and 60.0% com-
pared with our previous work[3] (P). Especially Stall is largely
reduced, and it mainly contributes the total performance gain.
This indicates that transaction execution is well overlapped
and futile stalling time is reduced, by speculatively granting
access requests. On the other hand, Aborting and Bad trans
become larger. This will be caused by Domino effect on aborts
explained in Fig. 8.

Contention has been one of the most difficult programs to
gain performance with HTM, and most of the previous work
on HTM scheduling has not able to improve its performance.
This evaluation result shows that scheduling transactions with
considering phases in transactions can improve the perfor-
mance of such type of programs.

VI. RELATED WORK

So far, various techniques for improving the performance of
HTMs have been proposed. Especially, many thread schedul-
ing techniques for reducing conflicts by controlling transac-
tional sequences have also been proposed [12], [13], [14].

Yoo et al. [15] have proposed a method based on the concept
of adaptive transaction scheduling (ATS). ATS dynamically
dispatches transactions and controls the number of concur-
rently executing transactions. Thereby, ATS can improve the
performance of workloads which lack for parallelism because
of high contentions. The throughput of a benchmark program
Radiosity is improved 1.97x with ATS. However, the improve-
ment with almost all programs other than Radiosity and Deque
is quite small and lower than only 5%. On the other hand
with our transaction scheduling[3], the execution cycles are
maximally reduced 61.6% with Deque. This means that the
throughput is improved to about 2.60x with Deque. In addition,
the execution cycles of four programs are reduced about 20%
with our proposal, or the throughput is improved to 1.25x.
Especially, the performance of Raytrace is not improved at all
with ATS, while it is improved about 30% with our previous
work[3].

Blake et al. [16] have proposed a method focusing on
common memory locations which are accessed in multiple
transactions. In this method, locality of memory access on a
transaction executed consecutively is called ‘similarity’ and
the similarity is calculated by using Bloom filter. If the
similarity exceeds a threshold, the transactions are executed
sequentially. The performance of this method is evaluated
with STAMP benchmark suite [10] and rather improved.
However, the evaluation results are not practical because they
are evaluated with 64 threads. It is known that the programs in



STAMP benchmark suite bring so many conflicts and aborts
when they are executed with many threads. Hence, the baseline
performance can be unreasonably underestimated.

Akpinar et al. [17] have proposed some novel ideas for
conflict resolution policies on HTMs, such as alternating
priorities of transactions in many various ways based on the
execution time or the total number of stalled transactions and
so on.

Armejach et al. [18] have proposed a prediction mechanism
called HARP to avoid repetitive aborts. HARP is inspired by
branch prediction and achieves high accuracy of a conflict
prediction by considering the latest behavior of transactions
and locality in conflicting memory references. The approach
used in HARP is partly similar to our conflict prediction[3],
[4], but there are some distinct differences. Specifically, only
the transactions, which are predicted not to conflict each other,
can run in parallel on HARP. On the other hand with our trans-
action scheduling, even the transactions which will conflict
each other can run partially in parallel, or their execution can
be partially overlapped. In addition, HARP requires 2.06kB
memory cells per core, and the hardware cost is larger than
the cost of our method.

All these methods do not consider execution path variation
in transactions which is caused by branch instructions. Hence,
performance can not be improved significantly in case the
execution path in a transaction varies. On the other hand,
our transaction scheduling[3] can improve the performance of
many practical programs because it can avoid causing conflicts
even if the execution path in a transaction varies.

However, there still are some types of programs whose
performance can not be improved even by our previous
transaction scheduling[3] which is superior to other previous
work as mentioned above. In response to this, in this paper, we
focused on such programs, and analyze the harmful conflict
patterns which will cause the low performance. Especially, for
transactions who have multiple phases with different memory
access patterns, we proposed a novel phase-aware scheduling.

VII. CONCLUSION

In this paper, we estimated the accuracy of our previous con-
flict prediction algorithm[3], and investigated some programs
which can not gain performance with the conflict prediction
algorithm. Through the investigation, we found two typical
access conflict patterns which can hardly be resolved by many
of previous transaction scheduling algorithms.

Then we focused on one of the conflict patterns of the trans-
action in Contention benchmark program. The transaction has
two phases in it, and the phases have different memory access
pattern. We proposed a phase-aware transaction scheduling
which speculatively allows some memory accesses which are
denied on general HTM systems. Evaluating the proposal
with Contention disclosed that the phase-aware transaction
scheduling goes very well with a type of program.

Our future work includes a detailed evaluation of the phase-
aware scheduling with much more benchmark programs, and
finding a methodology for dynamically detecting phases in

transactions. Designing and implementing a portable protocol
for applying this scheduling are also left for our future work.

ACKNOWLEDGMENT

This research was partially supported by JSPS KAKENHI
Grant Numbers JP17H01711, JP17H01764, JP17K19971 and
the grant from Tatematsu Foundation.

REFERENCES

[1] Intel Corporation, Intel Architecture Instruction Set Extensions Program-
ming Reference, Chapter 8: Transactional Synchronization Extensions.,
2012.

[2] International Business Machines Corporation, “Power ISA R© Ver-
sion 2.07,” https://www.power.org/documentation/power-isa-version-2-
07/, 2013.

[3] A. Hirota, K. Mashita, and T. Tsumura, “A Concurrency Control in
Hardware Transactional Memory Considering Execution Path Variation,”
in Proc. 4th Int’l Symp. on Computing and Networking (CANDAR’16),
Nov. 2016, pp. 77–83.

[4] K. Mashita, M. Tabuchi, R. Yamada, and T. Tsumura, “A Waiting
Mechanism with Conflict Prediction on Hardware Transactinal Mem-
ory,” IEICE Trans. on Information and Systems, vol. E99-D, no. 12, pp.
2860–2870, Dec. 2016.

[5] T.-Y. Yeh and Y. N. Patt, “Two-level adaptive training branch
prediction,” in Proc. 24th Annual IEEE/ACM Int’l Symp on
Microarchitecture(MICRO-24). ACM, 1991, pp. 51–61.

[6] P. S. Magnusson et al., “Simics: A Full System Simulation Platform,”
Computer, vol. 35, no. 2, pp. 50–58, Feb. 2002.

[7] M. M. K. Martin et al., “Multifacet’s General Execution-driven Mul-
tiprocessor Simulator (GEMS) Toolset,” ACM SIGARCH Computer
Architecture News, vol. 33, no. 4, pp. 92–99, Sep. 2005.

[8] L. Yen, J. Bobba, M. R. Marty, K. E. Moore, H. Volos, M. D. Hill,
M. M. Swift, and D. A. Wood, “LogTM-SE: Decoupling Hardware
Transactional Memory from Caches,” in Proc. 13th Annual Int’l Symp.
on High Performance Computer Architecture (HPCA-13), Feb. 2007, pp.
261–272.

[9] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The
SPLASH-2 Programs: Characterization and Methodological Consider-
ations,” in Proc. 22nd Annual Int’l. Symp. on Computer Architecture
(ISCA’95), 1995, pp. 24–36.

[10] C. C. Minh, J. Chung, C. Kozyrakis, and K. Olukotun, “STAMP:
Stanford Transactional Applications for Multi-Processing,” in Proc.
IEEE Int’l Symp. on Workload Characterization (IISWC’08), Sep. 2008.

[11] A. R. Alameldeen and D. A. Wood, “Variability in Architectural
Simulations of Multi-Threaded Workloads,” in Proc. 9th Int’l Symp. on
High-Performance Computer Architecture (HPCA’03), Feb. 2003, pp.
7–18.

[12] A. Shriraman, S. Dwarkadas, and M. L. Scott., “Flexible Decoupled
Transactional Memory Support,” in Proc. 35th Annual Int’l Symp. on
Computer Architecture (ISCA’08), 2008, pp. 139–150.

[13] S. Tomic, C. Perfumo, C. Kulkami, A. Armejach, A. Cristal, O. Unsal,
T. Harris, and M. Valero., “Eazyhtm, Eager-lazy Hardware Transactional
Memory,” in Proc. 42nd Annual IEEE/ACM Int’l Symp. on Microarchi-
tecture (MICRO-42), 2009, pp. 145–155.

[14] M. Lupon, G. Magklis, and A. González, “A Dynamically Adaptable
Hardware Transactional Memory,” in Proc. 43rd Annual IEEE/ACM Int’l
Symp. on Microarchitecture (MICRO-43), 2010, pp. 27–38.

[15] R. M. Yoo and H.-H. S. Lee, “Adaptive Transaction Scheduling for
Transactional Memory Systems,” in Proc. 20th Annual Symp. on Paral-
lelism in Algorithms and Architectures (SPAA’08), Jun. 2008, pp. 169–
178.

[16] G. Blake, R. G. Dreslinski, and T. Mudge, “Bloom Filter Guided
Transaction Scheduling,” in Proc. 17th Int’l Conf. on High-Performance
Computer Architecture (HPCA-17), 2011, pp. 75–86.

[17] E. Akpinar, S. Tomić, A. Cristal, O. Unsal, and M. Valero, “A Compre-
hensive Study of Conflict Resolution Policies in Hardware Transactional
Memory,” in Proc. 6th ACM SIGPLAN Workshop on Transactional
Computing (TRANSACT’11), 2011.

[18] A. Armejach, A. Negi, A. Cristal, O. Unsal, P. Stenstrom, and T. Harris,
“HARP: Adaptive Abort Recurrence Prediction for Hardware Trans-
actional Memory,” in Proc. 20th Int’l Conf. on High Performance
Computing (HiPC’13), Dec. 2013, pp. 196–205.




