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Abstract—This paper presents a robust load states estima-
tion method of a linear motor driven table system using an
acceleration-aided dynamic Kalman filter. The system is com-
posed of a table and a load connected via an elastic beam attached
on the table, therefore the system is modeled as a two-mass
system. In order to improve the positioning performance at load-
side, acquisition of the load position is important. However it
might be difficult to place position sensors on the load from the
viewpoint of cost saving and available space. In this research, a
small-size and low-cost MEMS accelerometer is installed on the
load in order to measure load acceleration. Load acceleration and
table displacement information are utilized to the acceleration-
aided dynamic Kalman filter in order to estimate the load
position. Moreover, to achieve robust estimation capability against
mechanical parameter variations of the system, the extended
Kalman filter is configured in order to estimate mechanical
parameters together with the load states. The effectiveness of the
proposed estimation method is verified by numerical simulations.

I. Introduction
In high performance mechatronic systems such as machine

tools, inspection equipments, and surface mount equipments,
it is important to improve positioning performance at load side
in order to achieve high quality production and cost saving [1],
[2]. To compensate for vibrations excited by a low stiffness and
nonlinearities, a full-closed position controller is constructed
which is using load side position information together with
sensors at actuator side and so on. However this approach
leads to additional costs, and it might be not applicable, in
case that new sensors do not fit in available spaces.

Recently, using low resolution sensors with Kalman filter[3]
for improvement of positioning and/or motion control perfor-
mance are reported[4]–[12]. Authors have also reported the
load state estimation methodology for linear motor driven table
system using Kalman filter and a MEMS accelerometer[13],
[14]. The proposed method can estimate load states of the
rigid mass system well, however it is difficult to apply to
systems with elastic mechanism. In particular, resonance fre-

quency change may deteriorate estimation performance of the
proposed method.

In this paper a robust load states estimation method of a
linear motor driven table system using an acceleration-aided
dynamic Kalman filter is proposed. The system is composed
of a table and a load connected via an elastic beam attached
on the table, therefore the system is modeled as a two-mass
system. A small-size and low-cost MEMS accelerometer is
installed on the load in order to measure load acceleration.
Load acceleration and table displacement information are
utilized to the acceleration-aided dynamic Kalman filter in
order to estimate the load position[15]. Moreover, in order
to achieve robust estimation capability against mechanical
parameter variations, the extended Kalman filter is configured
in order to estimate mechanical parameters together with the
load states.

The effectiveness of the proposed estimation method is
verified by numerical simulations.

II. System Structure and System Modeling

A. Linear Motor Driven Table System
In this paper, a linear motor-driven table system is per-

formed as a control target. Fig. 1 shows a picture of an
experimental setup, where the table is driven by the linear
motor installed on the machine stand. A weight, as load, is
attached on the top of the elastic beam which is setting on the
table in order to reproduce mechanical vibrations seen often
in mechatronic systems. The table displacement is measured
by a linear encoder of which sensor resolution of 0.1 µm, and
a MEMS accelerometer is attached on the load to measure
load acceleration. For validation, a laser displacement meter
is mounted on a tripod to measure displacement and velocity
of tip of load.

As stiffness of the elastic beam is a finite value, the control
system is modeled as a two-mass system. The motion equations
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Fig. 1: Picture of experimental setup.

TABLE I: Model parameters.

table mass M 15.5 kg
load mass m 1.0 kg
spring constant k 2.44×105 N/m
viscosity c 9.05 N/(m/s)

of the two-mass system are expressed as follows:

M "x1 = u − k(x1 − x2) − c( $x1 − $x2), (1)
m "x2 = k(x1 − x2) + c( $x1 − $x2), (2)

where, M; table mass, m; load mass, k and c; spring constant
and viscosity of the beam, x1 and x2; table and load displace-
ment and u; control input, respectively. Model parameters,
listed in Table I, are identified by curve fitting techniques based
on FRF of the system.

B. MEMS accelerometer
A MEMS accelerometer (Analog Devices, ADXL335 3-

Axis accelerometer[16]) is attached on the top of the load,
where Table II shows the specifications of the MEMS ac-
celerometer. The accelerometer can measure the load accel-
eration between ± 3 g and its typical sensitivity is 300 mV/g
at supplied voltage of 3.0 V. The sensitivity is affected by its
supplied voltage as ratio metric and also be affected ambient
temperature from 270 mV/g to 330 mV/g. The provided
acceleration includes 0 g offset. Its typical value is 1.5 V
at supplied voltage of 3.0 V, and fluctuate from 1.35 V to
1.65 V due to supplied voltage and ambient temperature.
The bandwidth can be chosen by attached capacitor at sensor
outputs from 0 Hz to 1500 Hz.

III. Acceleration-aided dynamic Kalman filter
A. Dynamic system for Kalman filter

In order to achieve robust load states estimation against
mechanical parameter variations of the two-mass system, an
acceleration-aided dynamic Kalman filter (a2d-KF) is utilized,
where the continuous time plant system used for a2d-KF is
assumed as Fig. 2, in which input of the system is the load
acceleration am, while output of the system is the table position

TABLE II: Specifications of ADXL335.

Parameter Min Typ Max Unit
Measurement Range ±3 ±3.6 g
Sensitivity 270 300 330 mV/g
Sensitivity Change Due to Temp. 0.01 %/◦C
0 g Voltage 1.35 1.5 1.65 V
0 g Offset vs. Temp. ±1 mg/◦C
Bandwidth 1500 Hz
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Fig. 2: Block diagram of continuous time plant model.

y. Now let the measured acceleration am includes the real
acceleration a (= "x2) and the bias ab and noises w1 as:

am = a + ab + w1, (3)

which is rewritten as:

"x2 = am − ab − w1. (4)

The bias is modeled as constant value for simplicity as:

$ab = w2. (5)

Substituting eq.(4) for eq.(2), the state space model, in which
input is load acceleration and output is table position, can be
determined as:

$x = Ax +Bam +Gw, (6)
y = Cx +Dam +Hw + v, (7)
x =

[
x1 x2 $x2 ab

]T
,w =

[
w1 w2

]T
,

A =

⎡⎢⎢⎢⎢⎢⎢⎣

−k/c k/c 1 −m/c
0 0 1 0
0 0 0 −1
0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦
, B =

⎡⎢⎢⎢⎢⎢⎢⎣

m/c
0
1
0

⎤⎥⎥⎥⎥⎥⎥⎦
,

C =
[

1 0 0 0
]
, G =

⎡⎢⎢⎢⎢⎢⎢⎣

−m/c 0
0 0
−1 0
0 1

⎤⎥⎥⎥⎥⎥⎥⎦
,

D =H = 0

The process noise w1, w2 and the observation noise v are
white Gaussian random process with zero mean and variance
σ2
a, σ2

b , σ2
R, respectively, and they do not depends on each

other.

B. Discretization of dynamic system
Selecting the proper discretized method would be the im-

portant point to realize better estimation performance, since
the discrete time plant system is used as a design model for
the Kalman filter. the system describe as eqs. (6) and (7) has



resonance characteristics and does not include zero-order hold
(ZOH) mechanism like A/D converter. Additionally, for the
proper estimation of the Kalman filter, it is important to predict
the next sampling state accurately (the innovation sequence is
a white noise if the filter runs optimally). Thus using Tustin
method with pre-warping is preferred than using the other
methods. By using Tustin method with pre-warping, eqs. (6)
and (7) are discretized as:

xn+1 = Adxn +Bdam,n +Gwn, (8)
yn = Cdxn +Ddam,n +Hwn + vn, (9)

Ad = (I − ∆2A)−1(I + ∆2A),

Bd = ∆(I − ∆2A)−1B, Cd = C(I − ∆2A)−1,

Dd =
∆

2C(I − ∆2A)−1B +D,

Gd = ∆(I − ∆2A)−1G,

Hd =
∆

2C(I − ∆2A)−1B +H,

∆ =
tan(π f Ts)
π f

where, f ; resonance frequency of 80 Hz and Ts ; sampling
time of 500 µs.

C. Extended Kalman filter
Mechanical parameter variations deteriorate estimation per-

formance of the load states. In particular, resonance frequency
mismatch may cause large estimation error. In this research,
the load mass, m, and spring constant, k, therefore, are
considered as variation factors. Under the assumption that the
viscosity, c, is constant, variables kc and mc are determined
as follows:

kc =
k
c
, mc =

m
c
. (10)

In the proposed Kalman filter, mechanical parameter, kc , is
estimated in order to match resonance frequency of the system,
resulting in the load states can be estimated well.

Now define the unknown parameter θ as:

θ = kc . (11)

The discretized state space model based on eqs.(6) and (7)
is described as:

xn+1 = Ad(θ)xn +Bd(θ)am,n +Gd(θ)wn, (12)
yn = Cd(θ)xn +Dd(θ)am,n +Hd(θ)wn + vn (13)

In order to estimate θ simultaneously with x, θ is treated
as time function as:

xn+1 = Ad(θn)xn +Bd(θn)am,n +Gd(θn)wn, (14)
θn+1 = θn, (15)
yn = Cd(θn)xn +Dd(θn)am,n +Hd(θn)wn + vn (16)

Now, expand the state vector as zn =
[
xT
n θTn

]T , then
eq.(14) can be expanded as:

zn+1 = f (zn, am,n) + Γ(θn)wn, (17)

f (zn, am,n) =
[
Ad(θn)xn +Bd(θn)am,n

θn

]
,

Γ(θn) =
[
Gd(θn)

0

]

Here, Ad(θ), Bd(θ), Cd(θ) and Dd(θ) in eqs.(12) and (13)
are differentiable with θ, thus define the following equations.

F (ẑn,n, am,n) =
[
Ad(θ̂n) F1,2,n

0 I

]
, (18)

η(ẑn,n−1) =
[
Cd(θ̂n−1) η2,n

]
, (19)

F1,2,n =
∂[Ad(θ)x +Bd(θ)am]

∂θT
,

η2,n =
∂Cd(θ)x
∂θT

(20)

while F (ẑn,n, am,n) and F1,2,n are partial differential for z =
ẑn,n and am = am,n, and also η(ẑn,n−1) and η2,n are partial
differential for z = ẑn,n−1.

Above all, define as Cd(θ̂n) = Ce,n, Dd(θ̂n) = De,n,
Hd(θ̂n) = He,n, Γ(θ̂n) = Γe,n, F (ẑn,n, am,n) = Fe,n,
η(ẑn,n−1) = ηe,n, then the covariance matrix Qn and Rn at
the nth sample can be describe as:

Qn = Γe,nE
[
w ·wT

]
ΓTe,n

= Γe,n

(
σ2
a 0

0 σ2
b

)
ΓTe,n (21)

Rn = σ
2
R +He,nE

[
w ·wT

]
HT

e,n

= σ2
R +He,n

(
σ2
a 0

0 σ2
b

)
HT

e,n (22)

Eventually, extended Kalman filter which estimate the state
vector ẑn,n at the nth sample is constructed as:
Estimation:

Pn,n−1 = Fe,n−1Pn−1,n−1F
T
e,n−1 +Qn−1 (23)

ẑn,n−1 = f (ẑn−1,n−1, am,n−1) (24)

Update:

Kn = Pn,n−1η
T
e,n

(
ηe,nPn,n−1η

T
e,n +Rn

)−1
(25)

ẑn,n = ẑn,n−1 +Kn(y −Ce,nẑn,n−1 −De,nam,n) (26)
Pn,n =

(
I −Knηe,n

)
Pn,n−1 (27)

The initial covariance matrix P0,0 is defined as eq.(28).

P0,0 = cov
(
z0 − ẑ0,0

)
, (28)

where the P0,0 is determined with trial and error process to
obtain better estimation performance.

The variance of measurement noise σ2
R can be defined as:

σ2
R = ρ

2/12 (29)
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where, ρ; resolution of the linear encoder.
On the other hand, variances σ2

a, σ2
b in eqs.(21), (22) are

determined experimentally by performing a whiteness test (e.g.
Bartlett’s test[17]) on the process innovation, i.e. the difference
between the measured and the estimated table position.

IV. Numerical verification
In order to verify the robustness of the proposed method

against mechanical parameter variations, numerical simula-
tions are performed. Fig. 3 shows a block diagram of a two
degrees-of-freedom (2DOF) control system, in which a PID
compensator generates control input, ub , based on error, e,
between position reference, r , and table position, x1, while
feedforward input, u f , is generated based on acceleration
reference, raccl. = "r , and inverse of the rigid mass model.

Fig. 4 shows a block diagram of the proposed Kalman
filter, in which a ZOH and two quantizers are considered to
reproduce actual system. In Fig. 4, xm1 and am2 are the table
position and load acceleration applying to the Kalman filter,
respectively. The table position is quantized by 0.1 µm, which
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Fig. 5: S-shaped position reference

is equivalent to the sensor resolution of the linear encoder. The
load acceleration is added a white noise of which variance of
10−1.5 m2/s4 and mean of 0.1 m/s2, and quantized by 16 bit
which is resolution of ADC that the system includes. x̂1, x̂2,
k̂c are the estimated values of table position, load position and
mechanical parameter, respectively. The sampling time is set as
Ts=0.5 ms. Fig. 5 shows a S-shaped position reference applied
to the system of which stroke of 0.5 mm and acceleration of
9.8 m/s2. The position reference is applied to the system five
times in a row. (a) shows the position reference, (c) shows
the acceleration reference, (b) and (d) show magnified view
of (a) and (c), respectively. The simulations are performed for
three cases, case 1: the plant parameter as nominal, case 2:
load mass, m, varies twice as large as the nominal value and
case 3: spring constant, k, varies twice as large as the nominal
value.

Figs. 6, 7 and 8 show the simulation results of case 1,
case 2 and case 3, respectively. In each figure, (a) shows the
ratio of mechanical parameters, kc/mc , while the reference is
applied to the system five times in a row. Fig. (b) shows the
table position and (c) shows its estimation error, (d) shows
the load position and (e) shows its estimation error. The black
line indicates the true results in each figure. In (a), the blue
line indicates the estimated mechanical parameter. From (b)
to (e), the blue line indicates the results of the conventional
Kalman filter method, which does not consider the mechanical
parameter variations, the green line indicates the results while
the first input is applied, and the red line indicates the results
while the 5th input is applied. In Fig. 6, even though make it
possible to estimate the mechanical parameter, the load posi-
tion estimation performance by proposed method is as precise
as the conventional method, and achieve the estimation error
within in ± 1 µm. In Figs. 7 and 8, as for conventional method,
the load position performance is degraded due to parameter
variations. On the other hand, as for the proposed method, the
load state can be estimated while the S-shaped reference is
applied in a row. After five times motion, estimation can be
improved and the estimated load position can follow the true
waveform. In Fig. 8, in case that spring constant, k, has error,
the parameter estimation convergence is slower than the case
which has the load mass, m, error. However the parameter can
converge promptly by tuning P0,0 or applying the reference
which excite the load vibration.

V. Conclusions
In this paper, a robust load states estimation methodology

for a linear motor driven table system is proposed, in which
mechanical parameters are estimated together with load states
using an acceleration-aided dynamic Kalman filter based on
load acceleration and table displacement information. The
effectiveness of the proposed estimation method has been
verified by numerical simulations.
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Fig. 6: State estimation results (nominal)
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Fig. 7: State estimation results (error for m)
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Fig. 8: State estimation results (error for k)


