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Abstract 
 

For the past few decades, three phase induction motor has been used for driving most of the 

industrial loads. In general, induction motor holds many useful advantages such as easy 

handling, high efficiency, low cost, robustness and high reliability which will be hardly found 

in other motors. The usage of the induction motor has increased worldwide. Even though the 

application of induction motor has been increased, the proper maintenance and condition 

monitoring have not been carried out. If this condition prevails, there is a consequence of 

high operating cost and maintenance cost. There is also a chance for the reduction in the 

reliability of the induction motor. When the faulty motor is not identified and replaced in the 

earlier stage, it would result in the shutdown of the entire plant. So, when we visualize from 

the economic point, the cost for replacing the faulty motor will be cheaper than the entire unit 

shutdown. Therefore, proper maintenance and condition monitoring are adequate to make the 

motor sustainable for a longer duration.   

 

In recent years, many techniques have been developed for identifying the fault in the 

induction motor. The goal is to detect and diagnose both the electrical and mechanical failure 

of the induction motor at the early stage of fault. Hence the fault occurring with respect to 

both electrical and mechanical point of view must be paid more attention. With considering 

these facts about the induction motor failure, the present motor failure study is based on short 

circuit insulation failure, broken rotor bar failure, and bearing failure. The failure detection 

analysis is performed using Fast Fourier Transform (FFT). The analysis is carried out by 

characterizing the specified frequency components of the load current and this will be 

considered as the main feature. On further, to enhance the accuracy of the proposed systems, 
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the proper diagnosis is performed with the help of Distortion Ratio, Self-Organizing Map 

(SOM), and Support Vector Machine (SVM). Additionally, the Artificial Intelligence method 

like Deep Learning is also employed to perform the diagnosis of the induction motor failure. 

The common diagnosis method is established for detecting the short circuit insulation failure, 

broken rotor bar failure, and bearing failure using SVM and the results are compared with 

the other traditional machine learning algorithm for ratifying the effectiveness.  

 

The proposed methodology for detecting the minor fault occurring in the induction motor 

gives a satisfactory result as follows. The one-turn in case of short circuit insulation failure; 

one broken rotor bar in case of broken rotor bar failure and 0.5 mm hole, 5 mm scratch to be 

the case of bearing failure. The minor fault detection and identifying the present state of the 

motor is made possible using the proposed method.  The diagnosis between the faulty motor 

and healthy motor and among the faulty motors are also achieved. The method is opted for 

the industrial environment and variable speed applications.  
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Chapter 1  

Introduction and Literature Review 
 

 

1.1 Background 

 

To the world of modern life including automobiles, electric motor plays a vital role and 

specifically, in the most recent decades, induction motors is widely used in both the industrial 

application and domestic. Specifically, water pump, vacuum cleaners, air conditioners, 

automatic car windows, refrigerators and multitudes of other domestic appliance use the 

motors to convert the electrical energy into mechanical energy. In the industrial environment, 

motor’s role is getting increased in the manufacturing process and automotive production, 

which results in the production of every conceivable industrial product. Even the machine in 

the industry is made to run using the induction motors. Thus, they play a significant role in a 

range of industries and most of the industrial loads are driven by the three-phase induction 

motors. Having various advantages like easy handling, low cost, high reliability, high 

efficiency, robustness and the usage in the power converters make the induction motor as 

most suited for the industrial applications. The recent development in the field of power 

electronics, electric locomotive, machinery manufacturing and finally the assembly processes 

has additionally enhanced the reliability and ruggedness of the induction motor. The 

induction motor develops its own scale of meter in all the fields. Despite the high availability, 

the application of induction motor in new fields such as off-shore wind current turbines, aero 

engines, and high-speed trains justifies the demand for condition monitoring and operating 

state supervision.  

 

The condition monitoring deals with the process of observing the physical quantities related 

to motor. The entire process continues during the operation and can identify the changes, 

which is the main basis of condition monitoring scheme. This process also helps to cut down 

the maintenance cost and unscheduled downtime. In other words, fault should be identified 

at the initial stage to make an appropriate control decision that often has an adverse effect on 
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quality of the product and adds the safety of the process. When the faulty motor is not 

identified and replaced in the earlier stage, it would result in the shutdown of the entire plant. 

Generally, the defect in an induction motor can be defined as the reduction in the capacity to 

perform a required function. If a defective motor is kept in operation for an extended period, 

it will exhibit symptoms including increases in temperature, variation in the current 

harmonics, changes to the electromagnetic field, or vibration [1].  

 

But in most of the industries, the induction motor is being operated without proper 

maintenance and condition monitoring. This condition leads to the reduction in the reliability 

of the induction motor and increases the maintenance cost as well as the operating expenses. 

Due to usage of an induction motor in many applications, the need to improve the reliability 

and condition monitoring of the machinery in the industrial application has been increased. 

Also, when we visualize from the economical point of view, maintaining the induction motor 

properly and replacing the faulty motor are quite cheaper, rather than letting the faulty motor 

to shut down the entire company. Therefore, proper maintenance and condition monitoring 

are adequate to make the motor sustainable for a longer duration. The fault diagnosis of the 

induction motor has received an intense interest. Thus, to satisfy the above requirement, the 

fault diagnosis is made as hotspot and the research is carried out. During my present study, 

induction motor has been selected among the electrical machines because of its various 

advantages as illustrated above and the fault analysis and diagnosis are performed. 

 

1.2 Overview 

 

The three main paradigm progress of fault detection and diagnosis: model-based, data-driven 

and experience-based approaches [2]-[3]. These approaches have application in various fields 

such as aviation, aerospace, and navy space. It is mainly used to improve maintenance signals 

and decisions. The model-based approach uses and constructs a mathematical models to 

study the degradation phenomenon. However, the system is very complex and it takes time 

to construct the model for enabling the diagnosis process. The data-driven approach is the 

alternative method to model-based approach. It uses the statistical pattern recognition and 

machine learning method to identify the failure and also to detect the changes observed in 
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the measured data. Further, the experience-based approach uses the statistical reliability 

approach to predict the probability failure of the machines. 

 

For the last couple of decades, numerous technique has been developed for identifying the 

fault in the electrical machinery and many types of researches are still undergoing. The main 

aim of these research is to detect the mechanical and electrical fault of the induction motor. 

Depending on their origin, failures in the induction motors [4]-[20] can be broadly divided 

into two categories; electrical and mechanical failures. Among the possible motor failure, 

bearing failure (44%) takes the highest percentage of fault occurring in the induction motors, 

which is followed by short-circuit stator insulation failure (26%), broken rotor bar (18%) and 

other kinds of fault (12%) [21] and fault may cause the industry to shut down, loss of 

production and even it may create an origin for catastrophic effect and human causalities 

[22]-[23]. The induction motor failure classification is shown in Figure 1.1 [21].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 Induction motor failure classification [21]. 

 

Thus, the bearing failure, short-circuit insulation failure and broken rotor bar failure has been 

considered in the present study and the fault analysis is performed.  
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1.3 Technical Issues caused by Induction Motor 

 

Many problems are a result of high or low voltage, unbalanced voltage, ungrounded power 

systems, or voltage spikes. The following are examples of the most common of these types 

of problems seen [24]. 

 

1.3.1 Low Voltage  

 

Low voltage is normally not the direct cause of motor overheating since the overload relays 

will kick the motor off line when the current exceeds rated amps. As a result, the motor will 

not generate rated horsepower. The motor slip also increases proportionally to the square of 

the voltage drop. As a result, the motor will be running slower with a lower output and the 

process would not be producing as expected. Low voltage during start can create additional 

problems. When specifying the motor, it is important to understand what the true voltage at 

the motor terminals is during starting. This is not the power system voltage, or the tap on the 

autotransformer. To determine this voltage, one must consider the total line drop to the motor 

terminals during the high current draw, which is present while the motor is starting. 

 

On designs which are subject to reduced voltage start and have an elevated risk of not 

properly starting, it is recommended that the voltage at the motor terminals be measured on 

the first couple of starts, after this motor or any other machinery is added to the power system, 

to eliminate concerns or problems in the future. 

 

1.3.2 Over Voltage  

 

It is normally true that motors tend to run cooler at rated horsepower at voltages exceeding 

rated voltage by up to 10%, but the current draw is only controlled by the load and at rated 

current and 10% overvoltage the motor will be overloaded by approximately 10%. The core 

loss is 20 to 30% greater than normal and could causes the machine to overheat. If it is 

verified that the motor will see an overvoltage, the overload current relay must be adjusted 

downward to compensate, or stator temperature detectors should be used to monitor the 

temperature.  
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1.3.3 Unbalanced Voltages  

 

Unbalanced voltage will produce negative sequence currents that will produce excess heating 

in the stator winding and rotor bars but will not produce useful power output. Derating of the 

motor is necessary when unbalanced voltages exceed 1% as defined. This condition which 

produces increased heating, increased energy consumption and lower efficiency. Note, a 2% 

voltage unbalance can produce as much as 10% increased losses in the machine. 

 

1.4 Reason and Technical Issues of Induction Motor Failure 

 

In this section, the discussion is done regarding the most common faults occurring in the 

induction motor. It is illustrated as below [25]-[27].  

 

1.4.1 Stator Coil Failure 

 

The reason and some of the examples for the failure occurring in the stator coil of the 

induction motor is discussed.  

 

1.4.1.1 Removing of stator winding by frequent start/stop of the induction motor 

 

Thermal deterioration of electrical insulation occurs due to high magnitude transient current. 

 

1.4.1.2 Thermal deterioration of stator winding insulation due to high-temperature 

 

Thermal deterioration of winding insulation obeys Arrhenius's rule. In the case of E-type 

insulation, its lifetime reduces by half when temperature rises 10 degrees. 

 

1.4.1.3 Influence of dust in removing the stator winding 

 

Attachment of dust and/or oil to cooling fun and its cover lowers cooling efficiency, leading 

to temperature rise of motor. 
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1.4.1.4 Role of moisture absorption in burning the stator winding  

 

Infiltration of water into motor or condensation reduces insulation characteristics of winding. 

 

1.4.1.5 Localized Removal of stator coil by eddy current 

 

Electrical breakdown caused by contact of rotor iron and stator winding results in localized 

eddy current flow in iron. Winding is heated by the current. 

 

1.4.2 Cause of Broken Rotor Bar Failure  

 

The reason and some of the examples for the broken rotor bar failure occurring in the 

induction motor is discussed.  

 

1.4.2.1 Motor Overheating 

 

The most common cause of overheating is improper ventilation or high ambient temperature. 

A typical compressor room or pump house will heat up quickly if the room is not properly 

ventilated. The temperature in the room will continue to rise until it reaches an equilibrium 

with the heat radiating out through the walls. This may seem a little ridiculous, and assume 

that it could avoid this condition, but rooms such as this have existed in various plants around 

the world, and motors were failing repeatedly until fans are installed in the walls to exchange 

the necessary amount of air. 

 

1.4.2.2 Industries Fault Study 

 

Apart from this, several case studies have been done regarding the fault occurring in the 

industries. Based on the result, the sample of the broken rotor fault is shown in Figure 1.2.  
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Figure 1.2 Broken rotor bar damage for (a), (b) 2400-kW, (c), (d) 1400-kW, and 

(e), (f) 500-kW motors [25]. 

 

1.4.3 Bearing Failure Causes 

 

The reason and some of the examples for the bearing failure occurring in the induction 

motors discussed.  

 

1.4.3.1 Fluting, abnormal abrasion and scuffing 

 

This effect is mainly caused by overload, abnormal thrust load, bad assembly, bad lubrication, 

flection of shaft, and slip abrasion. The most commonly used detection methods are   
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monitoring vibration and degree of abrasion. The sample of bearing fluting is shown in Figure 

1.3. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3 Sample of Fluting [26]. 

 

1.4.3.2 Damaged Cases 

 

It is mainly caused by progression of flaking, excess impact load, bad assembly, and bad 

lubrication. The detection methods are monitoring the vibration and temperature. 

 

1.4.3.3 Electric corrosion 

 

The reason for the electric corrosion stands because of the spark that is caused due to current 

flow, condensation, and water infiltration. The detection methods are monitoring vibration 

and degree of abrasion. 

 

1.4.3.4 Practical Case of Bearing Fault 

 

Apart from this, several case studies have been done regarding the fault occurring in the 

industries. Based on the result, the sample of the bearing failure is shown in Figures 1.4.  
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Figure 1.4 Sample of bearing failure [27]. 

 

1.5 Previous Works and Literature Survey  

 

1.5.1 Short Circuit Insulation Failure 

  

Similarly, in the case of short circuit insulation failure in the stator winding of the induction 

motor, several researches have been done. It is well known fact that short circuit failure of a 
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stator winding due to aging or damage of electrical insulation is one of the most probable 

electrical faults in motor drive systems, which accounts for about 35 % of all failures [28]. 

This short-circuit fault is recognized as a crucial failure. It is interesting to note that even the 

safety system used for detecting malfunctions in electrical motors cannot react to short-circuit 

failures because they only cause insignificant changes in the magnitude of the phase current. 

This problem can be addressed using digital diagnostic signal processing. This system looks 

after the motor condition and alerts the user at the initial stage of a fault.  

 

The diagnostic methods based on the shape of Park vector, air-gap torque and so on have 

been proposed for detecting the short-circuit insulation failure [8], [29]-[31]. On further, 

partial discharge characteristics are an effective element in detecting the insulation failure in 

high voltage motor or generator winding [33]-[35]. Also, application of guided waves and 

probability imaging approach are discussed for detection of insulation damage of stator bar 

in large generator [36]. But in the case of low-voltage induction motors, impulse testing is 

available [4]-[5]. These high-frequency resonance is also applied to turn-turn insulation 

diagnosis of motors fed by adjustable speed drives [6]. The turn-to-turn capacitance is 

suggested as an aging indicator of stator winding insulation [7]. A load-immune diagnosis 

method was proposed to detect minor level short circuit fault in stator winding, which was 

based on suitable features from Park’s vector modulus of motor line current [8].  

 

In addition to this, a simple and reliable diagnosis method is also established to identify the 

turn-to-turn insulation failure based on the load current [9]-[10]. In this method, a novel 

diagnosis method was discussed to detect the short circuit insulation failure based on Support 

Vector Machine (SVM). The analysis is carried out by characterizing the magnitude of load 

current and to be treated as the main feature for diagnosis. This method has the advantage of 

simple, low cost and short data processing time. It was found that more than two turn-to-turn 

short-circuit could be easily diagnosed with practically acceptable accuracy. However, 

winding with one turn-to-turn short-circuit failure could not be distinguished from the healthy 

winding.  
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However, one turn-to-turn short circuit failure is still an existing fault and no proper diagnosis 

has been done till to date. The problem is discussed and overwhelmed during the present 

research work.  

 

1.5.2 Broken Rotor Bar Fault 

 

As rotor bar fault is one of the common fault in the induction motor, lots of researches have 

been carried out in detecting the breakage of rotor bars [12]-[17]. Failure in rotor cages of 

induction motors, such as breakage of rotor bars and end-rings, is one of the most probable 

mechanical faults in motor drive systems, which accounts for about 5-10 % of all failures 

[11]. To detect the geometrical asymmetry of a rotor caused by breakage of bar(s), the method 

using side-band components has been widely focused. The sideband components appear 

below and above the fundamental component in frequency spectrum of load current. It is 

since such a mechanical failure affects magnetic flux in the air gap between a stator and a 

rotor and causes changes in the load current through counter-electromotive force. This 

sideband components method has the following drawbacks. In the case of a slight failure, for 

example, one rotor bar is broken, it is rather difficult to detect the failure, because only slight 

changes are observed in the load current. Accuracy of diagnosis is not necessarily satisfactory 

when detection system has low frequency resolution. Load current is not constant, but it is 

affected by deviation of applied voltage as well as load condition [18]. The output signal of 

a sensor usually contains noise. 

 

On the other hand, characteristic frequencies are also used in detecting the broken rotor bar 

fault, which uses the amplitude of the characteristic frequency components of load current 

spectrum as features [19]. However, with the employment of this method, it is very difficult 

to detect the slight failure in the rotor bar. For example, one rotor bar is difficult to be detected 

as we observe only slight changes in the load current. With this discussion, it is concluded 

that detecting the minor rotor bar fault is difficult and method identifying the number of 

broken rotor bars is still under research. The problem is discussed and overwhelmed during 

the present research work. 
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1.5.3 Bearing Failure 

 

Among all the failures, bearing faults are the most common faults in an electric motor [21], 

[37]-[38], and may cause the industry to shut down, loss of production and even it may create 

an origin for catastrophic effect and human casualties [22]-[23]. The main factors behind the 

bearing faults are dust, corrosion and inadequate lubrication. The detection of the bearing 

fault at the incipient stage will avoid the unexpected breakdown and automatically increase 

the reliability of operation [24], [39]-[40]. 

 

Normally, most of the research for detecting the bearing failure is done based on the vibration 

analysis [41]-[43]. Although this method is quite effective in detecting the bearing fault, the 

choice and positioning of the sensor are difficult, and will vary based on the location of the 

equipment. The acquisition of vibration data requires transducers or accelerometers that 

makes the method expensive and difficult. To overcome the disadvantage of the vibration 

method, detection is done by means of the stator current [44]-[49]. This method uses the 

signal from the stator current so that choice and positioning of the sensor are not required. 

However, this method fails in identifying the present state of the bearing. Some of the other 

bearing fault detection methods are based on time domain analysis [50] and electric current 

analysis [51]. Both the analysis produces promising results and gained prominence. 

 

The introduction of digital signal processing has extended its range of applications over 

detecting the bearing fault [52]. Digital systems mainly rely on the use of artificial 

intelligence tools such as artificial neural networks [53], fuzzy logic, or expert systems [54]. 

The widely used techniques include squared envelope analysis [55], spectral kurtosis analysis 

[56], and the wavelet kurtogram [57]. In most cases, however, the raw signal cannot be used 

to identify a failure, and features must be extracted from time domain or frequency domain 

analysis. Time domain analysis allows processing of both stationary and non-stationary 

signals. Techniques include the use of root mean square [58] analysis, high-order statistical 

methods [59], and the short impulse method [60]. Time domain analysis is one of the simplest 

methods available for identification of bearing faults. It uses features extracted from the raw 

signal. The value of such a feature will change if a defect appears on the bearing of an 

induction motor, providing diagnostic information. However, this approach is often incapable 
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of isolating the fault conditions. Frequency domain analysis has high process gain and is less 

sensitive to noise in the signal. It can detect faults only from a stationary signal and cannot 

be applied to non-stationary signals [61]. 

 

Over the past few years, the usage of acoustic emission sensors (AE) are reported in condition 

monitoring and fault diagnosis [62]. The comparison is made with the traditional methods 

like vibration analysis and AE signals have the advantage of capturing the bearing fault 

features and detecting the incipient faults [63]. The detection is made possible by using the 

frequency of selected components as primary features. Additionally, using Hilbert-Huang 

Transform (HHT) along with AE signals, the fault detection is performed on rotational 

machinery systems [64]. Nowadays, the digital signal processing has extended their 

application to identify the bearing failure of the induction machines [65]. Generally, raw 

signals will not be sufficient to identify the existence of the failure. Therefore, to identify the 

fault, features are extracted from time domain or frequency domain analysis. Time domain 

analysis can be used to process both stationary and non-stationary signals and it includes the 

analysis of such as root mean square [66], high-order statistical method [67], and short 

impulse method [68]. 

 

Intelligent diagnosis methods to identify the defects are rapidly increasing and in most of the 

cases Support Vector Machine (SVM), Artificial Neural Network (ANN), and Adaptive 

Neuro-Fuzzy Inference System (ANFIS) are applied [69]-[76]. In general, two steps are 

mostly involved in intelligent bearing fault diagnosis; feature extraction and their 

classification. Soualhi et al. [57] proposed an algorithm using ANN for fault diagnosis using 

six features. Again Prieto et al. [39] investigated the bearing conditions using the time-

domain statistical parameter and then extracted the features followed by ANN. The ANN 

with time-frequency features are performed by Boukra et al. [77]. Lei et al. [78] performed 

the fault diagnosis using ANFIS algorithm and reveals the working bearing conditions. 

Ebrahimi et al. [79] performed the bearing fault diagnosis using the wavelet transform for 

feature extraction and Principle Compound Analysis (PCA) for feature fusion, then SVM is 

carried out. The hybrid optimized bearing fault diagnosis method is proposed [80] using 

optimized stationary wavelet packet transform (Op-SWPT). The LAMSTAR neural network 
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also extended its application to diagnose the bearing faults [81]. Although these many 

intelligence methods are used in bearing fault diagnosis, they still have some inherent 

disadvantages. Most of the intelligent systems are non-linear and belong to the shallow 

learning models. The accuracy also varies with the selection of features, largely depends on 

diagnosis model and requires the engineering experience.   

 

Most of the fault categories belong to the single fault considering pitting (hole), in some cases 

compound fault is discussed [82]-[83]. As a case, Valeria et al. [65] carried out the experiment 

for the hole of diameter 2.3 mm and 2.8 mm and able to distinguish the healthy motor and 

faulty motor. The detection of bearing fault is achieved by spectral kurtosis and envelope 

analysis of stator current. However, no results were obtained regarding the smaller size of the 

hole. Also, Christelle and Kay Hameyer [82] carried out the diagnosis for two low level 

depths of the hole. The fault examination and diagnosis are carried out by means of the linear 

discriminant analysis of stator current features from the selected frequency components. 

Although the faulty motors are distinguished from the healthy motors, the difference between 

the two types of fault is not possible by this method. 

 

In summary, many papers are available with the bearing failure concept and all those papers 

have explained the differences between the healthy and faulty motors by different analysis 

method. However, several studies and experiments are highly required to gain the adequate 

expertise about the physical location of fault. The challenging factors said to be continued. 

Also, in practical point of view, the faults in induction motor bearings often arise from 

scratches. The chance of faults with scratches is considerably high than that of holes. Hence 

it is also important to undergo many researches for the fault analysis using scratch. The 

problem is discussed and overwhelmed during the present research work.  

 

1.6 Motivation and Objectives 

 

To overcome the disadvantages of the previous methods and to detect the minor fault 

occurring in the induction motor, the following methods are proposed and the confirmed with 

the experimental results. The methodology used, and the main objectives of the thesis are 

shown in Figure 1.5.   
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 Proposing a simple method using the load current of the stator 

 Detection of the minor faults using the spectral analysis and feature distribution 

 Application of Machine Learning Algorithm (MLA) and Artificial Neural 

Network (ANN) to increase the diagnosis accuracy 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.5 Thesis objective. 

 

1.6.1 Short-Circuit Insulation Failure 

 

The reason for the short-circuit insulation failure is discussed in the section 1.4.1. With these 

facts, the turn failure occurring in the stator winding of the induction motor is made possible. 

To match the condition, artificially faults are induced by removing the insulation by soldering 

and the short-circuit insulation failure detection analysis is performed. Though it is not 

possible to repeat the exact criteria, the reason for the early detection of the minor faults is 

discussed.    
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Generally, in the case of low voltage induction motor, if a minor short-circuit fault occurs, 

such as one-turn short-circuit insulation failure, the motor will not immediately result in a 

fatal electrical breakdown and continue to operate for a certain period even with the presence 

of a fault. However, the thermal deterioration of insulating material progresses gradually and 

certainly increases the number of short-circuit turns and finally the motor breakdown at some 

point of time. Thus, it is necessary and crucial to detect the slight insulation winding failure 

(one-turn) at the early stage to avoid the progression of insulation failure. The diagnostic 

method is proposed to identify the one turn-to-turn short circuit failure in the induction motor. 

The amplitude of the characteristics frequency components was extracted, and the proper 

diagnosis are performed with the help of the Support Vector Machine [84]. This method is 

also suitable for the on-line diagnosis at the industrial site.  

 

This method suffers drawbacks such as a convoluted process of selecting the combinational 

frequency components for diagnosis, and an accuracy rate that varies depending on this 

selection [80]. Hence it does not provide a permanent solution for diagnosing one-turn short-

circuit insulation failures. Thus, to overcome the disadvantages of previous work, the new 

clustering technique is applied to the diagnosis process of short-circuit fault [85]. The 

research work is broadly classified into three distinct categories. First, frequency-spectrum 

analysis of the load current is performed, and characteristic frequency components are 

extracted by a Fast Fourier Transform (FFT). Then, the frequency spectrum distortion ratio 

is derived using these components. Finally, a new diagnostic method is proposed using a 

support vector machine (SVM), and the proposed method is validated.  

 

1.6.2 Broken Rotor Bar Fault 

 

The cause for the broken rotor bar failure is discussed in the section 1.4.2. Since it is not 

possible to create the broken rotor bar fault as like occurring in the industries, in the present 

research work, the broken rotor bar failure is induced artificially by drilling the hole in the 

rotor bar. To match the condition to a certain point, the size of the hole is selected 

appropriately. Though it is not possible to match the exact criteria, the minor fault detection 

is achieved.    
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Still there is no solution and research result that show the defect of identifying the slight 

failure in the broken rotor bar. For this purpose, a probabilistic method is proposed to 

diagnose the broken rotor bar based on the feature distribution, where the amplitude of the 

two characteristics frequency components of load current spectrum is used as features [86]. 

This method will mainly focus on the characteristics frequency components of load current 

spectrum around the rated rotating speed. In this method, two important analysis is carried 

out. Firstly, by the help of the characteristic frequency components, it is possible to trace the 

existence or non-existence of the broken rotor bar. In addition to this, this method has a 

diagnosis result up to 4 broken bars. These results confirm that the proposed method has a 

property of even diagnosing the breakage of 1 broken rotor bar around the rated rotating 

speed. In both steps, clustering is carried out based on Self-Organizing Map (SOM). 

Although several diagnosis methods have been proposed, there is no proper report of 

applying clustering technique to the diagnosis of the rotor bar(s) failure. Hence this method 

has an advantage of using clustering to diagnosis the broken rotor bar.  

 

1.6.3 Bearing Failure 

 

The reason for the bearing failure is discussed in the section 1.4.3. From the case study, it is 

well-known that the fluting is the most common fault occurring in the bearing of the induction 

motor. Since it is not possible to create the exact fault occurring, the bearing failure analysis 

has been performed by creating the fault that almost matches the condition of fluting. The 

scratch and abrasion scratch are induced artificially on the outer raceway of the bearing and 

the failure analysis has been performed. The bearing failure analysis considering hole as the 

faulty is performed for reference. To match the condition to a certain point, the size and 

dimension of the faults are selected appropriately. Though it is not possible to match the exact 

criteria, the minor fault detection is achieved through the present study.    

 

The signal from the load current is analyzed by means of Fast Fourier Transform (FFT). This 

analysis is carried out by characterizing the magnitude of the spectral analysis and to be 

considered as a main feature. To enhance the accuracy, a proper diagnosis is done with the 

help of the Support Vector Machine (SVM). Considering the industrial environments, hole, 

scratch and abrasion scratch have been considered as the faulty factor and the entire diagnosis 
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is performed without considering the rotating speed of the induction motor.  

 

Initially, obtain the raw data from both the healthy and faulty motors under different rotating 

speed conditions. The collected raw data are preprocessed using fast Fourier transform 

analysis (FFT) and gain the frequency domain transformation. This transformation is 

necessary to study the difference in the constitutive frequency components and how they are 

distributed with respect to different bearing conditions. The amplitude of the selected 

frequency components is extracted and considered as features, and are used to train the SVM 

algorithm. The architecture gets varied depending on the application. Apply the proposed 

SVM model to diagnose the bearing fault considering industrial conditions. For validation, 

the SVM-based fault diagnosis method is tested for various fault analysis.  

 

This method of scrutiny is employed for identifying the following bearing fault analysis. In 

case of hole, the following analysis is performed to study the fault difference in detail; 

identifying the distinct types of hole with respect to healthy motor [87]-[89], multiple hole 

analysis and localization of hole [90]. In practical point of view, scratch has the highest 

probability than hole, so the following bearing fault analysis is performed to identify the 

bearing fault in case of scratch; identification of scratches with respect to healthy motor [91]-

[92], multiple scratches [90] and orientation of scratch [92]. Additionally, analysis has been 

performed considering both the hole and scratch, and identifications are done by 

differentiating both the faulty factor mutually and with the healthy motor [93]. Specially, 

abrasion scratch analysis is performed and found to have an impact on the bearing fault as 

like hole and scratch [94].  

 

1.7 Thesis Outline 

 

The organization of the thesis is as follows: 

 

Chapter 2 explains about the diagnosis method proposed to detect the minor short-circuit 

fault using FFT analysis and SVM. Additionally, the frequency spectrum distortion ratio is 

derived to increase the accuracy rate of the proposed method.  
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Chapter 3 deals with the broken rotor bar fault. The analysis is performed using the FFT and 

the diagnosis is carried out using the clustering technique SOM. Based on the analyzes, the 

presence or absence of the broken rotor bar fault is detected and identifying the number of 

broken rotor bar is also made possible.  

 

Chapter 4 is categorized to explain the bearing fault diagnosis that is performed considering 

hole as the faulty factor. The entire diagnosis is performed using SVM. The amplitude results 

from the spectral analysis is used to train the algorithm. The failure analysis is accomplished 

in relation to multiple hole analysis, localization of hole and identification of hole.  

 

Chapter 5 is devoted to the analysis on the bearing fault diagnosis that is accomplished 

considering scratch as the faulty factor. Considering the fault that has the highest probability 

of occurrence, the failure analysis is performed in terms of identification of scratch, multiple 

scratch analysis and orientation of scratches. The entire diagnosis is performed using SVM 

and it is trained using the amplitude that results from the spectral analysis. 

 

Chapter 6 deals with the compound analysis that has been performed inducing hole and 

scratch on the outer raceway of the bearing. A comparison is made between compound fault 

analysis and single fault analysis. The fault defects study is achieved using FFT and SVM.  

 

Chapter 7 presents a detailed study regarding the common fault diagnosis method and 

multiple fault diagnosis system. A common diagnosis method is proposed to detect the short-

circuit insulation failure, broken rotor bar fault and the bearing failure. Fault detection is 

achieved in a single method to any kind of failure occurring in the induction motor. The 

application of the proposed method is extended to identify the multiple faults occurring in 

the induction motor. The bearing fault and broken rotor bar failure is induced simultaneously, 

and the diagnosis is performed.   
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Chapter 8 presents the comparison results of diagnosis result among various machine 

learning algorithm and artificial neural network methods. The bearing fault has been selected 

for this case study. This chapter finds its usefulness in selecting the algorithm based on the 

objective and the application.  

 

Chapter 9 concludes the remark of the thesis. These include the accomplished targets, 

limitation of the study as well as unaccomplished but interesting tasks that are related to this 

study and have been listed for consideration as future research works.  

 

The thesis ends with a list of the publications made during the study. 
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Chapter 2  

Diagnosis of Short-Circuit Insulation 

Failure in Stator Winding 
 

2.1 Introduction 

 

The short-circuit fault in stator winding is mainly due to the damage or deterioration of 

electrical insulation. Till now it was found that more than two-turn short-circuit fault could 

be diagnosed and still one-turn short-circuit fault could not be diagnosed properly. It is well 

known fact, at motor running condition once the fault begins with the one-turn and if it 

continues to proceed further if the fault is not identified. The one-turn short-circuit fault is 

initiating the stator winding insulation failure, which may lead to the breakdown of the entire 

system.  

 

Thus, in the present study, the solution to identify the one-turn short-circuit fault is performed. 

The analysis is carried out using FFT and the diagnosis by Support Vector Machine (SVM).  

 

2.2 One-Turn Fault Analysis 

 

In this section, the details regarding the artificially induced short-circuit fault and the 

experimental setup is discussed.  

 

2.2.1 Introduction of artificial fault 

 

Three-phase induction motor (2.2 kW, 200 V, 8.9 A, 1680 min-1, 4 poles) is used as a 

specimen. The stator winding of the motor is a double star connection as shown in Figure 

2.1(a). The number of turns is 120 for each phase winding. The number of slots is 36. It is a 

time consuming and costly work to collect the motors with one turn-to-turn insulation failure 

in their windings, which occurred during operation at the site. Thus, in the present study, one 

turn-to-turn insulation failure was artificially introduced to a U-phase stator winding of a new 
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motor as shown in Figure 2.1(b).  

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 Stator winding and fault configuration. 
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2.2.2 Experimental Procedures 

 

Figure 2.2 shows the experimental setup. Load currents of the stator windings and the 

voltages were measured with current probes (HIOKI 9695-02) and voltage probes (HIOKI 

9666), respectively. The rotating speed was monitored with a speed indicator (Ono Sokki HT-

5500). Outputs from the sensors were acquired simultaneously with a measurement system 

developed by the author. Also, the obtained output signals from the various sensors were 

transferred to a desktop computer via measurement equipment and recorded. The 

measurement equipment has seven input terminals and seven A/D converters. The sampling 

time was 10 μs and the data recording length was 217 per channel. Thus, the frequency 

resolution was about 0.76 Hz. In the present study, 7 channels were used to record 3 phase 

currents, 3 line-to-line voltages and rotating speed. Data acquisition was triggered by a timer 

for every 30 s and the time required for data transfer of 7 channels was less than 20 s.  

 

A healthy motor was also tested for reference before the artificial one turn-to-turn insulation 

failure was made. The rotating speed of the induction motor was varied by changing the load 

so that the value of instantaneous load current lay between 8 and 12 A. Experiments were 

also carried out under no load condition (1800 min-1). During the experiment, maintaining 

the rotating speed of the induction motor as constant find difficult and always a variation 

about 2-3 min-1 in the rotating speed was observed. Presumably, 83 and 89 measurements 

were carried out for motors with healthy winding and one turn-to-turn insulation failure 

winding, respectively. The frequency of the power source was 60 Hz. 
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Figure 2.2 Experimental setup of proposed system. 

 

2.3 Frequency Spectrum Analysis 

 

In this section, the amplitudes of characteristic frequency components of load current are 

extracted and considered as features. These features are extracted by close analysis of 

frequency spectrum and its dependence on load current variation.  

 

2.3.1 Frequency Spectrum of Load Current 

 

Fast Fourier transform (FFT) Analysis was performed to the data of healthy and one-turn 

insulation failure windings.  

 

Figures 2.3 and 2.4 show frequency spectrum of the load current flowing into healthy and 

one turn-to-turn insulation failure windings under no load condition, respectively. Amplitude 

in the vertical axis of these figures is normalized so that the maximum value is 0 dB. No 

remarkable difference is confirmed in frequency spectra between healthy and one turn-to-

turn insulation failure conditions. Diagnosis of turn-to-turn insulation failure is impossible 

by the load current spectrum obtained under no load condition. 
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Figure 2.3 Spectrum of load current for healthy stator winding under no load 

condition. 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

Figure 2.4 Spectrum of load current for one-turn insulation failure stator winding 

under no load condition. 
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Examples of frequency spectra of load currents under the load condition are shown in Figures 

2.5 and 2.6 for healthy and one-turn insulation failure conditions, respectively.  

 

The difference in magnitude is recognized between healthy and one turn-to-turn failure 

windings at some frequency components. The peak amplitudes are observed at the integral 

multiple of frequency 30 Hz, which corresponds to the ratio of power frequency (60 Hz) to 

the number of pole pairs (2). 

 

                               A =
𝑃𝑓

𝑃
                              (2.1) 

 

where 𝑃𝑓 stands for the power frequency and 𝑃 stands for the number of pole pairs. In the 

present study, the number of poles is 4.  

 

2.3.2 Determination of Features 

 

To quantify the difference in frequency spectra shown in Figures 2.5 and 2.6, absolute value 

for the difference in amplitude is calculated. Figure 2.7 shows the result, where the average 

of 80 frequency spectra was used for each winding condition considering a temporal variation 

of frequency spectrum under load condition. Amplitude difference larger than 15 dB is 

recognized between healthy and one-turn insulation failure windings at some of the 

frequencies of an integral multiple of 30 Hz; 30, 90, 120, 150, 240, 270, 330, 360, 390, 450 

and 480 Hz. The amplitude of these frequencies is considered as features and the diagnosis 

is carried out. 
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Figure 2.5 Spectrum of load current for healthy stator winding under load 

condition. 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

Figure 2.6 Spectrum of load current for one-turn insulation failure stator winding 

under load condition. 
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Figure 2.7 Absolute amplitude difference between Figures 2.5 and 2.6. 

 

Load current dependence of the magnitude of these frequency components is shown in 

Figures 2.8 and 2.9 for healthy and one turn-to-turn insulation failure windings, respectively. 

In the case of healthy winding, the magnitude decreases with current. The relation between 

the magnitude of frequency components and the load current is complicated for one-turn 

insulation failure winding. Since load current is subjected to change at the site depending on 

load, it is necessary to select appropriate frequency components for diagnosis. These selected 

frequency components should have a larger difference when compared with two winding 

conditions regardless of the load current.  

 

The amplitude distribution of the frequency components for a healthy winding obtained by 

83 measurements is shown in Figure 2.10. Similarly, that of one-turn insulation failure 

winding acquired by 89 measurements is shown in Figure 2.11.   
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Figure 2.8 Magnitude of frequency components in the case of healthy winding. 
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Figure 2.9 Magnitude of frequency components in case of one turn-to-turn 

insulation failure winding. 
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Figure 2.10 Amplitude distribution of characteristic frequency component for 

healthy winding. Horizontal axis stands for 1:30Hz, 2:90Hz, 3:120Hz, 

4:150Hz, 5:240Hz, 6:270Hz, 7:330Hz, 8:360Hz, 9:390Hz, 10:450Hz, and 

11:480Hz. 

 

  

 

 

 

 

 

 

 

 

 

 

 

  

Figure 2.11 Amplitude distribution of characteristic frequency component for one-

turn insulation failure winding. Horizontal axis stands for 1:30Hz, 2:90Hz, 

3:120Hz, 4:150Hz, 5:240Hz, 6:270Hz, 7:330Hz, 8:360Hz, 9:390Hz, 

10:450Hz, and 11:480Hz. 
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In the present study, 90, 120 and 150 Hz are selected as characteristic frequency components. 

The reasons are stated as follows:  

 Amplitude is large when compared with those of higher frequency components. 

 Amplitude distributions of healthy and one turn-to-turn insulation failure windings 

do not overlap each other. 

 Amplitude difference between the two-winding condition is about 10 dB or larger. 

 

2.4 Diagnosis using SVM 

 

2.4.1 Brief Explanation of SVM 

 

In this section, the use of SVM for detecting short-circuit failures is discussed. SVM is a 

pattern recognition method that has been used to classify objects into categories. SVM 

belongs to the group of linear classification methods but can also perform non-linear 

classification. This is done using a kernel function, mapping high input operators with high 

dimensional features. SVM uses soft margins and hard margins. The SVM type and its usage 

are determined by the linearity condition. This study applied non-linear classification so that 

the soft margin matched the prescribed condition.  

 

In Soft Margin SVM, cost parameter C is introduced, which controls the trade-off between 

maximizing the margin and minimizing the training error. If the value of C is lower, it tends 

to emphasize the margin, ignoring the outliers in the training data. Contrarily, larger C value 

tends to overfit the training data. Besides, Radial Basis Function kernel is also used 

commonly as gamma parameter γ and the boundary decision is established. Smaller γ value 

leads to a simple decision boundary and vice-versa. Thus, both the cost parameter and gamma 

parameter play a significant role and their tuning are accomplished.  

 

In the present work, initially data were divided into eight groups, the first seven of which 

provided training data. Data from group eight were used for evaluation. By alternating the 

groups, seven group diagnosis accuracy rates were obtained, and the average was calculated. 

The process was repeated for the different values of C and γ.  
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Figure 2.12 Accuracy variation between cost parameter and gamma parameter. 

 

Figure 2.12 shows the two-dimensional map plotted against the accuracy rate variation 

involving cost parameter C and gamma parameter γ. The higher accuracy rate is obtained in 

the deep blue color portion by varying the values of C and γ. Table 2.1 summarizes the SVM 

specification handled for present study of short-circuit failure diagnosis. Programming was 

done using R language software and python. The accuracy rate was derived as follows: 

 

          Accuracy rate (%) =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑒𝑑 𝑝𝑟𝑜𝑝𝑒𝑟𝑙𝑦

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑢𝑠𝑒𝑑 𝑓𝑜𝑟 𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑖𝑠
X100     (2.2) 

 

Table 2.1 SVM description 

 

 

 

 

 

 

 

 

 

 

Type of SVM Soft Margin SVM 

Kernel Radial Basis Function Kernel 

Gamma parameter 2-4 

Cost parameter 2-1 

Number of support Vectors 8 

Number of classes 2 
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Gamma parameter γ
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2.4.2 Diagnosis result 

 

In the current study, both 83 and 89 sets of data were used as training data for healthy and 

one turn-to-turn insulation failure windings, respectively. Likewise, 60 and 110 sets of data 

were used as verification data for each winding condition, respectively. In this action, a datum 

set consists of 6 components; amplitude of the healthy and one-turn insulation failure winding 

conditions of 90, 120 and 150 Hz components. A verification datum was evaluated with a 

model constructed beforehand by using training data and then classified into one of the two 

specified categories of winding condition (healthy or one-turn insulation failure). 

 

Results of diagnosis for 90, 120 and 150 Hz components are shown in Table 2.2. A yellow-

colored cell means the case where the precise diagnosis is performed. The accuracy rate is 

100 % (60/60) for the case of healthy winding and 91.8 % (101/110) for one-turn insulation 

failure windings. The overall accuracy rate is 94.7 % (161/170). This value is practically 

acceptable. 

 

Table 2.2 Results of diagnosis for 90, 120 and 150Hz components. 

 

 

The diagnosis was also performed by using amplitude of other combinational frequency 

components as features, resulting a little lower accuracy rate as shown in Table 2.3. Inherently 

it is clear that, usage of 90, 120 and 150Hz frequency components results in the best accuracy 

rate. This may be attributed to the reason described in 2.3.2.  

 

This method suffers from the major drawbacks such as a convoluted process of selecting the 

combinational frequency components for diagnosis, and an accuracy rate that varies 

 
Winding condition of target motor 

healthy one-turn insulation failure 

Diagnosis Result 
healthy 60 9 

one-turn insulation failure 0 101 

Accuracy rate (%) 100 91.8 

Overall accuracy rate (%) 94.7 
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depending on this selection. Hence it does not provide a permanent solution for diagnosing 

one-turn short-circuit insulation failures. 

 

Table 2.3 Diagnosis results for other frequency components. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.5 Diagnosis using Distortion Ratio 

 

To overcome the disadvantages of previous work, the new clustering technique is applied to 

the diagnosis process of short-circuit fault. The presently carried research is broadly 

classified into three distinct categories. First, frequency-spectrum analysis of the load current 

is performed, and characteristic frequency components are extracted. Then, the distortion 

ratio is derived using these components. Finally, diagnosis is carried out using a support 

vector machine (SVM). 

 

2.5.1 Discussion of the Frequency Spectrum 

 

The load tests are performed on both two healthy and one-turn short-circuit insulation failure 

windings. Initially, FFT analysis for the measured load current is carried out continuously for 

current waveforms and the results are recorded. The examples of frequency-spectrum 

Characteristic frequency components (Hz) Overall accuracy rate (%) 

90, 120, 150, 330, 360 92.94 

30, 90, 120, 150, 240, 270, 330, 360, 390, 450, 480 92.94 

90, 120, 150, 270, 330, 360 92.35 

90, 120, 270 90.59 

30, 150, 270 90.00 

330, 360 90.00 

30, 90, 120, 150, 330, 360 89.09 

30, 330, 360 88.82 

270, 330, 360 88.82 

330, 360, 480 88.24 
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analysis on the U phase of a stator winding for healthy motor 1, healthy motor 2 and one-turn 

short-circuit failure motor are illustrated in Figures 2.13 to 2.15, respectively.  

 

The amplitude of the vertical axis is normalized to take 0 dB as its maximum value. A 

remarkable difference in magnitude is observed between these windings (two healthy and 

faulty winding) at certain frequency components due to the occurrence of the short-circuit 

fault.  

 

The phenomenon for the appearance of signals at the integral multiple of 30 Hz and their 

mechanism is discussed below. Generally, asymmetry is created when the short-circuit fault 

occurs and leads to the generation of two opposite direction MMF (±f) inside the stator 

winding. Because of magnetomotive force, the following current harmonics (k/p±1)*f is 

generated in the rotor [1], where k=1, 2, 3 takes the sequential value and p represents the 

number of pole pairs. Furthermore, due to the interaction caused between stator and rotor, the 

circulating current harmonics (k/p±1)*f of the rotor affect the stator of the induction motor 

just like the case of the broken rotor bar [2]-[3]. Therefore, it is considered that the current 

harmonics with an integer multiple frequencies f/p are generated in the stator current. In the 

case of low load that is a nearly no-load condition, the current harmonics flowing into the 

rotor part are very small and the stator is barely affected. In this condition, it is hard to 

measure the f/p signals in the load current. Indeed, the signals calculated at the low load 

condition is hardly measured during the experiment and this circumstance turns out to be the 

mechanism to support the appearance of the signals at the integral multiples of 30 Hz.   

 

An amplitude difference larger than 15 dB is recognized for some frequency components, 

namely 30, 90, 120, 150, 210, 270, 330, 360, 390, 450, and 480 Hz. Since fluctuation often 

occurs in the frequency spectrum, it is better to choose multiple frequency components. Thus, 

attention should be paid to these eleven frequencies to identify the one-turn short-circuit 

insulation failure of the stator winding. 
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Figure 2.13 Frequency-spectrum analysis of healthy winding 1. 

 

 

Figure 2.14 Frequency-spectrum analysis of healthy winding 2. 
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Figure 2.15 Frequency-spectrum analysis of one-turn short-circuit insulation 

failure winding. 

 

 

2.5.2 Introduction of Distortion Ratio 

 

Generally, the distortion ratio is defined as the ratio of the sum of the RMS amplitude of 

higher harmonic frequencies to the RMS amplitude of the fundamental frequency. It is 

defined as 

 

                           D =
√∑ 𝐴𝑖

2
𝑖

𝐴𝑓
                               (2.3) 

 

where Ai and Af stand for the RMS amplitudes of the harmonic and fundamental frequencies, 

respectively. In the present study, the RMS amplitude of eleven characteristic-frequency 

components is used instead of harmonics. Thus, the distortion ratio is defined as the ratio of 

the sum of the RMS amplitudes at selected frequencies to the RMS amplitude of the 

fundamental frequency. The fundamental frequency is 60 Hz. Therefore, the distortion ratio 
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of the load current is defined as 

 

                         𝐷 =
√𝐴30

2 +𝐴90
2 + ⋯+𝐴480

2

𝐴60
                             (2.4) 

 

The amplitude of frequency spectrum changes at all time. The result of distortion ratio shows 

less amount of variation between the amplitude. Adding further advantages, irrespective of 

each phase current, the features of 8th order frequency can be reduced to one feature. Thus, 

the handling of the feature is made easy and the detection can be done flawlessly. 

 

2.5.3 Results of Distortion Ratio 

 

Figures 2.16 and 2.17 show the distortion ratios of three-phases (Du, Dv, and Dw) and the 

amplitudes for load currents of the healthy stator winding, respectively. It clarifies the fact 

that the amplitude of the load current between each phase varies intensely, whereas the 

distortion ratio has fewer changes between each phase.  

 

Similarly, Figures 2.18 and 2.19 show the distortion ratios of three-phases (Du, Dv, and Dw) 

and amplitudes of load currents for the one-turn short-circuit insulation failure stator winding, 

respectively. The result obtained is like that of the healthy winding. That is, the amplitude of 

load current between each phase varies intensely, whereas the distortion ratio has fewer 

changes between each phase. 
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Figure 2.16 Three phase-distortion ratios of load current (healthy). 

Figure 2.17 Amplitude of the load current (healthy). 

 

 

 

 

 

 



Diagnosis of Short-Circuit Insulation Failure in Stator Winding 

 

41 

 

 

 

 

 

 

 

 

 

Figure 2.18 Three phase-distortion ratios of the load current (one-turn short-

circuit insulation failure winding). 

 

 

 

 

  

Figure 2.19 Amplitude of the load current (one-turn short-circuit insulation failure 

winding). 
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An interesting fact is that the distortion ratio of each phase takes nearly the same range. 

Moreover, a higher magnitude difference is observed between the distortion ratios of the 

healthy winding and the one-turn short-circuit insulation failure winding. These magnitude 

differences will enable the distortion ratio to discriminate healthy and one-turn short-circuit 

windings. The obtained distortion ratio is not influenced by the abrupt change of load current. 

The fault is introduced to the U-phase of the stator winding, but the distortion ratios of V and 

W-phase also similar changes as like U-phase. Thus, irrespective of the fault phase, the 

detection can be achieved by recording the data of any phase. In short, any one phase current 

is enough to detect the one-turn short-circuit insulation failure. This reduce the cost and 

processing time. Hence, this is a core feature of the present system and implies the advantages 

of using distortion ratio. 

 

Figure 2.20 Three-dimensional distortion-ratio analysis (Du, Dv, Dw). 

 

For easy understanding, 2.20 is plotted, and it shows the three-dimensional distortion ratios 

of the three classes of motors (two healthy, and one turn failure motor). One of the interesting 

notes observed is that the condition of the motor is linearly distributed even when the load 

current changes discretely. The data of two healthy motors and one-turn short-circuit 

insulation failure motor are located according to their own classes. By representing the result 
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of distortion ratios three-dimensionally, the winding condition can be visualized and 

identified conveniently. 

 

2.5.4 Diagnosis Result using SVM 

 

Diagnosis based on SVM is performed using the distortion ratio of the load current, which is 

derived from the amplitudes at characteristic frequencies. This diagnosis is carried out by 

considering the distortion ratio of three-phases (Du, Dv, Dw). For both the healthy and one-

turn short-circuit winding, the datum consists of the amplitude of the distortion ratio.  

 

In the present study, 90 (healthy 1: 60, healthy 2: 30), and 111 (1-turn short-circuit) datasets 

are used to train the SVM as healthy and faulty windings, respectively. Newly measured 107 

(healthy 1: 24, healthy 2: 83), and 89 (1-turn short-circuit) datasets are used as diagnostic 

data to validate the method for each respective winding condition.  

 

The yellow cells indicate where the proper diagnosis is performed. The accuracy rates for 

individual winding conditions, as well as the total accuracy rate, are 100%, as shown in Table 

2.4. High accuracy rate can be obtained, even for one-turn short-circuit insulation failure in 

the stator winding of an induction motor. The diagnosis is performed using the distortion ratio 

without considering the frequency components. Hence, the reliability of the proposed 

diagnostic system is high. Thus, the drawbacks of selecting the frequency components are 

eliminated, and high accuracy rate is obtained.  
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Table 2.4 Three-phase diagnosis results. 

 

 

 

 

 

 

 

 

 

2.6 Summary 

 

The method to diagnose the minor inter-turn short-circuit fault (one-turn) is proposed and the 

diagnosis results are discussed. The analysis is carried out using FFT of load current, 

distortion ratio and finally the diagnosis using SVM. Till now, the two-turn short-circuit 

insulation failure detection is made possible using the FFT analysis and SVM. In the present 

study, one-turn short-circuit insulation failure detection is made possible employing the 

distortion ratio of load current, which uses the feature of the selected specific characteristic 

frequency components. From the diagnostic result, the accuracy of different winding 

conditions is high (100%). Thus, the method is beneficial for diagnosing one-turn short-

circuit insulation failure in the stator winding of induction motors and can be considered 

effective.  

 Data for evaluation 

Healthy one-turn insulation failure 

Diagnosis Result Healthy 107/107 0 

one-turn insulation failure 0 89/89 

Accuracy rate (%) 100 100 

Total accuracy rate (%) 100 
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Chapter 3  

Detection of Broken Rotor Bar Fault 

using Clustering Techniques 
 

3.1 Introduction 

 

Frequent starting and stopping of motors will cause thermal fatigue, which may cause 

breakage of rotor bars and/or end rings of cage induction motor. Mechanical vibration in 

passing rail junctures may result in rotor bar failure of motors installed in train. Failure in the 

rotor cages of induction motors such as end-rings and rotor bars are one of the main 

mechanical failure in the motor drive systems, which stands next to the bearing failure. Thus, 

identifying the broken rotor bar fault also must be considered and diagnosis should be carried 

out. Although several diagnosis methods have been proposed, there is no proper report of 

applying clustering technique to the diagnosis of the rotor bar(s) failure.  

 

In the present study, the broken rotor bar fault diagnosis is carried out by focusing the several 

characteristic frequency components of load current spectrum around the rated rotating speed. 

In the first step, the existence or nonexistence of broken rotor bars is confirmed by using 

characteristic frequency components, whose amplitude changes greatly when rotor bars are 

broken. After diagnosing the rotor bar breakage, the next step is performed to identify the 

number of broken bars. Other characteristic frequency components are adopted, whose 

amplitude changes monotonically with the number of broken bar. In both steps, clustering is 

carried out based on Self-Organizing Map (SOM). The expediency of the proposed method 

is verified by some experiments.  
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3.2 Measurement of Load Current 

 

Three-phase induction motors (2.2 kW, 200 V, 8.6 A, 1705 min−1, 4 poles) were used as a 

specimen. Experimental setup is shown in Figure 3.1. The powder brake was connected to a 

motor and act as a load. Phase currents (load currents) and line-to-line voltages were 

measured at a given rotating speed. Current and voltage were measured with current probes 

(HIOKI 9695-02) and voltage probes (HIOKI 9666), respectively. Rotating speed was also 

monitored with a speed indicator (Ono Sokki HT-5500). 

 

Output signals of the sensors were acquired simultaneously with a measurement system. It 

has eight BNC input terminals and A/D converters so that signals are transferred to a 

computer and recorded. The sampling time is set to 10 µs and the data recording length is 217 

per channel. Thus, the frequency resolution is about 0.76 Hz. In the present study, 7 channels 

(3 current, 3 voltage and rotating speed) were used. Data acquisition was trigged by a timer 

for every 30 s and time required for data transfer of 7 channels was less than 20s. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Experimental setup. 
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Figure 3.2 Production of breakage in rotor bar. 

 

c) 4 broken bars 

 

b) 2 broken bars 

 

a) 1 broken bar 
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Figure 3.3 Sample specimen.    a 

 

The 1, 2 or 4 rotor bar(s) of a healthy motor were broken by drilling holes in the bar(s). In 

the case of plural breakage bars, adjacent bars were broken. The artificially induced breakage 

in the rotor bar is shown in Figure 3.2. The sample image of 1 broken rotor bar is shown in 

Figure 3.3. 

 

3.3 Frequency Analysis of Load Current 

 

FFT analysis of U-phase load currents was performed for a healthy motor and motors with 

broken bars. As an example of the results, frequency spectrum of the healthy motor is shown 

in Figure 3.4 at the rotating speed of 1700 min−1. At the same rotation speed, frequency 

spectrum of motors with 1, 2 and 4 broken bars are shown in Figures 3.5 to 3.7, respectively. 

The amplitude in the vertical axis of these figures is normalized so that the maximum value 

is unit. Arrows in Figures 3.5 to 3.7 show the characteristic frequencies extracted for 

diagnosis. The frequency of the power source is 60 Hz. 
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Figure 3.4 Frequency spectrum of motor with healthy bar. 

 

 

 

      

 

  

 

 

 

 

 

 

 

 

 

Figure 3.5 Frequency spectrum of motor with 1 broken bar. 
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Figure 3.6 Frequency spectrum of motor with 2 broken bars. 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

Figure 3.7 Frequency spectrum of motor with 4 broken bars. 
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The sidebands of a frequency modulated signal extend out either side of the main carrier and 

cause the bandwidth of the overall signal to increase well beyond that of the unmodulated 

carrier. As the modulation of the carrier varies, so do the sidebands and hence the bandwidth 

and overall spectrum of the signal. Whenever a carrier is modulated by an information signal, 

new signals at different frequencies are generated as part of the process. These new 

frequencies, which are called side frequencies, or sidebands, occur in the frequency spectrum 

directly above and below the carrier frequency. More specifically, the sidebands occur at 

frequencies that are the sum and difference of the carrier and modulating frequencies.  

 

Thus, it is reported that two sideband components appear below and above the power 

frequency in frequency spectrum of load current. Frequencies of sideband components are 

given by Equation (3.1). 

 

                           𝑓𝑏 = (1 ± 2𝑠)𝑓                           (3.1) 

 

s and f denote the slip and frequency of power source, respectively [1]. The motor load inertia 

affects the magnitude of these side bands. Other spectral components that can be observed in 

the stator line current are given by Equation (3.2) 

 

                          𝑓𝑖 = {
𝑘

𝑝
(1 − 𝑠) ± 𝑠} 𝑓                       (3.2) 

 

where 𝑓𝑖 is the detectable broken bar frequencies, p is the number of pole pairs and k is the 

harmonics index (k = 1, 2, 3, …….), respectively [2]. 

 

Frequencies of sideband components defined by Equation (3.1) are calculated as 53.3 Hz and 

66.7 Hz for the rotating speed of 1700 min−1. The amplitude of the sideband frequency 

components increases gradually with the increase in the number of broken bars. A little 

difference is recognized in the amplitude between the healthy motor and the motor with one 

broken bar. 
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Table 3.1 summarizes the frequencies calculated from Equation (3.2) for k values up to 10. 

The careful analysis of Figures 3.4 to 3.7 reveals that amplitude at some of the frequencies 

changes greatly depending on the rotor bar condition.  

 

 

Table 3.1 Analyzed Frequency Components. 

 

 

 

 

 

 

 

 

 

 

 

 

 

To visualize the change in the amplitude, Figure 3.8 is drawn. It shows the absolute amplitude 

of specified frequency components given in Table 3.1 under four broken rotor bar condition. 

Each mark is the mean value over 40 sets of measurement. The vertical axis is converted so 

that -20 dB and -100 dB in Figures 3.4 to 3.7 become 1.0 and 0.0 in Figure 3.8, respectively. 

The calculated lower frequency value is 60 Hz for k value of 2 in Equation (3.2), which is 

not suitable for evaluation because its amplitude for the frequency 60 Hz is unity regardless 

of the broken rotor bar condition. Thus, the frequency 66.7 Hz, higher frequency calculated 

by Equation (3.1) is used instead. Red marks and polygonal lines in Figure 3.8 are the 

characteristics of extracted frequency components for diagnosis. 

 

The amplitude of the frequency components given by Equation (3.1) changes greatly with 

the number of broken rotor bars more than 2. These two frequency components are the 

features suitable to fix the number of broken rotor bar. But it is not appropriate to detect one 

broken rotor bar due to small difference observed in amplitude between healthy and one 

broken rotor bar conditions. On the contrary, some frequency components given by Equation 

k 

Frequency[Hz] 

- + 

1 25.0 31.7 

2 53.3 60.0 

3 81.7 88.3 

4 110.0 116.7 

5 138.3 145.0 

6 166.7 173.3 

7 195.0 201.7 

8 223.0 230.0 

9 251.7 258.3 

10 280.0 286.7 
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(3.2) show the momentous change in amplitude under one broken rotor bar condition 

compared with healthy state. 

 

Additionally, to find the frequency components suitable to detect one broken bar failure, 

difference in amplitude of the frequency components between the healthy motor and the 

motor with one broken bar is analyzed and the results are shown in Figure 3.9. For example, 

in the case of k=5, 5- and 5+ stand for the lower and the higher frequencies according to 

Equation (3.2), respectively. The large amount of changes is recognized in the frequency 

components of 25.0 Hz (1-), 145.0 Hz (5+) and 258.3 Hz (9+). But their amplitude changes 

very slightly when the number of broken rotor bars increases from 2 to 4. On the contrary, 

amplitudes of 53.3 Hz (2-), 66.7 Hz (2+) and 110.0 Hz (4-) Hz components increases 

gradually with increase in the number of broken rotor bars more than two. 
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Figure 3.8 The changes of the amplitude of harmonic component. 
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Figure 3.9 Amount of change of harmonic component from healthy condition to 1 

broken bar condition (1700 min-1). 

 

 

3.4 Diagnosis using Clustering 

 

The diagnosis is carried out using the clustering techniques employing the amplitude of the 

frequency components.  

 

3.4.1 Method of Diagnosis 

 

To proceed the diagnosis, initially two conditions are fixed. The two criteria necessary to 

diagnose the condition of rotor bar breakage are; to diagnose the existence or nonexistence 

of broken rotor bar, in other words to diagnose whether the target motor is healthy or not. 

The other criterion is applied to fix the number of broken bars. 

 

In the present study, frequency components of 25.0, 145.0 and 258.3 Hz are suitable for the 

former criterion because their amplitude changes remarkably by introducing breakage in one 

rotor bar. As the latter criterion, frequency components of 53.3, 66.7 and 110.0 Hz are 

recommended because their amplitude increase gradually with increase in the number of 

broken rotor bars. 
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As a conclusion of analysis, two-step diagnosis method is constructed. Figure 3.10 shows the 

flowchart of diagnosis method. In the first step, diagnosis is carried out to confirm the 

presence or absence of broken rotor bar. As the second step of confirmation, the number of 

broken bar is fixed. Finally, clustering based on Self-Organizing Map (SOM) is used in both 

steps [3]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10 Flow chart of diagnosis.   a 

 

3.4.2 Brief Explanation of SOM 

 

SOM is one of neural network models based on unsupervised learning. Its algorithm provides 

a topology preserving mapping from the high dimensional space to map units. Map is easily 

visualized because it usually forms a two-dimensional hexagonal or rectangular lattice. The 

mapping preserves the relative distance between the points, wherein points close to each other 

First Step 

Second Step 

SOM 
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in the input space are mapped nearby units. SOM operates in two modes: training and 

mapping. Training mode builds the map using input data (vector quantization), while 

mapping mode automatically classifies a new input vector. 

 

SOM has been used in various fields for intuitive understanding and/or exploratory analysis 

of classification of multi-dimensional data. For example, study on analytic technology to 

prevent clinical accidents in hospitals and nursing facilities, research of application to 

judgement technique of unique manipulations in operative procedure have been reported [3]. 

 

k-means method is also one of the clustering methods based on unsupervised learning. 

Compared with this method, SOM has an advantage of lower false recognition rate. 

Considering these merits, SOM is used for clustering. As described above, SOM transforms 

multi-dimensional features to a two-dimensional map. With the use of SOM, the change in 

amplitude for more than three characteristic frequency components can be recognized when 

rotor bars are broken and the relationship among the data can be visualized in a two-

dimensional map. This process of using SOM results in easy diagnosis of failure in rotor bar. 

 

3.5 Verification 

 

Using the data obtained at two rotating speeds (1700 and 1710 min−1), the ascendency of the 

proposal diagnosis method is verified. In addition to the above verification, the experiment 

is also done at the rotating speed of 1750 min−1. This is to evaluate the ability and accuracy 

of the proposed method to other rotational speed far away from the rated one (1705 min−1). 

 

3.5.1 In case of 1700 min-1 

 

SOM is created with SOM PAK [4]-[5] obtained at the rotating speed of 1700 min−1, 

respectively. Above mentioned data sets have three-dimensional data vectors which consist 

of amplitude of three frequency components: 25.0, 145.0 and 258.3 Hz. A map forms 

hexagonal lattice with vertical 12 nodes and horizontal 10 nodes. The iteration of learning is 

10,000 and learning coefficient is 0.2. 
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At first, SOM was created to classify the presence or absence of broken rotor bar. The 

resulting map created from the three-dimensional vectors of 25.0, 145.0 and 258.3 Hz are 

shown in Figure 3.11. The gradation of colors in map denotes the distance between the 

adjacent nodes. The darker the color, the longer the distance. “H” and “F” in Figure 3.11 

stand for healthy and broken bar failure, respectively. It is understood that “H” and “F” are 

clearly separated from each other in two regions depending on the existence or nonexistence 

of broken rotor bar. The 80 data in total are divided into two regions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.11 Distribution of bar condition (healthy or bar broken condition, 1700 

min−1). 

 

Further, 60 data collected for the broken rotor bar failure in the first step were used. These 

data sets have three-dimensional data vectors which consist of amplitude of three frequency 

components: 53.3, 66.7 and 110.0 Hz. These data are used for SOM map to classify the 

number of broken rotor bar. Figure 3.12 shows a result of clustering using SOM. For example, 

“1b” in Figure 3.12 stands for datum with one broken bar. There are three regions separated 
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from each other and all data are allocated to one of these regions depending on the number 

of broken bars. By using both the amplitude of specific frequency component and SOM, 

training data are divided precisely according to the rotor bar’s condition.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.12 Distribution of bar condition (1 bar to 4 bar broken condition, 1700 

min−1). 

 

Based on the above results, as the first step of diagnosis, the existence or nonexistence of 

broken rotor bar was diagnosed using a new 20 sets of data for each rotor bar conditions 

(healthy, 1, 2 and 4 broken bar(s)) as evaluation data obtained at the rotating speed of 1700 

min−1. The classification of these 80 data was also carried out. It was confirmed that data of 

a healthy motor were mapped in the healthy region “H” determined by the training process 

and that data of motors with broken rotor bars were assigned to the failure region “F”. The 

results of classification were also perfect. In the second step of diagnosis, using 60 data 

collected during the diagnosis of breakage failure, broken rotor bars were classified. It was 
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confirmed that every datum was allocated to the correct region on the map shown in Figure 

3.12. 

 

3.5.2 In case of 1710 min-1 

 

The similar evaluation was also performed at the rotating speed of 1710 min−1. Thus, to 

extract the frequency components suitable to detect broken bar failure or the number of 

broken rotor bars, the frequency analysis is carried out in the same way as 1700 min−1. As 

the result of this analysis, concerning the amount of changes in frequency components, the 

same tendency is recognized as 1700 min−1. Therefore, same frequency components are also 

used in this rotating speed. The training of SOM and the number of training data are also 

same as that of 1700 min−1. Figures 3.13 and 3.14 show the classification results using SOM. 

As the result of evaluation, the two-step diagnosis method is also perfect as in the case of 

1710 min−1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.13 Distribution of bar condition (healthy or bar broken condition, 1710 

min−1). 
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Figure 3.14 Distribution of bar condition (1 to 4 broken bars, 1710 min−1). 

 

 

3.5.3 In case of 1750 min-1 

 

To verify the ability of applying of this method to other rotating speed, additional analysis 

was carried out at 1750 min−1. This is far from the rated rotating speed (1705 min−1). In this 

case, new features for diagnosis must be extracted from load current spectrum. (20 sets of 

training data for each rotor bar condition (healthy, 1, 2 and 4 broken bar(s)) were used). 

 

Amplitude of the characteristic frequency components (Table 3.1) is analyzed and the results 

are shown in Figure 3.15, which shows the difference in amplitude of the frequency 

components between the healthy motor and the motor with one broken bar.  
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Figure 3.15 The change of harmonic component from healthy condition to 1 bar 

broken condition (1750 min−1). 

 

Unlike Figure 3.9 at the rotating speed of 1700 min−1, only 118.3 Hz (4+) component is 

outstanding. It is adopted as a feature to diagnose the presence or absence of broken rotor bar. 

The threshold value was set to 0.15; considering an amplitude value in between 4+ and others 

in Figure 3.15. When the value of the frequency component 118.3 Hz exceeds 0.15, the 

existence of the broken rotor bars can be confirmed. In the case of 1750 min−1, the accuracy 

of the first step diagnosis for 80 evaluation data is perfect without using SOM. 

 

In the second step of diagnosis which identifies the number of broken rotor bars, amplitude 

of 63.3, 173.3 and 290 Hz components of load current spectrum was used, since the increase 

or decrease is monotonically with the number of broken bar. But the amount of change is 

very small, when compared with the change at the rotating speed of 1700 min−1 and 1710 

min−1. The classification of the number of broken rotor bar was carried out for 60 training 

data diagnosed as breakage failure in the previous step. 
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Figure 3.16 shows results of classification using SOM. Only data of 4 broken bar are clearly 

separated and located in the right lower region of the map, these can be identified easily. But 

it is difficult to identify the data of 1 broken bar from those of 2 broken bars. In other words, 

in the case of 1750 min−1, even though SOM is applied, the detail diagnosis was not enough. 

This is attributed to small difference in features between the two cases due to smaller load 

current and less rotor current flowing into rotor bars at higher rotating speed of 1750 min−1. 

Through verification, it was shown that the frequency components for classification depends 

on the rotating speed. 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

Figure 3.16 Distribution of bar condition (1 bar to 4 bar broken condition, 

1750min−1). 

 

3.6 Summary 

 

A two-step diagnosis method for broken rotor bars in a cage induction motor around rated 

rotating speed is proposed. The presence or absence of broken rotor bars is diagnosed in the 

first step, and the number of broken bars is identified in the second step. Based on the detailed 

1b 1b 1b 1b 1b 1b 2b 2b 

1b 1b 1b 1b 2b 

1b 1b 4b 

1b 2b 2b 4b 

2b 4b 

2b 4b 

2b 2b 2b 4b 4b 

4b 

2b 2b 2b 4b 4b 

2b 2b 4b 4b 4b 



Detection of Broken Rotor Bar Fault using Clustering Techniques 

64 

analysis of the frequency spectrum of load current, characteristic frequency components are 

extracted. The amplitude of characteristic frequency components was used in clustering using 

SOM. 

 

Identifying the difference between the healthy and the faulty motor is made possible using 

the proposed method. The method confirms the possibilities of diagnosing one broken rotor 

bar failure around the rated rotating speed. Even detecting the multiple broken rotor bar is 

achieved up to 4 broken bars. 

 

However, other rotating speeds rather than rated show partial significance result. Further 

examination will be done at other rotating speed and for other type of motors.  
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Chapter 4  

Bearing Failure Diagnosis         

– Single Fault Analysis using Hole 
 

In this chapter, bearing failure diagnosis of single fault is done considering hole as the faulty 

factor. The entire analysis is performed using Fast Fourier Transform (FFT) and the diagnosis 

by the Support Vector Machine (SVM).  

 

4.1 Introduction - Faulty Factor as Hole 

 

As in research point of view, most of the researches are done by considering hole as the faulty 

factor of bearing. However, there is no enough proof with respect to multiple hole analysis 

and explicit hole localization of bearing in the induction motor. Therefore, in the present 

study, considering hole as faulty factor, the following analysis is carried out; hole 

identification, multiple hole analysis and localization of hole analysis. 

 

4.1.1 Localization of Bearing Fault 

 

In general, bearing faults can be categorized as two types. They are distributed faults and 

localized faults [1]. Among the two types of faults, distributed faults can affect the whole 

current spectrum and it is highly difficult to characterize them based on the distinct 

frequencies. On the other hand, localized faults can be easily characterized. Normally, single-

point defects are localized faults and that can be easily classified according to their affected 

element [2]. Single-point defects can be easily created offline. As a case, by drilling the hole 

or making a scratch in the bearing components. In fact, many research works have been 

focusing on the single-point defects, [3]-[10]. In contrast, single-point localized defect can 

be classified as the following: 

 

 Outer raceway defect; 

 Inner raceway defect; 
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 Ball defect; 

 Cage defect. 

 

In the present study, cylindrical roller bearing is used. Among the single-point localized 

defects, outer raceway defect is discussed. The characteristic fault frequency for the outer 

raceway defects is estimated based on the geometric specification of the bearing as illustrated 

in Table 4.1.  

 

Table 4.1 Bearing specification 

 

 

 

 

 

 

 

 

 

 

 

4.1.2 Experimental Setup 

 

The experimental setup is shown in Figure 4.1. The present study was carried out considering 

powder brake as a mechanical load and it was coupled to the induction motor through 

coupling brushes. This powder brake allows the rotating speed of the induction motor to be 

varied. Speeds from 1780 to 1765 min−1 were used in the experiments. The load current was 

measured using current probes (HIOKI 9695-02), and the voltage of the stator winding was 

measured using voltage probes (HIOKI 9666). The rotating speed was monitored using a 

speed indicator (ONOSOKKI HT-5500). The output signal from the sensors were transferred 

to a desktop computer (PC) and recorded simultaneously using a system developed by the 

author with the tolerance error of ±2%. The full-scale measurement of current and voltages 

were 20 A and 300 V, respectively. The measurement system had seven input terminals and 

seven A/D converters. In the current study, the three-phase load currents, three line-to-line 

Bearing specification Dimension 

Inner diameter d 25 mm 

Outer diameter D 52 mm 

Roller diameter Db 13.5 mm 

Cage diameter Dc 38.5 mm 

number of balls Nb 9 
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voltages, and rotational speed were recorded through the seven channels. Frequency analysis 

resolution is determined by the sampling time, and it is preferable to achieve high frequency 

resolution. The sampling time was therefore set at approximately 10 μs, giving a frequency 

resolution of 0.76 Hz and a data recording length of 217 per channel. Data were acquired at 

30 s intervals, triggered by a timer. Data transfer across seven channels took less than 20 s.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 Experimental setup. 

 

4.1.3 Motor Specification 

 

Three-phase induction motors were used as a specimen. The stator winding of the motor is a 

double star connection. The number of turns is 120 for each phase winding. The number of 

slots is 36. The motor specification for carrying out the bearing analysis is illustrated in Table 

4.2. This section is dealing with the identification of hole, multiple hole analysis and 

localization of holes analysis. The holes are made artificially on the outer raceway of the 

bearing of the induction motor.  
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Table 4.2 Motor specification 

 

 

 

 

 

 

 

 

 

 

 

4.2 Identification of Hole 

 

The main work is to identify and differentiate the faulty motor with the healthy motor. In 

addition to this, it is found that, it is even possible to distinguish the two types of faulty motor 

(hole with diameter 0.5 mm and hole with diameter 2 mm). The depth of the hole to the both 

faulty motor is made common as 1 mm. The bearing with the hole 0.5 mm and the hole with 

2 mm is shown in Figure 4.2.  

 

 

 

 

 

 

 

 

Figure 4.2 Bearing with a hole 0.5 mm (left) and hole 2 mm (right). 

 

 

 

 

 

Content Rating 

Rated Power 2.2 [kW] 

Rated Voltage 200 [V] 

Rated Current 8.5[A] 

Rated Speed 1740 [min-1] 

Poles 4 
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Also, the procedure of analysis for diagnosing the bearing fault is shown in Figure 4.3. The 

experimental work begins with the observation made in the healthy motor. After that, the 

healthy bearing was replaced with the faulty bearing of hole 2 mm and performed the same 

analysis which has been carried out for the healthy bearing. Later, once again the experiment 

was carried out by changing the dimension of the hole in the bearing to 0.5 mm and the same 

analysis was performed.  

 

The proposed method is evaluated by means of measuring the stator current. The current 

signals are collected from the healthy motor and two types of the faulty motors. The 

measurement was carried out under the load condition. The rotating speed was adjusted from 

1765 min-1 to 1780 min-1.  

 

 

 

 

 

 

 

 

Figure 4.3 Analysis Procedure. 

 

4.2.1 Frequency Spectrum Analysis 

 

FFT analysis of the U-phase load currents was performed for all the three types of bearing 

conditions. Figures 4.4 to 4.7 show the frequency spectrum analysis carried out for all three-

bearing condition at the rotating speed of 1780 min-1. 283 fundamental wavelengths are used 

in FFT. The amplitude of the vertical axis is normalized so that the maximum level of 

frequency spectrum to be 0 dB. The frequency of the power source is 60 Hz. The difference 

in the amplitude of the frequency component is observed nearby frequencies of 30 Hz and 

90 Hz. An additional comparison is made between two types of faulty motor and inherently 

considerable amplitude difference is observed at the same frequency 30 and 90 Hz. The other 

rotating speeds (1775, 1770 and 1765 min-1) also show a similar difference. Thus, the 

Load current 
analysis

Frequency 
spectral 
analysis

Feature 
extraction

SVM
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amplitude of the frequencies nearby 30 and 90 Hz play a predominant role in identifying the  

condition of the bearing.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4 Spectral analysis for Healthy and Hole 0.5 mm at 1780 min-1. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5 Spectral analysis for Healthy and Hole 2 mm at 1780 min-1. 
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Figure 4.6 Spectral analysis for Hole 0.5 mm and Hole 2 mm at 1780 min-1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7 Spectral analysis for Healthy, Hole 0.5 mm and Hole 2 mm at 1780 

min-1. 
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4.2.2 Feature Distribution 

 

The feature distribution analysis is carried out using the amplitude of the characteristics 

frequency 30 and 90 Hz. A two-dimensional graph is plotted, taking amplitude of 30 Hz 

component along the x-axis and 90 Hz component along the y-axis, respectively. The 

contribution of each feature is evaluated by considering the rotating speed of the induction 

motor. Figures 4.8 to 4.11 show the feature distribution for three types of bearing condition 

(healthy, hole 0.5 mm and hole 2 mm) at 1780, 1775, 1770 and 1765 min-1 rotating speeds. 

Each bearing condition sets its own class of location and hinge on the rotating speed of the 

induction motor. 

 

While taking the individual rotating speed of the induction motor into consideration, the class 

of the faulty motor (Hole of 0.5 mm and 2 mm) are located far away from the healthy motor. 

Another interesting point to be considered is the class of the faulty motor with a hole of 0.5 

mm is located apart from the faulty motor with the hole of 2 mm. Both these holes have the 

own class of location according to the bearing condition and rotating speed. Thus, this method 

is effective in diagnosing the three types of bearing conditions. 
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Figure 4.8 Feature distribution at 1780 min-1. 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9 Feature distribution at 1775 min-1. 
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Figure 4.10 Feature distribution at 1770 min-1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11 Feature distribution at 1765 min-1. 
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In industries, the speed of the induction motor is not constant and said to be varied between 

the certain range. Considering the industrial environment, the analysis is also performed 

without considering the rotating speed of the induction motor and the result is shown in 

Figure 4.12. The overlapping of features is observed between the different bearing conditions 

of the induction motor, yet they are distributed linearly and segregated to their own classes. 

The faulty motors of hole 0.5 mm and hole 2 mm show large overlapping when comparing 

to the healthy motor. The average of the amplitude of three bearing conditions (healthy, hole 

0.5 mm and hole 2 mm) at the frequency 30 and 90 Hz is shown in Figure 4.13. The amplitude 

of each class is in their own range and shows analogous characterization for both the 

frequencies. 

 

For example, the amplitude of healthy motor lies between the range of -44 to -47 dB, similarly 

amplitude of faulty motors lies in the range of -33 to -35 dB for hole 0.5 mm and -37 to -39 

dB for hole 2 mm, respectively. Additionally, the maximum difference observed between the 

healthy and faulty 1 (hole 0.5 mm) is 11 dB, and for healthy and faulty 2 (hole 2 mm) is 7 

dB. Considerable difference has been observed between faulty 1 (hole 0.5 mm) and faulty 2 

(hole 2 mm) and said to be 4 dB. Large amplitude is observed in the case of hole 0.5 mm and 

less in the case of hole 2 mm. However, even with the amplitude range analogous 

characterization, the diagnosis is still impossible.    

 

 

 

 

 



Bearing Failure Diagnosis – Single Fault Analysis using Hole 

 

76 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 4.12 Feature distribution at 1780 min-1-1765 min-1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.13 Average amplitude of 30 and 90 Hz for three bearing conditions. 
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4.2.3 Justification of 30 and 90 Hz 

 

Normally, the bearing consists of outer and inner raceway, and both these raceways are 

separated by the rolling elements like balls or cylindrical rollers. Suppose, if a damage occurs 

in the bearing, then there is a possibility for shock pulses with characteristics frequencies to 

occur. This incident happens when the ball or rolling element passes through the damaged 

portion. Mainly, characteristic frequency components depend on the damaged part of the 

bearing and we can calculate them by means of the geometry of the rolling elements and the 

mechanical rotational frequency fr. A detailed explanation of these analysis can be found in 

[11]. For the four types of considered faults, characteristic frequency takes the following 

expression.  

  

 Outer raceway defect: 
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 Ball defect: 
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 Cage defect: 
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Also, it has been statically shown in [12], that the characteristic frequency can be 

approximated for the number of roller bearing between 6 and 12. It takes the following 

expression. 

 

             rbo fNf 4.0                    (4.5) 

 

           rbi fNf 6.0                                (4.6) 

 

where Nb is the number of balls or bearing rollers, β is the contact angle between the ball and 

raceway, Db is the diameter of the ball or bearing roller, Dc is the diameter of the cage. 

 

The characteristic frequencies obtained from equations (4.1) and (4.5) are 87.5 and 108 Hz 

and it shows no similarity with the frequencies 30 and 90 Hz. Generally, when a pit is induced 

on a bearing, a shock wave with a characteristic frequency is generated [13]. The frequency 

mainly depends on the point at which the fault is induced and the level of damage. This 

characteristic frequency obtained from the equations (4.1) and (4.5) are constitutes the reason 

for the changes observed at the amplitude of the frequency 30 and 90 Hz. But the theoretical 

values obtained from the equations do not match with the observed frequency. The shock 

wave pulse stands as the reason for the frequency changes and the reason behind the 

amplitude change at the 30 and 90 Hz is explained as follows.  

 

The power supply frequency (60Hz) is also independent of the selected frequency (30 and 90 

Hz). The harmonics distortion is likely to appear in the voltage because the power supply is 

fed directly from the main system. The harmonic distortion analysis is performed to the faulty 

bearing and the result is shown in Figure 4.14. No harmonic signals are observed at the 

frequency 30 and 90 Hz and confirm the fact that changes are only due to the presence of a 

fault. Thus 30 and 90 Hz play a significant role in bearing fault diagnosis.  
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Figure 4.14 Spectral analysis of voltage. 

 

Theoretically, the reason may be explained with two mechanisms. Generally, for a 4-pole 

induction motor, the synchronous speed Ns is given as 1800 min-1. In the present study, for 

example, in the case of 1765 min-1, the motor rotates at 1765/60 (revolutions/sec) and it takes 

a value of 29.41 Hz. When the motor rotates at 1765 min-1, due to the sideband mechanism, 

two signals will be appeared in the spectrum of the load current. The frequencies of these 

signals FB can be expressed as 

 

                             FB = FL  ± FR                            (4.7) 

 

where FL stands for the frequency of the power supply (60 Hz) and FR for the frequencies 

calculated based on the rotating speed. For the case of 1765 min-1, the frequency FB is found 

to be 30.59 Hz (60 Hz - 29.41 Hz) and 89.41 Hz (60 Hz + 29.41 Hz). Similarly, the side band 

frequency is calculated for other rotating speeds (1780 min-1, 1775 min-1, 1770 min-1).  

 

Also, the side band frequency of current spectrum will change according to their rotating 

speed. In current study, irrespective of the rotating speed, the changes in the amplitude of 

load current spectrum is observed at the same frequency 30 Hz and 90 Hz. This is due to 

frequency resolution (0.76 Hz) of the measuring equipment designed. Thus the frequency 

component 30 Hz and 90 Hz plays an important role in scrutiny the spectral analysis. 
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The second mechanism is explained as follows. Comparing the spectral analysis result of 

healthy and faulty bearing conditions, it is evident that harmonic components are amplified 

due to the fault occurrence. The amplified frequencies are given by [13], 

 

                         FB = (2k-1) fr                          (4.8) 

 

where fr stands for rotor synchronous speed in r/min and takes the value of 30 Hz, and k = 1, 

2, 3 and so on. On substituting the value of k and fr in equation (4.8), the value of FB is found 

to be 30 and 90 Hz. It satisfies the results of spectral analysis.  

 

The harmonic of frequency 30 and 90 Hz has higher amplitude at both the faulty condition 

when compared to the result of healthy motor. Because of a change in the amplitude of the 

frequency components, it is possible to distinguish both the healthy motor and faulty motor, 

irrespective of the bearing condition. The key point to be noted is that it is not only the healthy 

motor gets differentiated from the faulty motor, but also two types of faulty motor can be 

differentiated. The change in the amplitude of the frequency components between the two 

types of bearing condition (Hole of 0.5 mm and 2 mm) is observed. Therefore, these levels 

are considered as one of the crucial features in the present study.  

 

The discussion confirms the reason for the amplitude changes observed at the frequencies 30 

and 90 Hz. The shock wave pulse stands as the main reason for the occurrence of the 

amplitude changes and it is explained using the two mechanism. During the discussion, it is 

mentioned that the shock wave pulse crosses the center of the bearing outer raceway. Since 

the hole is inserted in the center, the changes are said to be obtained and detection is made 

possible. For the purpose of the confirmation, the offset analysis is carried out (hole is 

introduced 2.6 mm away from the center). The hole is artificially induced to the offset 

position and the feature distribution results is shown in Figure 4.15. The hole at the center 

shows more defect when compared to the analysis result of offset hole. The analysis result of 

offset hole is comparatively closer to the healthy bearing data.  The existence of the shock 

wave pulse gets confirmed. 
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Figure 4.15 Offset analysis - Hole.  

 

Additionally, the frequency changes at the 30 Hz and 90 Hz, are compared with the results 

of eccentricity fault. The frequencies monitored for detecting the eccentricity fault are 25 and 

75 Hz (approximately) with the frequency of power source 50 Hz.  

 

For the purpose of veracity, the purposed analytical concept is applied considering the 

frequency of power source to be 50 Hz. For the case of 1765 min-1, the frequency FB  is 

found to be 14.7 Hz (50 Hz – 35.30 Hz) and 85.3 Hz (50 Hz + 35.30 Hz). Thus they do not 

duplicate with the result of eccentricity fault at the condition of supply frequency (50 Hz) as 

mentioned above. Hence it seems to be no longer in relation with eccentricity fault [14]. 

However, practical experimental analysis has to be done for verifying the results of analytical 

computation carried out at the frequency of 50 Hz.  
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4.2.4 Diagnosis using SVM 

 

The main work is to identify the faulty motor with the healthy motor. In addition to this, it is 

found that it is even possible to distinguish the two types of faulty motor (hole with 0.5 mm 

and hole with 2 mm). For easy understanding, healthy bearing, bearing with hole of 0.5 mm 

and bearing with hole of 2 mm are illustrated as H, H0.5 and H2, respectively. The entire 

diagnosis analysis is performed in both the conditions of the rotating speed of induction motor. 

That is, considering and without considering the rotating speed of the induction motor. The 

results of the diagnosis are explained one by one as follows. 

 

4.2.4.1 Diagnosis without Considering Rotating Speed 

 

The diagnosis based on the SVM was performed to the hole identification analysis without 

considering the rotating speed of the induction motor. Around 320 sets of load current data 

were obtained for the condition H-H0.5, H-H2 and H0.5-H2. Each datum consists of two 

components that are the amplitude of frequency at 30 Hz and 90 Hz. Among the 320 sets of 

data, 240 data were used as a training data and the remaining 80 data were used as a 

verification data. In this proposed system, the accuracy rate of the diagnosis is defined as 

 

            Accuracy rate (%) =  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑒𝑑 𝑎𝑐𝑐𝑢𝑟𝑎𝑡𝑒𝑙𝑦

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑓𝑜𝑟 𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑖𝑠
 × 100     (4.9) 

 

The combined data of all four-rotating speed has been analyzed for the three types of bearing 

condition. Table 4.3 shows the diagnosis accuracy rate of H-H0.5, H-H2, and H0.5-H2, 

respectively. It is very clear that, the accuracy rate for H-H0.5 and H-H2 is very high. This 

fact clearly shows that healthy motor is completely diagnosed from the two types of faulty 

motor. On comparing the H-H0.5 and H-H2, the accuracy level of H0.5-H2 is less, but it has 

a practically acceptable value. The average accuracy rate of all the three analysis is found to 

be 85 %. From the result, it is observed that this approach is possible to get used in the 

industrial applications.  
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Table 4.3 Diagnosis result 

 

 

 

 

 

 

 

 

 

4.2.4.2 Diagnosis considering Rotating Speed 

 

Diagnosis based on the SVM was performed for the hole identification analysis by 

considering the individual rotating speed of the induction motor for all the three types of 

bearing conditions. As an illustration, for the case of single rotating speed, around 80 sets of 

load current data were obtained for the condition H-H0.5, H-H2 and H0.5-H2. Each data 

consists of two components that are the amplitude of frequency components at 30 Hz and 90 

Hz. Among the 80 sets of load current data, 60 data were used as training data and the 

remaining 20 data were used as verification data. In this proposed system, the accuracy rate 

of the diagnosis is defined as like the previous case without considering the rotating speed of 

the induction motor.  

 

The bearing fault investigation was initially started with the 1780 min-1 rotating speed and 

then followed for other rotating speed (1775, 1770, and 1765 min-1). The total diagnosis rate 

for H-H0.5, H-H2 and H0.5-H2 is 100 %. It is very clear from the diagnosis result that the 

high accuracy rate is achieved even for the slight mechanical failure in the bearing of the 

induction motor. Thus, the proposed system and the level of diagnosis rate is acceptable for 

constant speed operation of induction motor. 

 

4.3 Multiple Hole Analysis 

 

In this section, the multiple hole analysis is carried out. Five types of bearing conditions are 

discussed: healthy bearing, bearing with one hole and bearing with two holes (holes are made 

Bearing Failure Analysis Accuracy Rate (%) 

Healthy and Hole 0.5 mm (H-H0.5) 85.0 

Healthy and Hole 2 mm (H-H2) 97.50 

Hole 0.5 mm and Hole 2 mm (H0.5-H2) 72.50 

Average 85.0 
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180 degrees to each other), bearing with three holes (holes are made 120 degrees to each 

other), and bearing with four holes (holes are made 90 degrees to each other). The red color 

arrow in the Figure 4.16 shows the position of multiple hole on the bearing. The dimensions 

are made common. It is of diameter 2 mm and depth 0.5 mm. The experimental work begins 

with the observation made on the healthy motor, followed by the faulty motors. In the end, 

same analysis is performed for all bearing conditions. The rotating speed was adjusted from 

1780 min-1 to 1765 min-1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 4.16 Multiple hole analysis. 
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4.3.1 Frequency Spectrum Analysis for Multiple Hole 

 

The FFT analysis of the U phase load current was carried out for all the five types of bearing 

condition. Figures 4.17 to 4.19 show the frequency spectrum analysis that is carried out for 

all the case of bearing conditions at the rotating speed 1780 min-1, respectively. The vertical 

axis is normalized so that the maximum amplitude of the frequency spectrum to be 0 dB. The 

amplitude difference of the frequency components is clearly visible at the frequencies 30, 90, 

120, 150 and 180 Hz. The frequencies 30 and 90 Hz show amplitude changes for all the 

rotating speed (1780, 1775, 1770 and 1765 min-1). However, at the frequencies 120, 150 and 

180 Hz no considerable amplitude changes have been observed for all the four-rotating speed. 

Hence, the frequency 30 and 90 Hz has been considered for the present study. Also, there is 

an explanation why the changes have been observed at the frequency of 30 Hz and 90 Hz in 

the section 4.2.2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.17 Frequency spectrum analysis for 2 hole at 1780 min-1. 
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Figure 4.18 Frequency spectrum analysis for 3 hole at 1780 min-1. 

 

Figure 4.19 Frequency spectrum analysis for 4 hole at 1780 min-1. 
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4.3.2 Feature Distribution for Multiple Hole Analysis 

 

Figures 4.20 to 4.23 show the feature extracted at the frequency of 30 and 90 Hz for all the 

five types of bearing condition. For easy understanding, healthy bearing, bearing with one 

hole, bearing with two holes, bearing with three holes and bearing with four holes are 

illustrated as H, 1H and 2H, 3H and 4H, respectively. 

 

The location of the classes mainly depends on the bearing condition and the rotating speed 

of the induction motor. It is very clear that, all the five types of bearing conditions (H, 1H 

and 2H, 3H and 4H) are located to their own classes and gets differentiated. Overlapping is 

observed between the different classes. However other than 3H, the proposed system 

manages to identify the multiple holes in the bearing of the induction motor. Therefore, these 

feature plays a key role in the prompt study. 

 

 

Figure 4.20 Feature distribution for multiple hole analysis at 1765 min-1. 
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Figure 4.21 Feature distribution for multiple hole analysis at 1770 min-1. 

 

 

 

Figure 4.22 Feature distribution for multiple hole analysis at 1775 min-1. 
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Figure 4.23 Feature distribution for multiple hole analysis at 1780 min-1. 

 

A special observation has been made from the feature distribution of multiple hole analysis. 

As the number of hole induced on the outer raceway of the bearing gets increased, the 

amplitude starts to decrease as shown in Figures 4.20 to 4.23. In the present study, the holes 

are induced in an asymmetrical manner and that may stand as the reason for the decrease in 

the amplitude. For the confirmation, multiple hole analysis of symmetrical pattern must be 

performed. In this case, the analysis results may be opposite to that of asymmetrical.  

 

4.3.3 Diagnosis using SVM 

 

The entire diagnosis analysis is performed in both the conditions of considering and without 

considering the rotating speed of the induction motor. The results of both the diagnosis are 

explained one by one as follows. 

 

4.3.3.1 Diagnosis without Considering Rotating Speed 

 

Around 320 sets of load current data were obtained for the condition H-1H, H-2H, H-3H and 

H-4H. Each datum consists of two components that is the amplitude of frequency at 30 Hz 
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and 90 Hz. Among the 320 sets of load current data, 240 data were used as training data and 

the remaining 80 data were used as verification data. But for the case of H-1H-2H-3H-4H, 

among the 800 sets of load current data, 600 data were used as training data and the remaining 

200 data were used as diagnosis data.  

 

The combined data of all four-rotating speed have been analyzed for the five types of bearing 

condition. Table 4.4 shows the diagnosis accuracy rate of H-1H, H-2H, H-3H and H-4H and 

H-1H-2H-3H-4H. It is very clear that, the accuracy rate for H-1H, H-2H and H-4H is very 

high. This fact clearly shows that healthy motor is completely diagnosed from one hole, two 

holes and four holes of the faulty motor. On comparing with the obtained result, the accuracy 

level of H-3H is very low. This result also affects the diagnosis result of H-1H-2H-3H-4H. 

This is because other than the rotating speed of 1780 min-1 of healthy bearing and 1765 min-

1 of bearing with 3 holes, the entire data of other rotating speed is getting overlapped.  

 

When looking the diagnosis result in a probabilistic manner, the rate of accuracy is good. 

This is because, among the 80 verifications data, almost 60 data get overlapped. In this 

condition, getting an accuracy rate and total accuracy rate above 50 % is practically 

acceptable. The average accuracy rate of all the five analysis is found to be 78.65 %. The 

obtained accuracy rate is practically acceptable. In the future, a method to improve the 

accuracy level of H-3H will be investigated. 

 

4.3.3.2 Diagnosis Considering Rotating Speed 

 

As an illustration, for the case of single rotating speed, 80 sets of load current data were 

obtained for the condition H-1H, H-2H, H-3H and H-4H. Each data consists of two 

components that are the amplitude of frequency components at 30 Hz and 90 Hz. Among the 

80 sets of load current data, 60 data were used as training data and the remaining 20 data 

were used as verification data. Similarly, for the case of H-1H-2H-3H-4H, among the 200 

sets of load current data, 150 data were used as training data and the remaining 50 data were 

used as diagnosis data.  
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Because of diagnosis, total accuracy rate for H-1H, H-2H and H-4H is above 90 %. But for 

the case of H-3H and H-1H-2H-3H-4H, the total accuracy rate is less than 85 %. It is very 

clear from the diagnosis result that the high accuracy rate is achieved even for the slight 

mechanical failure in the bearing of the induction motor. Thus, the proposed system and the 

level of diagnosis rate is practically acceptable by considering the rotating speed of the 

induction motor. Therefore, the multiple hole analysis is much suited with the condition of 

rotating speed consideration.  

 

 

Table 4.4 Diagnosis result 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Bearing Failure Analysis Accuracy Rate (%) 

H-1H 96.25 

H-2H 87.5 

H-3H 57.5 

H-4H 80 

H-1H-2H-3H-4H 72 

Average 78.65 
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4.4 Localization of Holes 

 

For localization of hole analysis, three types of bearing conditions were discussed: healthy 

bearing, bearing with two holes (holes are made 90 degrees to each other), bearing with two 

holes (holes are made 180 degrees to each other) as shown in 4.24. The red color arrow in 

the Figure 4.24 shows the localization of hole. For easy understanding they are illustrated as 

2H90 and 2H180, respectively. The dimensions are made common. It is of diameter 2 mm 

and depth 1 mm. The experimental work begins with the observation made on the healthy 

motor, followed by the faulty motors. In the end, the same analysis is performed for all 

bearing conditions. The rotating speed was adjusted from 1780 min-1 to 1765 min-1. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.24 Localization of hole analysis. 

 

4.4.1 Frequency Spectrum Analysis for Localization of holes 

 

The FFT analysis of the U phase load current was carried out in the analogous way as like 

identification of holes and multiple hole analysis. Figures 4.25 to 4.27 show the frequency 

spectrum analysis that is carried out for all three bearing conditions at the rotating speed of 

1780 min-1. At the frequency of 30 Hz and 90 Hz, the difference in the magnitude of the 

frequency components was observed. The magnitude of characteristic frequency components 

gets differentiated with the faulty bearing condition also. Thus, it is likely to identify the 

difference between the localization of holes on the bearing.  

 

2H 180 2H 90 
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Figure 4.25 Spectrum analysis for 2 holes with 180 degrees at 1780 min-1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.26 Spectrum analysis for 2 holes with 90 degrees at 1780 min-1. 
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Figure 4.27 Spectrum analysis between 2H90 and 2H180 at 1780 min-1. 

 

4.4.2 Feature Distribution for Localization of Hole Analysis 

 

Figures 4.28 to 4.31 show the feature distribution of the three types of bearing condition (H, 

2H90 and 2H180) extracted at the frequency of 30 Hz and 90 Hz at the all the rotating speed. 

While taking the rotating speed into consideration, all the three types of bearing conditions 

get located to their own classes. Thus, it is possible to distinguish the three types of bearing 

conditions. Therefore, these levels of feature play a key role in the prompt study. 
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Figure 4.28 Feature distribution for localization of hole analysis at 1765 min-1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.29 Feature distribution for localization of hole analysis at 1770 min-1. 
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Figure 4.30 Feature distribution for localization of hole analysis at 1775 min-1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.31 Feature distribution for localization of hole analysis at 1780 min-1. 
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4.4.3 Diagnosis using SVM 

 

The entire diagnosis analysis is performed in both the conditions of the rotating speed of 

induction motor. That is, considering and without considering the rotating speed of the 

induction motor. The results of both the diagnosis are explained one by one as follows. 

 

4.4.3.1 Diagnosis without Considering Rotating Speed 

 

320 sets of load current data were obtained for the condition H-2H90, H-2H180 and 2H90-

2H180. Each datum consists of two components; the amplitude of frequency at 30 Hz and 90 

Hz. Among the 320 sets of load current data, 240 data were used as training data and the 

remaining 80 data were used as verification data.  

 

The combined data of all four-rotating speed have been analyzed for the three types of bearing 

condition. Table 4.5 shows the diagnosis accuracy rate of H-2H90, H-2H180 and 2H90-

2H180. The yellow color cell reveals where the proper diagnosis has been performed. The 

average accuracy rate of all the three analysis is found to be 85.0 %. The obtained accuracy 

rate is practically acceptable.  

 

From the result, it is observed that this approach is possible to get used in the industrial 

applications. Also, from the diagnosis result, it is evident that the physical location of holes 

on the bearing of the induction motor plays a key role. The accuracy rate for H-2H90, H-

2H180 and 2H90-2H180 is very high. This fact clearly shows that healthy motor is 

completely diagnosed from the faulty motor. Thus, the proposed system managed to identify 

the localization of hole in the bearing of the induction motor. This discovery will be 

considered as a core point of the proposed system. 
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Table 4.5 Diagnosis result 

 

 

 

 

 

 

 

 

 

4.4.3.2 Diagnosis Considering Rotating Speed 

 

As an illustration, for the case of single rotating speed, 80 sets of load current data were 

obtained for the condition H-2H90, H-2H180 and 2H90-2H180. Each datum consists of two 

components that are the amplitude of frequency components at 30 Hz and 90 Hz. Among the 

80 sets of load current data, 60 data were used as training data and the remaining 20 data 

were used as verification data. In this proposed system, the accuracy rate of the diagnosis is 

defined as like the previous case without considering the rotating speed of the induction motor.  

 

The diagnosis accuracy rate for H-2H90, H-2H180 and 2H90-2H180 is above 90 %. It is very 

clear from the diagnosis result that the high accuracy rate is achieved even for the localization 

of hole bearing failure. Thus, the proposed system and the level of diagnosis rate are 

practically acceptable by considering the rotating speed of the induction motor. Therefore, 

the localization of hole analysis is also much suited with the condition of rotating speed 

consideration. 

 

4.5 Summary 

 

Using the load current, the FFT analysis has been performed and the features are extracted. 

The amplitude of the frequency 30 and 90 Hz is considered as the main feature and the 

bearing failure detection using hole is carried out. The following analysis has been 

investigated; hole identification, multiple hole analysis and localization of hole. In most of 

the cases, the overlapping of features is observed between different bearing conditions and 

Bearing Failure Analysis Accuracy Rate (%) 

H-2H90 82.5 

H-2H180 87.5 

2H90-2H180 85 

Average 85 
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the problem is overwhelmed using SVM. Based on the result of SVM, it is possible to detect 

the bearing fault and the diagnosis accuracy rate is improved. The proposed method has the 

following advantages: 

 

 The healthy motor is completely diagnosed from the faulty motor 

 The minor fault detection (hole 0.5 mm) is made possible 

 The difference between the faulty motor is also observed (hole 0.5 mm and hole 2 

mm) 

 In case of multiple hole analysis, the number of hole identification is achieved 

 The results of localization of hole analysis gives a clear idea about the role of physical 

location and difference between 2H90 and 2H180 is observed 

 The total time to perform the diagnosis is short (approximately 80 seconds) 
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Chapter 5  

Bearing Failure Diagnosis  

– Single Fault Analysis using Scratch 
 

5.1 Introduction  

 

Till now most of the researches have been carried out using hole as a faulty factor of bearing, 

but in practical point the chance of scratch has the highest probability when compared to the 

holes. Hence it is important to perform many researches for the fault analysis using scratch. 

Therefore, in the present research work, scratch has been made as a crucial factor for fault 

analysis. The bearing failure analysis is carried for identifying and study about the scratch 

progression with respect to healthy motor, multiple scratches and orientation of scratches on 

the bearing of the induction motor.  

 

The analysis is carried out by characterizing the specified frequency components of the load 

current and to be considered as a main feature. Also, the signal from the stator load current 

is analyzed with the help of Fast Fourier Transform (FFT) and further investigation was 

performed. The experimental setup, induction motor and the analysis method are same as 

chapter 4.  

 

5.2 Progression of a Scratch 

 

If a scratch appearing on a bearing is not detected at an early stage, it may increase in size as 

the motor runs. To simulate this and to allow the progression of a fault on the outer raceway 

of the bearing to be analyzed, scratches with lengths of 5, 10, and 15 mm were induced. The 

depth and width of the scratches were held constant at 0.5 mm. Stimulated fault progression 

in one sample is shown in Figure 5.1. Generally, it is tedious and costly to collect the damaged 

motor from the industry. For this reason, the faults are made artificially on the bearing of the 

induction motor. The experimental work begins with the observation made on the healthy 



Bearing Failure Diagnosis– Single Fault Analysis using Scratch 

102 

motor. After that, the faulty motor gets replaced in the position of the healthy motor. The 

rotating speed was adjusted from 1780 min-1 to 1765 min-1. 

 

The following terminology is used, H, and HS denote the healthy motor, and horizontal 

scratch, respectively. The code is followed by the scratch length in mm. Thus, for example, 

a 10 mm horizontal scratch is denoted HS10. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1 Progressive bearing failure (a) horizontal scratch 5 mm (HS5) 

(b) horizontal scratch 10 mm (HS10) (c) horizontal scratch 15 mm (HS15). 

 

 

5.2.1 Frequency Spectrum Analysis 

 

FFT analysis of the U-phase load current was performed under all four bearing conditions. 

Figures 5.2 and 5.3 compare the frequency spectra plotted for H–HS10 and HS5–HS10–

HS15, respectively, at a rotating speed of 1765 min−1. The amplitude on the vertical axis is 

normalized to a maximum of 0 dB.  

 

A large amplitude difference can be observed between the healthy motor and all the three 

fault conditions (H–HS5, H–HS10, and H–HS15). When the faults on the bearings are 

compared (HS5–HS10–HS15), the amplitude difference observed is sufficient to differentiate 

the cases. Amplitude differences in the frequency components are clearly visible at 
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frequencies of 30, 90, 150, and 180 Hz. At 30 and 90 Hz, amplitude changes are observed at 

all rotating speeds (1780, 1775, 1770, and 1765 min−1). At 150 and 180 Hz, in contrast, no 

significant amplitude change is observed when the speed was varied, under any of the four 

bearing conditions. Frequencies of 30 and 90 Hz are therefore used in the study.  

 

When a hole is induced on a bearing, a shock wave with a characteristic frequency is 

generated. The frequency mainly depends on the point at which the fault is induced and the 

level of damage. The analysis performed in the present study assumed a scratch to be like a 

hole. Amplitude of the characteristic frequencies of 30 and 90 Hz were used to detect the 

bearing condition and were used to plot the feature distribution for more detailed study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2 Spectral analysis of H-HS10 at 1765 min-1. 
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Figure 5.3 Spectral analysis of HS5-HS10-HS15 at 1765 min-1. 

 

5.2.2 Feature Distribution 

 

The feature distribution analysis is carried out using the amplitude of the characteristics 

frequency 30 and 90 Hz. A two-dimensional graph is plotted, taking amplitude of 30 Hz along 

the x-axis and 90 Hz along the y-axis, respectively.  

 

In both healthy and faulty motors, the contribution of each feature was evaluated from the 

load condition. In this section, we discuss four bearing conditions (H, HS5, HS10, and HS15). 

Figures 5.4 and 5.5 show the feature distribution at rotating speeds of 1770 and 1765 min−1 

for all bearing conditions, respectively. The location distinguishing behavior depends on the 

rotating speed of the motor and the bearing conditions. The conditions HS10 and HS15 could 

be clearly distinguished from the healthy motor. In contrast, an overlap between HS5 and the 

healthy motor (H) made it possible to derive only a partial evaluation of the condition.  

 

While taking the individual rotating speed of the induction motor into consideration, the class 

of the faulty motor is located far away from the healthy motor. These scratches have their 
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own class of location according to the bearing condition and rotating speed. Thus, this method 

is effective in diagnosing the four types of bearing condition. The proposed method could 

identify the bearing failure while the motor is in running condition and demonstrates the 

significant role that feature distribution plays in the analysis of progressive bearing failure. 

 

In industries, the speed of the induction motor is not constant and said to be varied between 

the certain range. Considering the industrial environment, the analysis is also performed 

without considering the rotating speed and the result is shown in Figure 5.6. The overlapping 

of features is observed between the different bearing conditions of the induction motor, yet 

they are distributed linearly and segregated to their own classes. The faulty motors horizontal 

scratch 5 mm (HS5) and horizontal scratch 15 mm (HS15) show large overlapping when 

comparing to the healthy motor (H). In this case, SVM is employed and the diagnosis is 

performed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 5.4 Feature distribution of progressive failure analysis at 1770 min-1. 
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Figure 5.5 Feature distribution of progressive failure analysis at 1765 min-1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6 Integrated progressive analysis. 
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From the result of spectral analysis and the feature distribution, even in the case of scratch, 

the amplitude changes have been observed at the frequencies 30 and 90 Hz. The details 

regarding the amplitude changes are discussed in the section 4.2.3. The discussion confirms 

the reason for the amplitude changes observed at the frequencies 30 and 90 Hz. The shock 

wave pulse stands as the reason for the occurrence of the amplitude changes at the respective 

frequency and it is said to cross the center of the outer raceway of bearing. Similar to hole, 

scratch also induced in the center, as a result, the changes are said to be obtained and detection 

is made possible. For the purpose of the confirmation, once again the offset analysis is carried 

out. The scratch of same dimension is artificially induced to the offset position 2.6 mm away 

from the center of the bearing and the feature distribution results is shown in Figure 5.7. The 

scratch at the center shows more deviation when compared to the scratch result of offset. This 

confirms the occurrence of shock wave pulse and its impact in detecting the outer raceway 

bearing failure. The analysis result of offset scratch is comparatively closer to the healthy 

bearing data. The change in the level of defects is observed.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7 Offset analysis – Scratch. 

 

 

-70

-65

-60

-55

-50

-45

-40

-35

-30

-25

-70 -65 -60 -55 -50 -45 -40 -35 -30 -25

L
ev

el
 a

t 
9
0
 H

z 
[d

B
]

Level at 30 Hz [dB]

Healthy Scratch 10 mm Offset Scratch 10 mm



Bearing Failure Diagnosis– Single Fault Analysis using Scratch 

108 

5.2.3 Diagnosis using SVM 

 

The main work is to identify and differentiate the faulty motor with the healthy motor. The 

entire diagnosis analysis is performed in both the condition of the rotating speed of induction 

motor. That is, considering and without considering the rotating speed of the induction motor. 

The results of both the diagnosis are explained one by one as follows. 

 

5.2.3.1 Diagnosis without Considering Rotating Speed 

 

The diagnosis based on the SVM was performed. For conditions H–HS5, H–HS10, and H–

HS15, 320 sets of load current data were used. Each dataset had both 30 and 90 Hz frequency 

components. From the 320 sets, 240 were used as training data, and the remaining 80 were 

used as evaluation data. For H–HS5–HS10–HS15, 640 sets of loads current data were used, 

with 480 used as training data and the remaining 160 used as evaluation data. Four rotating 

speeds (1780, 1775, 1770, and 1765 min−1) are combined and the diagnosis are performed.  

 

Table 5.1 shows the accuracy rate when diagnosing progressive bearing failure. The accuracy 

rates for H–HS10 and H–HS15 are sufficiently high to be considered acceptable in practical 

applications. In the case of H–HS5, the accuracy rate is lower because of a significant 

overlapping between the healthy and faulty conditions (Figure 5.6).  

 

In the analysis of H–HS5–HS10–HS15, significant overlaps are found between the different 

bearing conditions, making the diagnosis process tedious. However, the bearing condition is 

identified with an accuracy rate of 83.13% and the proposed method is effective in localizing 

the difference between four conditions, demonstrating its ability to produce a diagnosis, even 

when overlapping is encountered. The average accuracy rate of all the four analysis is found 

to be 87.35 %. This is a significant advantage of the proposed method, making it suitable for 

speed varying applications and in industrial environments.  
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Table 5.1 Diagnosis result 

 

 

 

 

 

 

 

 

 

5.2.3.2 Diagnosis Considering Rotating Speed 

 

Diagnosis based on the SVM was performed for the scratch progression analysis by 

considering the individual rotating speed of the induction motor for all the four types of 

bearing conditions. In this proposed system, the accuracy rate of the diagnosis is defined as 

same as the case discussed in the previous section. 

  

The diagnosis accuracy rate is 95 %. It is very clear from the diagnosis result that the high 

accuracy rate is achieved even for the slight mechanical failure in the bearing of the induction 

motor. Thus, the proposed system and the level of diagnosis rate are practically acceptable 

by considering the rotating speed of the induction motor and suitable for detecting the 

progression of fault. 

 

5.3 Orientation of Scratch 

 

As the direction that a scratch will take on the bearing is inherently unpredictable, the 

orientation of scratch analysis is carried out. For orientation of scratch analysis, five types of 

bearing conditions were discussed: healthy bearing, bearing with scratch made horizontally, 

bearing with scratch made vertically, bearing with scratch made left crosswise (left 

orientation scratch) and bearing with scratch made right crosswise (right orientation scratch). 

For easy understanding they are illustrated as H, HS, VS, LS and RS, respectively. The 

dimensions are made common and it is of length 10 mm, width 0.5 mm and depth 0.5 mm. 

The samples used for the orientation of scratch analysis are shown in Figure 5.8.  

Bearing Condition Accuracy Rate (%) 

H-HS5 73.75 

H-HS10 100 

H-HS15 92.5 

H-HS5-HS10-HS15 83.13 

 Average 87.35 
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Figure 5.8 Distinct orientation of 10 mm scratches (a) horizontal scratch (HS10) 

(b)vertical scratch (VS10) (c) left orientation scratch (LS10) and (d) right 

orientation scratch (RS10). 

 

5.3.1 Frequency Spectrum Analysis for Scratch Orientation 

 

FFT analysis of the U-phase load current was performed for all bearing conditions (H, HS10, 

VS10, LS10, and RS10). Frequency spectra were plotted for H–VS10, LS10–RS10, and 

HS10–VS10 at a rotating speed of 1765 min−1, and they are shown in Figures 5.9 to 5.11, 

respectively.  

 

If it is possible to differentiate the healthy motor from the four faulty motors, it should also 

be possible to localize the differences among the faulty motors. As with the progression 

analysis, amplitude differences were observed at 30 and 90 Hz at all rotating speeds. This 

confirms the generation of the characteristic frequency, suggesting a relationship between 

scratching, load current, characteristic frequency, and shock wave pulse generation.  
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Figure 5.9 Spectral analysis of H-VS10 at 1765 min-1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.10 Spectral analysis of LS10-RS10 at 1765 min-1. 
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Figure 5.11 Spectral analysis of HS10-VS10 at 1765 min-1. 

 

5.3.2 Feature Distribution for Scratch Orientation 

 

The feature distribution analysis is carried out using the amplitude of the characteristics 

frequency 30 and 90 Hz. The contribution of each feature is evaluated by considering the 

rotating speed of the induction motor.  

 

In this section, the five bearing conditions (H, HS10, VS10, LS10, and RS10) are performed. 

Figures 5.12 and 5.13 show the feature distribution for all conditions at rotating speeds of 

1770 and 1765 min−1, respectively. These are classified according to their class of location 

and distinguishing behavior with respect to rotating speed. Apart from HS10, the classes are 

located adjacently. Even when overlaps occur, it is possible to differentiate the scratches. 

Scratches of the same size but with different orientations show a distinctive behavior. The 

orientation is shown to play a significant role, allowing the orientation to be identified. To 

fully understand the relationship between factors, a more detailed research will be necessary. 

However, the study confirmed that feature distribution plays a key role in identifying the 

orientation of scratches. Therefore, these feature distributions play a significant role. 
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Figure 5.12 Feature distribution of distinct orientation analysis at 1770 min-1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.13 Feature distribution of distinct orientation analysis at 1765 min-1. 

 

 

 

 



Bearing Failure Diagnosis– Single Fault Analysis using Scratch 

114 

 

Considering the industrial environment, the analysis is also performed without considering 

the rotating speed of the induction motor and the result is shown in Figure 5.14. The 

overlapping of features is observed between the different bearing conditions of the induction 

motor, yet they are distributed linearly and segregated to their own classes. The faulty motors 

VS10, LS10 and RS10 show large overlapping when comparing to the HS10.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.14 Unified distinct orientation analysis. 

 

 

5.3.3 Diagnosis using SVM 

 

The main work is to identify and differentiate the orientation of scratch. The results of both 

the diagnosis are explained one by one as follows.  

 

5.3.3.1 Diagnosis without Considering Rotating Speed 

 

Table 5.2 shows the diagnosis accuracy rate of H-HS10, H-VS10, H-LS10 and H-RS10 and 

H-HS10-VS10-LS10-RS10.  
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It is very clear that, the accuracy rate for H-HS10, H-VS10, H-LS10 and H-RS10 is very 

high. This fact clearly shows that healthy motor is completely diagnosed from horizontal 

scratch, vertical scratch, left orientation scratch and right orientation scratch of the faulty 

motor. On comparing with the obtained result, the accuracy level of H-HS10-VS10-LS10-

RS10 is quite less. The main reason stands for the overlapping observed between the faulty 

motors. The average accuracy rate of all the five analysis is found to be 89.7 %. The obtained 

accuracy rate is practically acceptable. 

 

Table 5.2 Diagnosis result of scratch orientation 

 

 

 

 

 

 

 

 

 

 

 

5.3.3.2 Diagnosis Considering Rotating Speed 

 

The analysis is done on the five types of bearing condition with respect to rotating speed. As 

an illustration, for the case of single rotating speed, 80 sets of load current data are obtained 

for the condition H-HS10, H-VS10, H-LS10 and H-RS10. Each datum consists of two 

components that are the amplitude of frequency components at 30 Hz and 90 Hz. Among the 

80 sets of load current data, 60 data are used as training data and the remaining 20 data were 

used as verification data. Similarly, for the case of H-HS10-VS10-LS10-RS10, among the 

200 sets of load current data, 150 data are used as training data and the remaining 50 data are 

used as diagnosis data. In this proposed system, the accuracy rate of the diagnosis is defined 

as like the previous case without considering the rotating speed of the induction motor.  

 

 

Bearing Condition Accuracy Rate (%) 

H-HS10 100 

H-VS10 96.25 

H-LS10 90 

H-RS10 87.5 

H-HS10-VS10-LS10-RS10 74.75 

 Average 89.7 
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The diagnosis rate is above 95 %. But for the case of H-HS-VS-LS-RS, the accuracy rate lies 

between the 93 % range. It is very clear from the diagnosis result that the high accuracy rate 

is obtained. Thus, the proposed system and the level of diagnosis rate are practically 

acceptable by considering the rotating speed of the induction motor. Therefore, the 

orientation of scratch analysis is much suited with the condition of rotating speed 

consideration. 

 

5.4 Multiple Scratch Analysis 

 

In this section, the multiple scratch analysis is carried out. For multiple scratch analysis, five 

types of bearing conditions were discussed: healthy bearing, bearing with one scratch and 

bearing with two scratches, bearing with three scratches and bearing with four scratches. The 

dimensions of each scratch are made common. It is of length 10 mm, width 0.5 mm and depth 

0.5 mm. The samples used are shown in Figure 5.15.  

 

The proposed method is evaluated by means of measuring the stator current. The current 

signals are collected from the healthy motor and four types of the faulty motors. The 

measurement was carried out under the load condition. The rotating speed was adjusted from 

1780 min-1 to 1765 min-1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.15 Multiple Scratch Analysis. 

1 Scratch 2 Scratches 

3 Scratches 4 Scratches 
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5.4.1 Frequency Spectrum Analysis for Multiple Scratch 

 

The FFT analysis of the U phase load current was carried out for all the five types of bearing 

conditions. Figures 5.16 to 5.18 show the frequency spectrum analysis that is carried out at 

the rotating speed of 1780 min-1. The vertical axis is normalized so that the maximum 

amplitude of the frequency spectrum to be 0 dB. From the figures at the frequency of 30 Hz 

and 90 Hz, the difference in the amplitude was observed. This change was observed in all 

four rotating speeds. As a result, these changes, it is possible to distinguish all the five types 

of bearing conditions.  

 

Figure 5.16 Spectrum analysis for healthy and 2 scratches at 1780 min-1. 
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Figure 5.17 Spectrum analysis for healthy and 3 scratches at 1780 min-1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.18 Spectrum analysis for healthy and 4 scratches at 1780 min-1. 
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5.4.2 Feature Distribution for Multiple Scratch Analysis 

 

Figures 5.19 to 5.22 show the feature extracted at the frequency of 30 Hz and 90 Hz for all 

the five types of bearing conditions at the rotating speed 1780, 1775, 1770 and 1765 min−1, 

respectively. For easy understanding, healthy bearing, bearing with one scratch and bearing 

with two scratches, bearing with three scratches and bearing with four scratches are illustrated 

as H, 1S, 2S, 3S and 4S, respectively. These features will be generally obtained at the given 

condition and classified according to the rotating speeds. The location of the classes mainly 

depends on the bearing condition and the rotating speed of the induction motor.  

 

It is very clear that, features of all the five types of bearing conditions are located to their 

own classes and overlapping are observed between them. Also, it is evident that, it is also 

possible to distinguish all the five types of bearing conditions.  

 

Figure 5.19 Feature distribution for multiple scratch analysis at 1765 min-1. 
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Figure 5.20 Feature distribution for multiple scratch analysis at 1770 min-1. 

Figure 5.21 Feature distribution for multiple scratch analysis at 1775 min-1. 
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Figure 5.22 Feature distribution for multiple scratch analysis at 1780 min-1. 

 

A special observation has been made from the feature distribution of multiple scratch analysis. 

As the number of scratch induced on the outer raceway of the bearing gets increased, the 

amplitude starts to increase as shown in Figures 5.19 to 5.22. In the present study, the 

scratches are induced in a symmetrical manner and that may stand as the reason for the 

increase in the amplitude. The multiple hole analysis shows decrease in amplitude results 

because of the asymmetrical way of introducing the holes. Thus, it may be concluded that the 

symmetrical arrangement shows increase in amplitude result and asymmetrical shows 

decrease in amplitude result.  

 

For the confirmation, multiple scratch analysis of symmetrical pattern is performed, and the 

results are shown in Figure 5.23. The analysis results are opposite to that of expected result. 

The amplitude is increasing instead to be decreased with number of scratch. From the result, 

it is concluded that the proposed mechanism of symmetrical and asymmetrical pattern needs 

more study and further investigation.  
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Figure 5.23 Feature distribution for multiple scratch symmetrical analysis. 

 

 

5.4.3 Diagnosis using SVM 

 

The main work is to carry out the diagnosis for the multiple scratch bearing fault. The 

diagnosis results are discussed below.  

 

5.4.3.1 Diagnosis without Considering Rotating Speed 

 

320 sets of load current data were obtained for the condition H-1S, H-2S, H-3S and H-4S. 

Each datum consists of two components that is the amplitude of frequency at 30 Hz and 90 

Hz. Among the 320 sets of load current data, 240 data were used as training data and the 

remaining 80 data were used as verification data. But for the case of H-1S-2S-3S-4S, among 

the 800 sets of load current data, 600 data were used as training data and the remaining 200 

data were used as diagnosis data. Each datum set consists of the amplitude of the frequency 

components.  
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Table 5.3 shows the diagnosis accuracy rate of H-1S, H-2S, H-3S, H-4S and H-1S-2S-3S-4S. 

It is very clear that, the accuracy rate for H-1S, H-3S and H-4S is very high. This fact clearly 

shows that healthy motor is completely diagnosed from one scratch, three scratches and four 

scratches of the faulty motor. On comparing with the obtained result, the accuracy level of 

H-2S is low. This result also affects the diagnosis result of H-1S-2S-3S-4S. The main reason 

is that, the data of faulty motor with two scratches on the bearing gets overlapped with the 

data of healthy motor bearing condition. The average accuracy rate of all the five analysis is 

found to be 88.55 %. The obtained accuracy rate is practically acceptable.  

 

Table 5.3 Diagnosis result of multiple fault analysis 

 

 

 

 

 

 

 

 

 

 

5.4.3.2 Diagnosis Considering Rotating Speed 

 

As an illustration, for the case of single rotating speed, 80 sets of load current data were 

obtained for the condition H-1S, H-2S, H-3S and H-4S. Each datum consists of two 

components that are the amplitude of frequency components at 30 Hz and 90 Hz. Among the 

80 sets of load current data, 60 data were used as training data and the remaining 20 data 

were used as verification data. Similarly, for the case of H-1S-2S-3S-4S, among the 200 sets 

of load current data, 150 data were used as training data and the remaining 50 data were used 

as diagnosis data.  

 

Because of diagnosis, the accuracy rate for H-1S, H-3S and H-4S is above 95 %. But for the 

case of H-2S and H-1S-2S-3S-4S, the accuracy rate is around 85 %. It is very clear from the 

diagnosis result that the high accuracy rate is achieved. Thus, the proposed system and the 

Bearing Condition Accuracy Rate (%) 

H-1S 100 

H-2S 77.5 

H-3S 88.75 

H-4S 100 

H-1S-2S-3S-4S 76.5 

 Average 88.55 
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level of diagnosis rate are practically acceptable by considering the rotating speed of the 

induction motor. Therefore, the multiple scratch analysis is much suited with the condition 

of rotating speed consideration. 

 

5.5 Summary 

 

As like chapter 4, the diagnostic method using amplitude of the frequency 30 and 90 Hz 

components as the main feature was applied to diagnose the scratch on the outer raceway of 

the bearing. The analysis is performed in three ways; the progression, orientation and 

multiple fault scratch analysis. Further diagnosis was performed using an SVM. The problem 

of overlapping of features is overwhelmed with this proposed method. To extend the 

application, the diagnosis was performed without considering the rotating speed of the motor.  

 

The result gives the satisfactory outcome for progression of scratch, orientation of scratches, 

and multiple scratch analysis. Thus, it is possible to identify all the types of bearing 

conditions involved in the present study. Thus, the proposed method is effective in diagnosing 

the types of bearing conditions. As a result, the proposed method has the following 

advantages: 

 

 The healthy motor is completely diagnosed from the faulty motor.  

 It is possible to distinguish the bearing fault of horizontal scratch 5 mm, horizontal 

scratch 10 mm and horizontal scratch 15 mm with respect to healthy motor, which 

suggests the possibility of tracking the progress of the scratch. 

 Even the orientation of scratch plays a significant role and its distinguishing behavior 

is studied.  

 This method has a property to identify the number of scratches interpolated on the 

bearings.  

 

In a future work, application of this method can be intended to test the converter fed electrical 

machines and on the other types of industrial motor.
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Chapter 6  

Bearing Failure Diagnosis  

– Compound Fault Analysis 
 

In this chapter, bearing failure analysis with the compound fault is done inducing both the 

hole and scratch simultaneously on the outer race-way of the bearing. The entire analysis is 

performed using Fast Fourier Transform (FFT) and the diagnosis by the Support Vector 

Machine (SVM). 

 

6.1 Introduction 

 

From the literature survey, most of the bearing failure analysis have been performed 

considering hole and scratch as the faulty factor but as the separate component. Only less 

research results are available regarding compound fault analysis. During the present research 

work, combination of hole and scratch i.e. compound fault bearing failure analysis is 

performed. Various combination of hole and scratch is performed, and the results are 

discussed.  

 

6.2 Compound Faults 

 

Both the hole and the scratch are induced simultaneously to the outer raceway of the bearing. 

Two different combination of hole and scratch are analyzed in the present study. The 

dimension of the hole is diameter of 2 mm and depth of 0.5 mm. Likewise the dimension of 

the scratch is length of 10 mm, width and depth of 0.5 mm. For clear understanding, the depth 

of the hole and scratch is made constant. The main objective behind the compound fault 

analysis, to investigate the effect of hole and scratch in detail and the change in the motor 

characteristics is also studied.  
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The two combinations of the compound fault analysis are illustrated as follows: 

 

 Hole and Scratch – Induced 90 and 180 degrees to each other on the outer race-

way 

 

For reference, the following combination of fault analysis is carried out: 

 

 Hole – Induced 90 and 180 degrees to each other on the outer race-way 

 Scratch – Induced 90 and 180 degrees to each other on the outer race-way 

 

The samples of the faults are shown in Figures 6.1 to 6.3. The following terminology is used, 

H, HS, H, S denote the healthy motor, hole and scratch, holes, scratches, respectively. 

 

The code is followed by the degree of fault inducing. Thus, for example, hole and scratch 

fault induced 90 degrees to each other is denoted by HS90. 
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Figure 6.1 Compound Fault Hole and Scratch. 

 

 

 

 

 

 

 

 

 

 

Figure 6.2 Hole combination analysis. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3 Scratch combination analysis. 

 

HS90  HS180 

H90  H180 

S90  S180 



Bearing Failure Diagnosis – Compound Fault Analysis 

128 

6.3 Frequency Spectrum Analysis 

 

FFT analysis of the U-phase load current was performed under all seven bearing conditions. 

283 fundamental wavelengths were used in FFT. Figures 6.4 and 6.5 compare the frequency 

spectra plotted for H–HS90 and H–HS180, respectively, at a rotating speed of 1780 min−1. 

The amplitude on the vertical axis is normalized to a 0 dB.  

 

An amplitude difference can be observed between the healthy motor and all the six fault 

conditions (H–HS90, H–HS180, H-S90, H-S180, H-H90 and H–H180). Amplitude 

differences in the frequency components were clearly visible at frequencies of 30, 90, 150, 

and 180 Hz. At 30 and 90 Hz, amplitude changes were observed at all rotating speeds (1780, 

1775, 1770, and 1765 min−1). At 150 and 180 Hz, in contrast, no significant amplitude change 

was observed when the speed was varied, under any of the six bearing conditions. 

Frequencies of 30 and 90 Hz were therefore used in the study. Because of a change in the 

amplitude of the frequency component, it is possible to distinguish both the healthy motor 

and faulty motor, irrespective of the bearing condition. The characteristic frequencies of 30 

and 90 Hz were used to plot the feature distribution for more detailed study. 
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Figure 6.4 Frequency spectrum analysis for H-HS90 at 1780 min-1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.5 Frequency spectrum analysis for H-H180 at 1780 min-1. 
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6.4 Feature Distribution 

 

The feature distribution analysis is carried out using the amplitude of the characteristics 

frequency 30 and 90 Hz. A two-dimensional graph is plotted, taking amplitude of 30 Hz along 

the x-axis and 90 Hz along the y-axis, respectively. The contribution of each feature is 

evaluated by considering the rotating speed of the induction motor.  

 

In both healthy and faulty motors, the contribution of each feature (30 and 90 Hz) is evaluated 

from the load condition. In this section, we discuss seven bearing conditions (H, HS90, 

HS180, H90, H180, S90, and S180). Figures 6.6 to 6.13 show the feature distribution at 

rotating speeds of 1780 and 1775 min−1 for all bearing conditions, respectively. Under each 

condition, the location of each class depends on the rotating speed of the motor and the 

bearing conditions. Even when overlaps occur, the bearing conditions fall into distinctive 

classes. Including HS90 and HS180 the remaining bearing conditions (H90, H180, S90, and 

S180) are significantly diffracted with respect to healthy motor and among the faulty motor. 

This proves that orientation of fault plays a significant role and the feature distribution 

analysis can identify the present state of the bearing. The proposed method could identify the 

bearing failure while the motor was running and demonstrates the significant role that feature 

distribution plays in the analysis of compound bearing failure analysis. 
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Figure 6.6 Feature distribution for H-HS90-HS180 at 1780 min-1. 

 

 

 

  

 

Figure 6.7 Feature distribution for H-HS90-HS180 at 1775 min-1. 
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Figure 6.8 Feature distribution for H-H90-H180 at 1780 min-1. 

 

 

  

  

Figure 6.9 Feature distribution for H-H90-H180 at 1775 min-1. 
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Figure 6.10 Feature distribution for H-S90-S180 at 1780 min-1. 

 

 

 

  

  

Figure 6.11 Feature distribution for H-S90-S180 at 1775 min-1. 
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Figure 6.12 Feature distribution for 90 degrees at 1780 min-1. 

 

 

  

  

Figure 6.13 Feature distribution for 180 degrees at 1780 min-1. 
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In industries, the speed of the induction motor is not constant and said to be varied between 

the certain range. Considering the industrial environment, the analysis is also performed 

without considering the rotating speed of the induction motor and the result is shown in 

Figures 6.14 to 6.16. The overlapping of features is observed between the different bearing 

conditions of the induction motor, and differentiation is not possible using feature distribution 

analysis. Thus, SVM is employed in carrying out the diagnosis for the compound bearing 

fault analysis.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.14 Industrial analysis of hole and scratch. 
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Figure 6.15 Industrial analysis of hole. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.16 Industrial analysis of scratch. 
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6.5 Diagnosis using SVM 

 

The main work is to identify and differentiate the faulty motor with the healthy motor. The 

entire diagnosis analysis is performed in both the conditions of the rotating speed of induction 

motor. That is, considering and without considering the rotating speed of the induction motor. 

The results of both the diagnosis are explained one by one as follows. 

 

6.5.1 Diagnosis without Considering Rotating Speed 

 

The diagnosis based on SVM was performed to the compound bearing failure analysis 

without considering the rotating speed of the induction motor. For conditions H–HS90, H–

HS180, H-S90, H-S180, H-H90 and H–H180, 480 sets of load current data were used. Each 

dataset had both 30 and 90 Hz amplitude frequency components. From the 480 sets, 360 were 

used as training data, and the remaining 120 were used as evaluation data. Four rotating 

speeds (1780, 1775, 1770, and 1765 min−1) were considered. In this proposed system, the 

accuracy rate of the diagnosis is defined as 

 

 Accuracy rate (%) =  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑒𝑑 𝑎𝑐𝑐𝑢𝑟𝑎𝑡𝑒𝑙𝑦

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑓𝑜𝑟 𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑖𝑠
 × 100   (6.1) 

 

Table 6.1 Diagnosis result 

 

 

 

 

 

 

 

 

 

 

 

Bearing Condition Accuracy Rate (%) 

H-HS90 97.5 

H-HS180 100 

H-S90 90.35 

H-S180 88.75 

H-H90 82.5 

H-H180 87.5 

 Average 91.12 
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Table 6.1 shows the accuracy rate and found to be practically acceptable. The S90, HS90 and 

HS180 shows the maximum accuracy rate. While H90, H180 and S180 show accuracy rate 

in the range 80-90 %. However, it is sufficiently enough and suitable for practical applications. 

The average accuracy rate is 91.12 %. The proposed method is effective in overcoming the 

problem of overlapping. This is a significant advantage of the proposed method, making it 

suitable for speed varying application and in industrial environments.  

 

6.5.2 Diagnosis Considering Rotating Speed 

 

As an illustration, for the case of single rotating speed, 120 sets of load current data were 

obtained for the condition H–HS90, H–HS180, H-S90, H-S180, H-H90 and H–H180. Each 

datum consists of two components that are the amplitude of frequency components at 30 Hz 

and 90 Hz. Among the 120 sets of load current data, 90 data were used as training data and 

the remaining 30 data were used as verification data. In this proposed system, the accuracy 

rate of the diagnosis is defined as like the previous case without considering the rotating 

speed of the induction motor.  

 

The diagnosis rate for all the bearing condition is found to be 100 %. Thus, the proposed 

system and the level of diagnosis rate are practically acceptable by considering the rotating 

speed of the induction motor and suitable for detecting the compound fault. 

 

6.6 Summary 

 

The diagnostic method proposed in the chapter 4 is applied to the compound fault analysis 

and the examination is performed using FFT. Further diagnosis was performed using an SVM. 

To mimic the use of motors in industrial environments, the diagnosis was performed without 

considering the rotating speed of the motor.  

 

The hole and scratch fault combination shows more defects. Higher amplitude range is 

observed in the case of hole and scratch, and accordingly less overlapping is observed. The 

distinct fault combination stands as the reason, while identical fault combination (hole, 

scratch) shows less amplitude and at the same time overlapping is also observed. Apart from 
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the fault localization, the variable type plays a key role in estimating the defect caused. The 

distinct type shows higher defects when compared to identical type fault.   

 

As a result, the proposed method has the following advantages: 

 

 The method can distinguish the healthy and faulty motor.   

 The conventional method (proposed in chapter 4) has an ability identify the 

compound bearing fault and the identification of the present state of bearing is made 

possible. 
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Chapter 7  

Common Diagnosis Method of 

Electrical and Mechanical Fault 
 

7.1 Common Diagnosis Method 

 

Till the previous chapters, the diagnosis method is different for three-induction motor failure 

(short-circuit insulation failure, broken rotor bar failure and bearing failure). For example, 

distortion ratio of load curents in case of short-circuit insulation failure and SOM in case of 

broken rotor bar and SVM in case of bearing failure. However, spectral analysis is common 

before carrying out the clustering and the machine learning diagnosis process.  

 

In respect of different diagnosis method, it is always preferable to have a common diagnosis 

method to all kind of faults occurring in the induction motor. Short-circuit insulation failure, 

broken rotor bar and bearing failure has been selected and the common fault diagnosis 

method proposed in chapter 4 is applied. The FFT analysis of the load current is performed 

and the diagnosis by SVM using the amplitude of 30 and 90 Hz as features. The entire 

analysis is performed without considering the rotating speed of the induction motor.  

 

7.1.1 Faulty Factor 

 

The experimental setup and the motor are same as explained in the chapter 4. In case of 

bearing failure, a hole or a scratch is made on the outer race-way of the bearing as shown in 

Figures 7.1 and 7.2, respectively. The dimension of the hole is diameter of 0.5 mm and depth 

of 0.5 mm. Likewise, the dimension of the scratch; length of 5 mm, width and depth of 0.5 

mm. The depth is made constant for both the hole and scratch. Likewise, for broken rotor bar 

failure, a single hole is drilled on the rotor bar and for short-circuit insulation failure, one-

turn fault is created in the stator winding as shown in Figures 7.3 and 7.4, respectively. The 

rotating speed was adjusted from 1780 min-1 to 1765 min-1.  
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Figure 7.1 Bearing with a hole 0.5 mm. 

 

 

 

 

  

 

 

 

 

 

Figure 7.2 Bearing with a scratch 5 mm. 

 

  

 

 

 

 

 

 

 

 

 

 

Figure 7.3 Broken rotor bar failure. 
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Figure 7.4 Short-circuit insulation failure. 

 

 

Two motors of same rating are selected, and the faults are induced artificially. The broken 

rotor bar fault and the bearing failure experiment is performed to one motor and short-circuit 

insulation failure experiment to the other motor, respectively. For the reliability, the 

experiment is repeated for three times. The proposed method is evaluated by means of 

measuring the stator current. The current signals are collected from the healthy motor and 

from the faulty motors. The measurement was carried out under the load condition. Both the 

frequency spectrum analysis and the feature extraction are based on the value of the stator 

current under four types of bearing conditions. The diagnosis procedure is shown in Figure 

7.5.  
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Figure 7.5 Common diagnosis procedure. 

 

 

7.1.2 Frequency Spectrum Analysis 

 

Initially, the FFT analysis is performed to the healthy motors 1 and 2. From the obtained 

frequency spectrum, feature distribution is plotted to check the data range of both the healthy 

motors. The amplitude of both the healthy motors lies within the same range. After the 

confirmation, the bearing failure, broken rotor bar fault and the short-circuit insulation fault 

are induced to the healthy motors. Figures 7.6 to 7.10 compare the frequency spectra plotted 

for healthy-hole, healthy-scratch and healthy-hole-scratch, and healthy-broken rotor bar, 
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healthy- short-circuit insulation failure, respectively, at a rotating speed of 1780 min−1. The 

amplitude on the vertical axis is normalized to a maximum of 0 dB.  

 

Initially, bearing failure analysis is discussed. A large amplitude difference can be observed 

between the healthy motor and all the two fault conditions (hole and scratch). When the faults 

on the bearings are compared (hole and scratch), the amplitude difference observed is 

sufficient to differentiate the cases. At 30 and 90 Hz, amplitude changes were observed at all 

rotating speeds (1780, 1775, 1770, and 1765 min−1). Like the bearing failure, broken rotor 

bar and short-circuit insulation failure also show similar changes at the frequencies 30 and 

90 Hz. Thus, for establishing the common diagnosis method, the frequencies 30 and 90 Hz 

have been selected and proceeded with the feature distribution.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.6 Spectral analysis of healthy and hole at 1780 min-1. 
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Figure 7.7 Spectral analysis of healthy and scratch at 1780 min-1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.8 Spectral analysis of healthy, hole and scratch at 1780 min-1. 
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Figure 7.9 Spectral analysis of healthy and broken roto bar at 1780 min-1. 

 

 

 

 

 

 

 

 

 

 

Figure 7.10 Spectral analysis of healthy and short-circuit insulation failure at 

1780 min-1. 
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7.1.3 Feature Distribution 

 

The feature distribution analysis is carried out using the amplitude of the characteristics 

frequency 30 and 90 Hz. Under each condition, the location of the class depends on the 

rotating speed of the motor and the bearing conditions. Figures 7.11 to 7.14 show the feature 

distribution at rotating speeds of 1780 to 1765 min−1 for healthy (1 and 2), bearing failure 

(hole and scratch), and broken rotor bar failure. While taking the individual rotating speed of 

the induction motor into consideration, the classes of the faulty motor (hole, scratch, and 

broken rotor bar) are located far away from the healthy motor. No overlapping of features 

has been occurred, the bearing conditions fell into distinctive classes, allowing them to be 

differentiated. It is made possible to predict the current state of the motor and the proposed 

method could identify the failure while the motor is running. This allows a fault to be 

identified and demonstrates the significant role that feature distribution plays in the analysis 

the motor failure.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.11 Feature distribution analysis at 1780 min-1. 
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Figure 7.12 Feature distribution analysis at 1775 min-1. 

 

 

 

 

 

 

 

 

 

 

 

  

  

             

 

 

Figure 7.13 Feature distribution analysis at 1770 min-1. 
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Figure 7.14 Feature distribution analysis at 1765 min-1. 

 

 

The analysis is also performed without considering the rotating speed of the induction motor 

and the result is shown in Figure 7.15. In this case, short-circuit insulation failure is included. 

The overlapping of features is observed between the healthy motors and faulty motors. Thus, 

it becomes impossible to diagnose using the feature distribution and the SVM is employed 

to identify the present state of the motor even in the case of without considering the rotating 

speed of the induction motor.  
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Figure 7.15 Combined feature distribution analysis. 

 

7.1.4 Diagnosis using SVM 

 

The main work is to identify and differentiate the faulty motor with the healthy motor. The 

entire diagnosis analysis is performed in both the conditions of the rotating speed of induction 

motor. That is, considering and without considering the rotating speed of the induction motor. 

The results of both the diagnosis are explained one by one as follows. 

 

7.1.4.1 Diagnosis without Considering Rotating Speed 

 

The diagnosis based on the SVM was performed without considering the rotating speed of 

the induction motor. The data of healthy motors are represented as H for easy understanding. 

Similarly, hole as HO, scratch as S, and broken rotor bar failure as BRB, short-circuit 

insulation failure as SC, respectively. The training data and the diagnosis data are spitted 

randomly in the ratio 70:30. Data obtained at four rotating speeds (1780, 1775, 1770, and 

1765 min−1) are combined and the diagnosis is being performed. In this proposed system, the 
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accuracy rate of the diagnosis is defined as 

 

      Accuracy rate (%) =  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑒𝑑 𝑎𝑐𝑐𝑢𝑟𝑎𝑡𝑒𝑙𝑦

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑓𝑜𝑟 𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑖𝑠
 × 100         (7.1) 

 

Table 7.1 shows the accuracy rate and found to be practically acceptable. The HO, BRB and 

SC are completely diagnosed from the healthy motor and show the maximum accuracy rate. 

The difference between the faults induced on the outer raceway of the bearing also shows 

high accuracy rate of 91.25 %. With this accuracy rate, it is possible to identify the present 

state of the bearing as well as possible to distinguish the failure occurred on the bearing. The 

accuracy percentage of the S is 82.96 % and considered to be practically acceptable. This is 

a significant advantage of the proposed method, making it suitable for use at different speeds 

and in industrial environments. The diagnosis rate of three mechanical faults is 84.73 %, 

which is comparatively high than any other diagnosis method. It is possible to identify 

whether the motor is healthy or faulty motors and possible to identify the present state of the 

motor.  

 

However, the results are better when compared to feature distribution analysis result and the 

future work lies in improving the diagnosis rate and method to identify the current state of 

the motor will be discussed.  

 

Table 7.1 SVM diagnosis result 

 

 

 

 

 

 

 

 

 

 

 

 

Bearing Conditions Accuracy Rate (%) 

H-HO 100 

H-S 82.96 

H-BRB 100 

H-SC 100 

HO-S 91.25 

HO-S-BRB 84.73 

Average 93.16 
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7.1.4.2 Diagnosis Considering Rotating Speed 

 

Diagnosis based on the SVM was performed by considering the individual rotating speed of 

the induction motor. The training data and the diagnosis data are spitted randomly in the ratio 

70:30. In this proposed system, the accuracy rate of the diagnosis is defined as like the 

previous case without considering the rotating speed of the induction motor.  

 

The diagnosis rate is found to be 100 %. Thus, the identification of the current state of the 

motor is possible when the diagnosis is done considering the rotating speed of the induction 

motor. It is also possible to identify whether the motor is healthy or faulty and it can be 

distinguished using the proposed method. Predicting the current state of the motor is achieved 

in this diagnosis condition.  

 

7.1.5 Discussion of Common Diagnosis Method 

 

The common diagnosis method detecting the outer raceway bearing fault and broken rotor 

bar failure was applied using the FFT analysis. Further diagnosis was performed using an 

SVM. To satisfy the use of motors in industrial environments, the diagnosis was performed 

without considering the rotating speed of the motor.  

 

From the result, it is understood that the proposed method can identify the two-different 

mechanical faults occurring in the induction motor and the differentiation between the broken 

rotor bar and the bearing was also achieved. Since the experiment is carried out for three time 

and at different days, the reliability of the data and the results are high. Identifying the present 

state of the motor in case of mechanical fault is made possible.  

 

7.2 Multiple Fault Diagnosis Method 

 

The application of the common diagnosis method is applied to detect the multiple fault 

occurred in the induction motor. Both the broken rotor bar fault and the bearing fault are 

induced simultaneously to induction motor and the analysis is performed using FFT. The 

diagnosis is performed using SVM. The entire analysis is performed without considering the 
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rotating speed of the induction motor.  

 

7.2.1 Faulty Factor 

 

The experimental setup and the motor are same as explained in the chapter 4. Two kinds of 

bearing fault are selected; hole and scratch. The dimension of the hole is diameter of 2 mm 

and depth of 0.5 mm. The dimension of the scratch; length of 10 mm, width and depth of 0.5 

mm. The depth is made constant for both hole and scratch. Likewise, for broken rotor bar 

failure, a single hole is drilled on the rotor bar.  

 

The broken rotor bar fault and the bearing failure are induced simultaneously to the motor. 

The combinational multiple fault of broken rotor bar and bearing fault is shown in Figures 

7.16 and 7.17. The rotating speed is adjusted from 1780 min-1 to 1765 min-1. For the reliability, 

the experiment is repeated for three times. The proposed method is evaluated by means of 

measuring the stator current. The current signals are collected from the healthy motor and 

from the faulty motors. The measurement is carried out under the load condition. Both the 

frequency spectrum analysis and the feature extraction are based on the value of the stator 

current. 

 

 

 

 

 

 

 

 

 

 

Figure 7.16 Multiple fault broken rotor bar and bearing (hole). 

 

 

  



Common Diagnosis Method of Electrical and Mechanical Fault 

 

 

155 

 

 

 

 

 

 

 

 

 

Figure 7.17 Multiple fault broken rotor bar and bearing (scratch). 

 

7.2.2 Frequency Spectrum Analysis 

 

Initially, the FFT analysis is performed to the healthy motor. After the confirmation, the 

broken rotor bar fault and bearing failure are induced to the healthy motors. For easy 

understanding, the healthy, bearing fault with scratch and broken rotor bar, bearing fault with 

hole and broken rotor bar, are indicated as H, BRB+BS, and BRB+BH, respectively. Figures 

7.18 to 7.21 compare the frequency spectra plotted for the combination H, BRB+BS, 

BRB+BH at all rotating speeds. The amplitude on the vertical axis is normalized to a 

maximum of 0 dB.  

 

A large amplitude difference can be observed between the healthy motor and the two fault 

combinations (BRB+BS, BRB+BH). When the faults are compared, the amplitude difference 

observed is sufficient to differentiate the cases. At 30 and 90 Hz, amplitude changes are 

observed at all rotating speeds (1780, 1775, 1770, and 1765 min−1). For establishing the 

multiple fault diagnosis method, the frequencies 30 and 90 Hz have been selected and 

proceeded with the feature distribution.  
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Figure 7.18 Spectral analysis of multiple fault analysis at 1765 min-1. 

 

 

 

 

 

 

Figure 7.19 Spectral analysis of multiple fault analysis at 1770 min-1. 
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Figure 7.20 Spectral analysis of multiple fault analysis at 1775 min-1. 

 

 

 

 

 

 

 

   

             

Figure 7.21 Spectral analysis of multiple fault analysis at 1780 min-1. 
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7.2.3 Feature Distribution 

 

The feature distribution analysis is carried out using the amplitude of the characteristics 

frequency 30 and 90 Hz. The location distinguishing behavior depends on the rotating speed 

of the motor and the motor conditions. Figures 7.20 to 7.23 show the feature distribution at 

rotating speeds of 1780 to 1765 min−1 for healthy, BRB+BH, BRB+BS. While taking the 

individual rotating speed of the induction motor into consideration, the classes of the faulty 

motors (BRB+BH, and BRB+BS) are located far away from the healthy motor. No 

overlapping of features has been occurred, the motor conditions fell into distinctive classes, 

allowing them to be differentiated. It is made possible to predict the current state of the motor 

and the proposed method could identify the failure while the motor is running. This allows a 

fault to be identified and demonstrates the significant role that feature distribution plays in 

the analysis the motor failure.  

 

Figure 7.22 Feature distribution analysis at 1765 min-1. 
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Figure 7.23 Feature distribution analysis at 1770 min-1. 

       

Figure 7.24 Feature distribution analysis at 1775 min-1. 
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Figure 7.25 Feature distribution analysis at 1780 min-1. 

 

 

The analysis is also performed without considering the rotating speed of the induction motor 

and the result is shown in Figure 7.26. The overlapping of features is observed partially 

between H and BRB+BH. The hole has more effect when compared to the scratch. The partial 

diagnosis is possible using the feature distribution and to increase the accuracy rate, SVM is 

employed.  
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Figure 7.26 Combined feature distribution analysis. 

 

 

7.2.4 Diagnosis using SVM 

 

The main work is to identify the faulty motor with the healthy motor. The diagnosis analysis 

is performed in both the condition of the rotating speed of induction motor. That is, 

considering and without considering the rotating speed of the induction motor. The results of 

both the diagnosis are explained one by one as follows. 

 

7.2.4.1 Diagnosis without Considering Rotating Speed 

 

The diagnosis based on the SVM was performed without considering the rotating speed of 

the induction motor. The training data and the diagnosis data are divided randomly in the 

ratio 70:30. Data obtained at the four rotating speeds (1780, 1775, 1770, and 1765 min−1) are 

combined and the diagnosis is being performed.  
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Table 7.2 shows the accuracy rate and found to be practically acceptable. The diagnosis is 

carried out for the combination (H-BRB+BH), (H-BRB+BS), (BRB+BH-BRB+BS), and (H-

BRB+BH-BRB+BS). The complete diagnosis is observed, and the proposed method can find 

the present state of the motor. This is a significant advantage of the proposed method, making 

it suitable for use at different speeds and in industrial environments. The average diagnosis 

rate is 98.61 %, which is comparatively high than feature distribution result.  

 

 

Table 7.2 SVM diagnosis result 

 

 

 

 

 

 

 

 

 

 

7.2.4.2 Diagnosis Considering Rotating Speed 

 

Diagnosis based on the SVM was performed by considering the individual rotating speed of 

the induction motor. The training data and the diagnosis data are divided randomly in the 

ratio 70:30. In this proposed system, the accuracy rate of the diagnosis is defined as like the 

previous case without considering the rotating speed of the induction motor.  

 

The diagnosis rate is found to be 100 %. Thus, the identification of the current state of the 

motor is possible when the diagnosis is done considering the rotating speed of the induction 

motor.  

 

 

 

Bearing Conditions Accuracy Rate (%) 

H-BRB+BH 97.28 

H-BRB+BS 100 

BRB+BH-BRB+BS 100 

H- BRB+BH-BRB+BS 97.28 

Average 98.61 



Common Diagnosis Method of Electrical and Mechanical Fault 

 

 

163 

7.2.5 Discussion of Multiple Fault Diagnosis 

 

The multiple fault diagnosis method detecting the outer raceway bearing fault and broken 

rotor bar failure was proposed using the FFT analysis and SVM diagnosis. To satisfy the use 

of motors in industrial environments, the diagnosis was performed without considering the 

rotating speed of the motor.  

 

From the result, it is understood that the proposed method can identify the two mechanical 

faults occurring in the induction motor and the differentiation between was also achieved. 

Since the experiment is carried out for three time and at different days, the reliability of the 

data and the results are high. Identifying the present state of the motor in case of mechanical 

fault is made possible.  

 

7.3 Summary 

 

Till now, different methods have been employed in detecting the short-circuit insulation 

failure (chapter 2), broken rotor bar failure (chapter 3), and bearing failure (chapters 4 and 

5). In the study, using the proposed method of chapter 4, the common diagnosis method is 

applied to detect three kinds of fault (short-circuit insulation failure, broken rotor bar failure, 

and bearing failure). The application of the common diagnosis method is also applied to 

detect the multiple fault occurred in the induction motor. Both the broken rotor bar fault and 

the bearing fault are induced simultaneously to induction motor and the analysis is performed. 

The entire analysis is performed without considering the rotating speed of the induction motor.  

 

The results are concluded as follows: 

 

 The one-turn short-circuit insulation failure detection is made possible 

 The method confirms the possibilities of diagnosing one broken rotor bar failure  

 Detection of the multiple fault i.e. both the broken rotor bar and the bearing fault are 

induced simultaneously to induction motor is achieved  
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 From the result of the common diagnosis and the multiple fault diagnosis, the 

versatility of the present study is confirmed and found to be high.  

 From this, it is possible to examine the applicability of the proposed method to other 

electric motors.  
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Chapter 8  

Comparison of Machine Learning 

Algorithm and Artificial Intelligence  

Method to Fault Diagnosis 
 

Most of the induction motor failure diagnosis including bearing fault, broken rotor bar and 

short-circuit fault has been carried out using Support Vector Machine (SVM). In this section, 

some of the other machine learning algorithm and the latest technology artificial intelligence 

have been selected and the diagnosis result is discussed. Though SVM has a superiority 

function among the machine learning algorithm, a case study is done by selecting the widely 

used diagnosis methods which are adopted in other application. 

 

Three types of bearing fault have been selected; hole, scratch and a special one which 

abrasion type of scratch. The abrasion type of scratch is selected because it almost matches 

the industrial environment fault. Bearing failure analysis and diagnosis are carried out using 

various machine learning algorithm (MLA). Additionally, among the artificial intelligence 

method, deep learning (DL) is getting attention in various fields like medical, safety driving 

system, biological research etc. An attempt is made by testing the level of deep learning to 

the field of bearing failure analysis. The entire diagnosis results are compared and discussed.  

 

8.1 Faulty Factor 

 

The experimental setup is same as explained in the chapter 4. Two different type motors are 

used. A hole, scratch is induced in motor 1 and abrasion scratch on motor 2 as shown in 

Figures 8.1 to 8.3, respectively.  

 

The dimension of the hole is diameter of 0.5 mm and depth of 0.5 mm. Likewise, the 

dimension of the scratch; length of 5 mm, width and depth of 0.5 mm. The dimension of 
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abrasion scratch is length of 12 mm, width of 8 mm and depth of 0.5 mm. The depth (0.5 

mm) is made constant for a better understanding of fault analysis. The rotating speed was 

adjusted from 1780 min-1 to 1765 min-1. 

 

 

 

 

 

 

 

 

 

Figure 8.1 Bearing with a hole 0.5 mm. 

 

 

 

 

 

 

 

 

Figure 8.2 Bearing with a scratch 5 mm. 

 

 

 

 

 

 

 

 

 

Figure 8.3 Abrasion bearing sample. 
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The proposed method is evaluated by means of measuring the stator current. The current 

signals are collected from the healthy motor and three types of the faulty motors. The 

measurement was carried out under the load condition. Both the frequency spectrum analysis 

and the feature extraction are based on the value of the stator current under four types of 

bearing conditions. The procedure of the case study is shown in Figure 8.4. 

 

 

 

 

 

 

 

 

 

 

Figure 8.4 Case study procedure. 

 

8.2 Frequency Spectrum Analysis 

 

FFT analysis of the U-phase load current was performed under all four bearing conditions. 

Figures 8.5 to 8.8 compare the frequency spectra plotted for healthy-hole, healthy-scratch, 

hole-scratch, healthy-abrasion scratch respectively, at a rotating speed of 1765 min−1. The 

amplitude on the vertical axis is normalized to 0 dB. 

 

A large amplitude difference can be observed between the healthy motor and all the two fault 

conditions (hole and scratch). When the faults on the bearings are compared (hole and 

scratch), the amplitude difference observed is sufficient to differentiate the cases. Amplitude 

differences in the frequency components were clearly visible at frequencies of 30, 90, 150, 

and 180 Hz. At 30 and 90 Hz, amplitude changes were observed at all rotating speeds (1780, 

1775, 1770, and 1765 min−1). At 150 and 180 Hz, in contrast, no significant amplitude change 

was observed when the speed was varied, under any of the four bearing conditions. 

Frequencies of 30 and 90 Hz were therefore used in the study.  

 

Load current 
analysis

Frequency 
spectral 
analysis

Feature 
extraction

MLA

DL
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This allowed differences between the healthy and faulty conditions and between different 

fault conditions to be localized.  

 

In the case of a hole and scratch, shockwave impulse gets generated and the characteristic 

frequency is set to occur, which is confirmed by various case study explained in the other 

chapter (4). An interesting fact, it is suggested even the abrasion type fault causes and creates 

some shock wave pulse which induces the characteristic frequency to occur. This 

characteristic frequency mainly depends on the faulty part and damage level of the bearing. 

Thus, the characteristic frequency 30 and 90 Hz plays a major role in detecting the bearing 

conditions of the induction motor and these frequencies are used to plot the feature distribution 

for further study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.5 Spectral analysis of healthy and hole at 1765 min-1. 
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Figure 8.6 Spectral analysis of healthy and scratch at 1765 min-1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.7 Spectral analysis of hole and scratch at 1765 min-1. 
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Figure 8.8 Spectral analysis of healthy and abrasion scratch at 1775 min-1. 

 

 

8.3 Feature Distribution 

 

The amplitude of the fault frequency of 30 and 90 Hz is extracted as features and its 

effectiveness is discussed. The amplitude of frequency 30 Hz is plotted along X-axis and 90 

Hz along Y-axis, respectively. The contribution of each bearing conditions at different 

rotating speed is evaluated in the study. The results of all rotating speed are shown from 

Figures 8.9 to 8.16. The location of the features mainly depends on the rotating speed of 

induction motor and the bearing conditions used in the present study. It is clear that the 

features are located according to their own classes of bearing condition. No overlapping 

exists when the analysis is performed considering the rotating speed of the induction motor 

and confirms the fact of identifying the fault.  
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Figure 8.9 Feature distribution of bearing failure analysis at 1765 min-1. 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 8.10 Feature distribution of bearing failure analysis at 1770 min-1. 
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Figure 8.11 Feature distribution of bearing failure analysis at 1775 min-1. 

 

 

 

 

 

 

 

 

 

     

Figure 8.12 Feature distribution of bearing failure analysis at 1780 min-1. 
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Figure 8.13 Feature distribution analysis at 1765 min-1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.14 Feature distribution analysis at 1770 min-1. 
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Figure 8.15 Feature distribution analysis at 1775 min-1. 

 

 

 

 

 

 

  

            

     

 

 

 

 

 

Figure 8.16 Feature distribution analysis at 1780 min-1. 
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In factories, the rotating speed of the motor is not constant and feature extraction analysis is 

also performed in satisfying the industrial environment and the result is shown in Figures 

8.17 and 8.18.  

 

The overlapping of features is observed between the healthy and scratch, and some minute 

overlapping is observed between hole and scratch. The faulty motor hole and healthy motor 

show no overlapping and it is completely distributed to their own class of location. The slight 

fault of hole 0.5 mm is diagnosed and identified completely. But overlapping is observed 

between the healthy and abrasion scratch. In this situation, it is hard to differentiate the 

existing status of the motor. However, it is crucial to achieving the diagnosis even while 

considering the industry environment. To improve the diagnosis, the machine learning 

algorithm and artificial intelligence method is introduced.  

 

 

 

 

 

 

 

 

 

 

Figure 8.17 Combined feature distribution of bearing failure analysis. 
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Figure 8.18 Combined feature distribution analysis. 

 

8.4 Machine Learning Algorithm 

 

The machine learning is a field of computer science that uses the statistical techniques to give 

the system the ability to perform the task or improvise the task, without being explicitly 

programmed. The machine learning is closely related to statistical analysis, which focuses on 

predicting the result that ties with the mathematical optimization. Sometimes it conflated 

with the data mining, data preprocessing can also be achieved through the machine learning.  

 

Generally, the machine learning algorithm is classified as supervised and unsupervised 

algorithm. The supervised algorithm consists of a target variable which is to be predicted 

from a given set of independent variables. These variables are used to generate the function 

and maps of the input to get the desired output and the target is achieved. The datum is trained 

to achieve the better accuracy rate. The training process is continued until the model achieves 

the desired level of accuracy. But in case of unsupervised algorithm, there is no target variable 

and the clustering technique is adopted. These techniques may segment the group and certain 
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level of diagnosis can be achieved.  

 

The role is to identify the current state of bearing and from the case study it is known that the 

supervised machine learning algorithm is the suited one to carry out the bearing failure 

analysis. The algorithms used in the present study are Support Vector Machine, Naives Bayes, 

K-nearest Neighbor Algorithm, Decision tree, and Random forest. It is organized as follows; 

the description, procedure and result, and finally characteristics difference between the 

approaches. 

 

8.4.1 Support Vector Machine (SVM) [1]-[3] 

 

SVM used for the diagnosis in the ongoing study is described shortly. SVM is one of pattern 

recognition methods, which determines a recognition result by categories after evaluating 

similarities of an input pattern with respect to categories, based on previous recognition 

results of training data. SVM was originally introduced to the classification of linearly 

separable classes of object. For example, when data of two classes are distributed as shown 

in Figure 8.19, they are separated by the line drawn between the two classes so that the margin 

d becomes maximum. In addition to performing linear classification, SVM can also 

efficiently perform a non-linear classification using the kernel, implicitly mapping their 

inputs into high-dimensional feature spaces. 

 

Adding to the point, SVM is based on the concept of decision planes that define the boundary 

condition. A decision plane is one that separates between a set of objects having different 

class memberships. A schematic example is shown in Figure 8.20. In this example, the 

objects belong either to class GREEN or RED. The separating curve defines a boundary on 

the right side of which all objects are GREEN and to the left of which all objects are RED. 

Any new object falling to the right is labeled, i.e., it belongs to the classification GREEN or 

else it should be classified as RED and it must fall to the left of the separating line.  
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Figure 8.19 Example of linear classification for two-class data by SVM. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.20 Schematic example for SVM. 

 

The above is a classic example of a linear classifier, i.e., a classifier that separates a set of 

objects into their respective groups (GREEN and RED). Most classification tasks, however, 

are not simple, and often more complex structures are needed to make an optimal separation, 

i.e., correctly classify new objects (test cases) because of the examples that are available 

(train cases). This situation is depicted in the Figure 8.21 shown below. Compared to the 

previous schematic, a full separation of the GREEN and RED objects would require a curve 
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(which is more complex than a line). Classification tasks based on drawing separating lines 

to distinguish between objects of different class memberships are known as hyper plane 

classifiers. SVMs are particularly suited to handle such tasks. 

 

 

 

  

 

 

 

 

 

 

 

 

 

Figure 8.21 Example for hyper plane classification. 

 

 

Figure 8.22 shows the basic idea behind SVM. Here the original objects (left side of the 

schematic) is mapped, i.e., rearranged, using a set of mathematical functions, known as 

kernels. The process of rearranging the objects is known as mapping. Note that in this new 

setting, the mapped objects (right side of the schematic) is linearly separable and thus, instead 

of constructing the complex curve (left schematic), it is better to find an optimal line that can 

separate the GREEN and the RED objects. 

 

In general, SVM is mainly classified into two categories. They are hard margin and soft 

margin SVM. When the classes are linearly separable, then hard margin could be used for 

the classification. This hard margin is independent of cost parameter (C) and radial basis 

function, and radial basis function is commonly used kernel function in support vector 

gamma machine classification. The definition of the kernel involves a parameter (γ). But on 

the other side, when the classes are not linearly separable then soft margin is used for the 
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diagnosis. This soft margin is dependent of the parameters that are involved in the diagnosis. 

Furthermore, in the present study, soft margin is used for the diagnosis.  

 

 

  

 

 

 

 

 

 

 

 

Figure 8.22 Mapping of SVM. 

 

 

8.4.1.2 SVM Classification  

 

SVM is primarily a classier method that performs classification tasks by constructing hyper 

planes in a multidimensional space that separates cases of different class labels. SVM 

supports both regression and classification tasks and can handle multiple continuous and 

categorical variables.  

 

For categorical variables a dummy variable is created with case values as either 0 or 1. Thus, 

a categorical dependent variable consisting of three levels, say (A, B, C), is represented by a 

set of three dummy variables: 

 

 A: {1 0 0} 

 B: {0 1 0} 

 C: {0 0 1} 
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To construct an optimal hyper plane, SVM employs an iterative training algorithm, which is 

used to minimize an error function. According to the form of the error function, SVM models 

can be classified into four distinct groups: 

 

 Classification SVM Type 1 (also known as C-SVM classification) 

 Classification SVM Type 2 (also known as nu-SVM classification) 

 Regression SVM Type 1 (also known as epsilon-SVM regression) 

 Regression SVM Type 2 (also known as nu-SVM regression) 

 

In the present study, the classification SVM Type 1 is employed. Next, the classification of 

SVM is explained shortly. It has two main classification, i.e., classification SVM type 1 and 

classification SVM Type 2.  

 

 Classification SVM Type 1 

 

For this type of SVM, training involves the minimization of the error function: 

 

                           (8.1) 

                                        

In subject to the constraints: 

 

       (8.2)

      

where C is the cost parameter, w is the vector of coefficients, b is a constant, and  represents 

parameters for handling non-separable data inputs. The index i labels the N training cases. 

Note that  represents the class labels and xi represents the independent variables. The 

kernel  is used to transform data from the input (independent) to the feature space. It should 

be noted that the larger the C, the more the error is penalized. Thus, C should be chosen with 

care to avoid over fitting. 

 

 



Comparison of Machine Learning Algorithm and  

Artificial Intelligence Method to Fault Diagnosis 

 

182 

 Classification SVM Type 2 

 

In contrast to Classification SVM Type 1, the Classification SVM Type 2 model minimizes 

the error function: 

 

          (8.3) 

 

In subject to the constraints: 

 

       (8.4) 

  

It should be noted that the larger the C, the more the error is penalized. Thus, C should be 

chosen with care to avoid over fitting. 

 

8.4.1.3 Regression SVM 

 

In a regression SVM, the task is to estimate the functional dependence of the dependent 

variable y on a set of independent variables x. It assumes, like other regression problems, that 

the relationship between the independent and dependent variables is given by a deterministic 

function f plus the addition of some additive noise: 

 

          y = f(x) + noise                           (8.5) 

 

The task is then to find a functional form for f that can correctly predict new cases that the 

SVM has not been presented before. This can be achieved by training the SVM model on a 

sample set, i.e., training set, a process that involves, like classification, the sequential 

optimization of an error function. Depending on the definition of this error function, two 

types of SVM models can be recognized: 
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 Regression SVM Type 1 

 

The error function is: 

 

 

          (8.6) 

 

The following condition can be minimized as: 

 

 

 

          (8.7) 

 

 

 Regression SVM Type 2 

 

The error function is given by: 

 

               (8.8) 

 

 

The following condition can be minimized as: 

 

 

          (8.9) 

 

 

where C is the cost parameter constant, w is the vector of coefficients, b is a constant, 

and  represents parameters for handling non-separable data inputs. The index i labels the N 

training cases. Note that  represents the class labels and xi represents the independent 

variables.  
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8.4.1.4 Kernel 

 

SVM is one of the features that can improve generalization performance by choosing the 

kernel appropriately depending on the issue. There are number of kernels that can be used in 

Support Vector Machines models. These include linear, polynomial, radial basis function 

(RBF) and sigmoid.  

 

The entire expression for the linear, polynomial, radial basis function and sigmoid is given 

as follows: 

 

 

      (8.10) 

  

 

where   is the kernel function that represents a dot product of input 

data points mapped into the higher dimensional feature space by transformation . Also, 

gamma is an adjustable parameter of certain kernel functions. The RBF is by far the most 

popular choice of kernel types used in SVM. This is mainly because of their localized and 

finite responses across the entire range of the real x-axis. 

 

8.4.1.5 SVM Illustration 

 

Consider a two-dimensional input space where training data xi (i=1, ∙∙∙, M) can be classified 

into two classes: class 1 and class 2. When a datum belongs to the class 1, take 1 for yi. In the 

case of datum of the class 2, yi is equal to -1. i denotes the numbers of classes.  
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The discriminant function is given by 

         

                             ),()( bxxKyxD
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     (8.11) 

where K(xi, x) is called kernel and selected to suite the problem and 
T

M ),( 1   . i  is 

non-negative Lagrange multiplier and b being a constant. M is the number of data. 

 

In a soft margin nonlinear SVM classification, it is necessary to maximize the margin 

parameter and generalization capability.  
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where C is a cost parameter related to recognition rate and generalization capability. b is 

given by the following equation 
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Thus, the use of radial basis function kernel on two samples of x and x', represented as 

feature vectors in some input space, 

 

                            )'exp()',(
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leads to the discriminant function given by 
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      (8.17) 

 

where   is a parameter. The value of the kernel ranges between zero and one and decreases 

with distance between x and 'x . Hence, in the present research work, the SVM was applied 

to two class models to diagnose the bearing fault on the induction motor. The definition of 

the kernel involves a gamma parameter γ. Smaller γ value leads to a simple decision boundary, 

whereas larger γ value leads to a complicated decision boundary.  

 

Also, tuning of parameters C and γ were carried out by 8-cross-validation. Data was divided 

into 8 groups. Groups 1 to 7 were used as training data. Group 8 was used as evaluation data. 

Evaluation data is used for obtaining accuracy rate. Then, by changing the group for 

evaluation, 7 accuracy rates were obtained. Finally, the average accuracy rate was calculated. 

The above said process was repeated for different values of C and γ. Accuracy rate as 

functions of C and γ is shown in a two-dimensional map like Figure 8.23, which will be 

indicated in blue color with different grades. Deeper the color higher will be the accuracy 

rate. Values of C and γ with highest accuracy rate is used in the present study. Obtaining the 

optimum parameter values will be a tedious process, however the process that followed 

would be practically acceptable. The explanation about the parameters mentioned in the 

summary and the types of SVM are given in the Table 8.1. Above mentioned process was 

done in R language programming software. 
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Figure 8.23 Two-dimensional map illustrate difference between C and γ. 

 

Table 8.1 Specification of SVM 

 

 

 

 

 

 

 

 

 

 

The SVM-based diagnosis was carried out for hole, scratch, abrasion type scratch, using the 

amplitude of the 30 and 90 Hz characteristic frequency components. To match an industrial 

environment, the entire study of diagnosis was conducted without considering the rotating 

speed of the induction motor. The accuracy rate was derived as follows: 

 

       Accuracy rate (%) =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑒𝑑 𝑝𝑟𝑜𝑝𝑒𝑟𝑙𝑦

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑢𝑠𝑒𝑑 𝑓𝑜𝑟 𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑖𝑠
X100       (8.18) 

 

Type of SVM Soft Margin SVM 

Kernel Radial Basis Function Kernel 

Gamma parameter 2-4 

Cost parameter 2-1 

Number of support Vectors 8 

Number of classes 2 

Threshold in training 0 

Threshold in prediction 0.5 

Gamma parameter γ
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8.4.1.6 Diagnosis result 

 

For easy understanding, the healthy motor, motor with hole, scratch, abrasion type scratch is 

indicated as H, HO, S, A, respectively. For conditions H–HO, H–S, HO-S, and H–A, 320 sets 

of data were used. Each dataset had amplitude of both 30 and 90 Hz frequency components. 

From the 320 sets, 240 were used as training data, and the remaining 80 were used as 

evaluation data. Four rotating speeds (1780, 1775, 1770, and 1765 min−1) are combined and 

the diagnosis has been performed.  

 

Table 8.2 shows the accuracy rate. 100 % accuracy rate is obtained in case of H-HO. The 

accuracy rates for H–S and HO–S are sufficiently high to be considered acceptable in 

practical applications. In the case of H–A, the accuracy rate was lower because of a 

significant overlapping between the healthy and faulty conditions (Figure 8.18). These 

significant overlaps were found between the different bearing conditions, making the 

diagnosis process tedious. The tests confirmed that the method can predict bearing failure in 

a running motor. The average accuracy rate was found to be 83.63 % and the proposed 

method was effective in making it suitable for variable speed application and in industrial 

environments.  

 

Table 8.2 SVM diagnosis result 

 

 

 

 

 

 

 

 

 

The role of gamma and cost parameters in deciding the accuracy rate is explained using HO-

S bearing conditions and shown in Figure 8.24. The overlapping among features can be 

reduced and/or eliminated by use of the optimum gamma values. Gamma function transfers 

the linear  

Bearing Conditions Accuracy Rate (%) 

H-HO 100 

H-S 77.50 

H-A 65.75 

HO-S 91.25 

Average 83.63 
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variable to higher dimension and controls the shape of the data. A small gamma value gives 

sharp end points, that differentiates the data from the other features. The larger value of cost 

parameter makes misclassification of training data, so small value of cost parameter along 

with small gamma value helps in increasing the accuracy rate. The three main parameters 

that alters the SVM accuracy rate shown in Figure 8.25. Techniques such as cross validation, 

re-sampling along with grid search are the straightforward ways to choose the values of cost 

and gamma parameters in SVM. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.24 SVM accuracy result of HO-S using cost and gamma parameter. 
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Figure 8.25 Parameters of SVM. 

 

 

8.4.2 Naive Bayes Classifier Theorem (NBC) [4] 

 

The amplitude of the characteristic frequency components 30 and 90 Hz show statistical 

variation, which get confirmed by kurtosis analysis. A statistical diagnosis method is selected 

for carrying the bearing failure analysis. The NBC Theorem is adopted because of its merits 

like multi-dimension input and suitable for continuous datasets. 

 

8.4.2.1 Explanation of NBC Theorem  

 

The NBC Theorem is a simple machine learning algorithm that is used to analyze the 

occurrence of an event based on the evidence or data. The algorithm is trained mainly for the 

classification problems in various domains, primarily used for the text classification issues 

like spam filtration of mail, predicting the health risk and their issues. Despite its simplicity, 

NBC is known for its quick and effective computation of unknown class from high 

dimensional datasets. It can perform the classification of both supervised and unsupervised 

data. In simple words, NBC Theorem is based on conditional probability with the 
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independence assumption of attributes. It is suitable for continuous, discrete, and categorical 

features data sets. NBC Theorem mainly classified into three types; Multinomial Naive, 

Bernoulli Naive, and Gaussian Naive.    

 

 Multinomial or Binomial NBC Theorem 

 

The Multinomial or Binomial Naive Bayes Network Theorem is one of the standard classic 

algorithm mainly used for data classification problem. The binomial model explicitly gives 

the count and frequency of occurred class or event based on the given data or evidence. Thus, 

class regulation is possible for irregular data sets and most suited for discrete data types. 

When classifying the data type problem, the binomial model measures the frequency of the 

class. Spam detection in e-mail is the practical example of Binomial Naive Bayes Network 

Theorem. This algorithm is unfit for continuous data types and random selection of data is 

not possible.  

 

 Bernoulli NBC Theorem 

 

Bernoulli NBC Theorem is a special algorithm which uses binary values (0,1) for indicating 

the data classifications. The method also opts for discrete data and inherently it solves the 

data classification problem. The Boolean function indicates the presence or absence of a class 

in data; 0 for absence and 1 for presence, respectively. The main principle behind the 

Bernoulli NBC Theorem is conditional probabilities and firmly suitable for a small group of 

data. The method does computational mistake for more number of classes because of its 

binary nature.  

   

 Gaussian NBC Theorem 

 

The Gaussian NBC Theorem is a simple algorithm among the three types and the main 

parameters are mean and statistic variance. In contrast to Binomial and Bernoulli NBC 

Theorems, Gaussian accepts input in the form of continuous datasets. It can perform the 

classification for both supervised and unsupervised data. Random selection is also possible 
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with Gaussian NBC Theorem. Additionally, a kernel function is included, which performs 

the mapping of large input data.  

 

From the three models, Gaussian NBC Theorem is selected to accomplish the bearing failure 

diagnosis because of the statistical nature of training the data. The training is done in the 

unsupervised manner and each class exhibits own property of classification. The kernel 

function is included which may train the data in statistical way and additionally the 

probability function is included in the Gaussian NBC Theorem. Furthermore, the algorithm 

is trained by importing the data from four bearing conditions and training them properly.   

 

8.4.2.2 Derivation of Gaussian NBC Theorem  

 

The derivation of the algorithm is based on the NBC rules and assumptions of conditional 

independence. The main equation prescribes the goal of learning is P (X|Y), where X= (X1, 

X2…Xn). The Gaussian algorithm assumes that Xn is conditional independence; conditions 

to be specified at the time of training. The total data of Xn are allotted to Y. The value of each 

subset P (X|Y) is calculated according to the input X and the problem of estimating the 

training data is neglected.  

 

Let us calculate the Gaussian NBC model for two input models (X=X1, X2). In this case, the 

Bayes algorithm can be derived as follows: 

 

          P (X|Y) = P(X1, X2|Y)                   (8.19) 

 

In the second step, the general property of the probability is calculated.  

 

           P (X|Y) = P (X1|X2, Y) P (X2|Y)            (8.20) 

 

The last step is to calculate the definition of conditional independence.  

 

          P (X|Y) = P (X1|Y) P (X2|Y)               (8.21) 
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Generally, the Bayes network for n attributes which satisfies the conditional independence 

assumption is given by,          

 

                                                                                             

P(X1 … Xn|Y) =
n               
Π P(Xi|Y)
i = 1        

 
(8.22) 

 

               

Both the Y and Xi are Boolean variables and assumed of conditional independence. In the 

current study, X takes the value of the bearing condition (X=4) and Y takes the value of the 

amplitude of characteristic frequency components 30 and 90 Hz.  

  

8.4.2.3 Diagnosis procedure and the result  

 

The entire diagnosis is performed without considering the rotating speed of the induction 

motor. The training data and diagnosis data are selected randomly in the ratio 70:30. Among 

320 sets data of frequency components of 30 and 90 Hz, 224 data are used for training and 

96 data for diagnosis. The selection condition is same for all the possible combinations of 

bearing. The entire diagnosis process is done using Python programming language. 

 

The diagnosis result is shown in Table 8.3. The diagnosis is performed to four different 

combinations of bearing condition; (H-HO), (H-S), (H-A), and (HO-S), respectively. The 

average diagnosis rate is found to be 86.88 %, validating the proposed method is suitable to 

identify the small fault and able to identify the present condition of the bearing. Generally, it 

is a tedious process to diagnose the data when the overlapping occurs, but the NBC is 

effective in diagnosing all kinds of bearing. The statistical behavior of the NBC stands as the 

main reason for the high accuracy rate obtained when the diagnosis is performed without 

considering the rotating speed of the induction motor. The high accuracy rate is obtained even 

in the case of overlapping. Thus, on-line bearing failure detection is possible and suitable for 

industries.   
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Table 8.3 NBC diagnosis result 

 

 

 

 

 

 

 

 

 

Generally, NBC Theorem and SVM are adopted for multi-dimensional data input, and either 

binary or multi-class outputs are possible. The performance of both NBC Theorem and SVM 

is said to vary depending upon the selection of kernel function. The output differs with the 

parameter selection. In the present study, NBC Theorem achieves better accuracy rate than 

SVM because of the formation of potential linear decision boundary. The probability function 

is included in case of NBC, which plays a key role in selecting and training the data sets. This 

can be achieved by changing the conditional dependence variable and kernel function. The 

NBC Theorem is also desirable because of its high speed. Though NBC shows higher 

accuracy rate than SVM, in case of reliability SVM takes the highest position. Because of the 

presence of probability function, there is considerable number of chance of missing data. 

However, the results of SVM depend on kernel function, cost parameter and gamma 

parameter and absence of probability function. The parameter optimization is also possible 

which reduces the missing data and gives high reliability.  

 

8.4.3 K-nearest Neighbor Algorithm (KNN) [5]-[6]  

 

KNN is non-parametric, versatile, and lazy learning algorithm used for both classification 

and regression problems. In addition, it issues a benchmark for other classifiers such as 

support vector machine and artificial neural network. It is lazy leaner because it memorizes 

the training data sets instead of learning the discriminative function. The instance-based 

learning helps in avoiding the errors by memorizing the training sets. In the model, non-

Bearing Conditions Accuracy Rate (%) 

H-HO 100 

H-S 85.31 

H-A 70.31 

HO-S 91.88 

Average 86.88 
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parametric function defines the parameters that are not fixed in advance and varies based on 

the data size. Its application includes economic forecasting, data compression and genetics. 

 

KNN performs classification of testing data based on the k-nearest training samples round 

the test data. KNN depends on two things: 

 

 A distance metric which is used to compute the distance between two points. 

 The value of "k" defines the number of neighbors to be considered in the samples.  

 

In case of continuous variables, Euclidean distance is used to calculate the distance between 

the two points (x1, x2, x3,……xn) and (y1, y2, y3, ……..yn) and is given by the following 

equation, 

 

                    𝑑 = {∑ (𝑥𝑖 − 𝑦𝑖)2𝑛
𝑖=1 }

1

2                       (8.23) 

 

The appropriate choice of parameter k makes better the accuracy and reduce errors. It makes 

the shape of the decision boundary. If the neighbor selection increases the k value, the 

boundary becomes smoother. If k decreases the boundary becomes flexible and hard. 

Technically, small k value gives more flexible fit with low bias and high variance. The 

disadvantage of the algorithm consumes large memory storage for storing all training data, 

prediction time is large and sensitive to the irrelevant features. 

 

8.4.3.1 Diagnosis procedure and the result  

 

The entire diagnosis is performed without considering the rotating speed of the induction 

motor i.e. amplitude data of the rotating speeds of 1780, 1775, 1770 and 1765 min-1 are 

combined. The training data and diagnosis data are selected randomly in the ratio 70:30. 

Among 320 sets of load current data, 224 data are used for training and 96 data for diagnosis. 

The selection condition is same for all the possible combinations of bearing. The entire  
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diagnosis process is done using Python programming language. 

 

The diagnosis result is shown in Table 8.4. The diagnosis is performed to the following 

combinations; (H-HO), (H-S), (H-A), and (HO-S), respectively. The average diagnosis rate 

is found to be 90.55 %, validating the proposed method is suitable to identify the minor fault 

and able to identify the present condition of the motor. Thus, on-line bearing failure detection 

is possible and suitable for industries.   

 

Table 8.4 KNN diagnosis result 

 

 

 

 

 

 

 

 

 

In the present case, high accuracy rate is obtained for the k value 20. Figures 8.26 to 8.28 

show the variation of accuracy rate with respect to k value. This clearly illustrates the data 

mining procedure of KNN algorithm.  

 

The data boundary becomes smother with the increase in the value of k. In the present study, 

the k value is selected in way that it gives low bias and high variance as the result. The entire 

KNN algorithm depends on the k value and it reduces the depended factor and probability 

function when compared to NBC and SVM and stands as the advantage of KNN. 

 

 

 

 

Bearing Conditions Accuracy Rate (%) 

H-HO 100 

H-S 86.25 

H-A 79.65 

HO-S 96.31 

Average 90.55 
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Figure 8.26 Accuracy rate of H-HO bearing combination. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.27 Accuracy rate of H-S bearing combination. 
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Figure 8.28 Accuracy rate of HO-S bearing combination. 

 

 

8.4.4 Decision Tree Algorithm [7]-[8] 

 

A decision tree is a dendritic classification model used both classification and regression 

problems. The classification is performed by the breakdown of data into smaller subsets and 

it is mainly based on the feature selection. The final structure is like a tree with branches and 

leaf nodes, that is the so-called decision tree. It provides a detailed framework about the 

consequences of the decisions. The application of decision tree is healthcare management, 

energy consumption of an individual, and fraudulent financial statements. In general, it can 

be used for all the decision-making problems. 
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Figure 8.29 Simple decision tree flowchart. 

 

A simple decision tree concept is shown in Figure 8.29. In the figure, four conditions are 

proposed, and they said to be X, Y, Z, and W. The flow of the decision tree goes while 

checking the condition at each junction. If the X condition passes through, the decision is 

made at that moment and the output is displayed. If the condition becomes false, it moves to 

the next stated condition and the process gets repeated until the output is decided. By this 

action, the accuracy rate can be increased as it is more like an iteration. As the iteration gets 

increased, the output also increases, and it is possible to get the high accuracy rate.     

 

A decision tree is a tree where each node represents features (attributes), each branch 

represents decision (rule) and each leaf represents outcome (categorical or continuous value). 

A given set of data is divided into several sets stepwise. The model is recursively constructed 
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from the root node and analyzes every possible outcome of the effect of the condition.  

 

When dividing, it is necessary to select explanatory variable so that it becomes bigger 

information gain. The information gain is determined by the difference between impurities 

before and after division. Information gain IG classification to X1, X2, …….Xn, at the node X 

is stated as follows,  

 

                        𝐼𝐺 = Imp(𝑋) − ∑ 𝑝(𝑋𝑖)Imp(𝑋𝑖)
𝑛
𝑖=1                (8.24) 

 

where Imp(𝑋) and Imp(𝑋𝑖) are impurities before or after classification at node 𝑋, 𝑋𝑖 and 

𝑝(𝑋𝑖) is the rate of node 𝑋𝑖. Similarly, impurity is the index number that increases when 

plural classification data exist approximately the same rate in one node and given by equation 

of entropy. At node 𝑋, we have, 

 

                          Imp(𝑋) = ∑ 𝑝(𝑖|𝑋)𝑐
𝑖=1 log2 𝑝(𝑖|𝑋)                       (8.25) 

 

Now, 𝑖 is each classification and 𝑐 is the number of all classification group.  

 

Branch node generates a new branch node likewise, repeating until satisfying the following 

conditions. The constructed decision tree reaches optional depth depending on parameter n, 

the all of data after branches belong to the same classification, data quantity in the node is 

less, or can get a result only like random. The flow of the analysis using a decision tree is as 

follows. Input data are compared with explanatory variables at each node, and they go to the 

next node by the result. The total number of branches estimates the classification at the end 

of the final node. It is important to branch the parameter-n in the analysis. If n is small, the 

accuracy may be low. And if n is too large, it causes over fitting problems.  

 

8.4.4.2 Diagnosis procedure and the result  

 

The entire diagnosis is performed without considering the rotating speed of the induction 

motor i.e. amplitude data 30 and 90 Hz of the rotating speeds of 1780, 1775, 1770 and 1765 

min-1, are combined. The training data and diagnosis data are selected randomly in the ratio 
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70:30. Among 320 sets of data, 224 data are used for training and 96 data for diagnosis. The 

selection condition is same for all the possible combinations of bearing. The entire diagnosis 

process is done using Python programming language. 

 

The diagnosis result is shown in Table 8.5. The diagnosis is performed to four different 

combinations of bearing condition; (H-HO), (H-S), (H-A), and (HO-S). The average 

diagnosis rate is found to be 86.02 %, validating the proposed method is suitable to identify 

the small fault and able to identify the present condition of the motor.  

 

Table 8.5 Decision Tree diagnosis result 

 

 

 

 

 

 

 

 

  

8.4.5 Random Forest [9]  

 

The Random Forest is a classification method with majority rule using results of plural 

Decision Trees. First, Decision Tree is constructed by random data extracted from training 

data. Then the technique named tree bagging which is represented by the term B is performed 

for n number of times. Each Decision Tree is branched by explanatory variable that is selected 

from several variables and that is given as highest purity. These variables are picked 

randomly from the explanatory variable of training data.  

 

More number of Decision Trees is constructed, and the class function is established. The 

output is concerned with majority of the voting and the final class is declared. Better accuracy 

rate is obtained than Decision Tree as it is the extended version. The time consumed for 

Bearing Conditions Accuracy Rate (%) 

H-HO 100 

H-S 79.06 

H-A 74.69 

HO-S 90.31 

Average 86.02 
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diagnosis is long when compared to the Decision Tree. However, at the end, the diagnosis is 

performed and few over fitting is caused. The class division and the selecting/deciding the 

result of the majority voting are performed by the B function, which is nothing but the tree 

bagging. The working architecture of Random Forest is shown in Figure 8.30.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.30 Random Forest architecture. 
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8.4.5.2 Diagnosis procedure and the result  

 

The entire diagnosis is performed without considering the rotating speed of the induction 

motor (1780, 1775, 1770 and 1765 min-1, are combined). Same as Decision Tree, the training 

data and diagnosis data are selected randomly in the ratio 70:30. Among 320 sets of data, 224 

data are used for training and 96 data for diagnosis. The selection condition is same for all 

the possible combinations of bearing. The entire diagnosis process is done using Python 

programming language. 

 

The diagnosis result is shown in Table 8.6. The diagnosis is performed to four different 

combinations of bearing condition; (H-HO), (H-S), (H-A), and (HO-S). The average 

diagnosis rate is found to be 87.80 %, validating the proposed method is suitable to identify 

the small fault and able to identify the present condition of the motor.  

 

Table 8.6 Random Forest diagnosis result 

 

 

 

 

 

 

 

 

 

8.5 Deep Learning Algorithm (DL Algorithm) [10]-[12] 

 

In a pneumatic, chemical, medical, aerospace and renewable energy, the usage of neural 

network has been increased and in the last few decades, new techniques using the artificial 

neural network have developed. The artificial neural network model shows less dependence 

towards the process and can constantly receive the new data. The deep neural network is one 

of the subsets of machine neural network in Artificial Intelligence and has its application 

Bearing Conditions Accuracy Rate (%) 

H-HO 100 

H-S 80.94 

H-A 77.36 

HO-S 92.88 

Average 87.80 
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extended to image preprocessing and medical fields. The network framed in the deep neural 

network can analyze both the supervised and un-supervised algorithm. Simply the deep 

neural network can be defined as the complicated neural network with multiple layers (more 

than one hidden layer). Deep neural network algorithm uses a large amount of data and 

information that directly obtained in the form of images, signals and text to perform the 

application related to the neural network.  

 

The standard DL algorithm can be divided into three models; Denoising Auto-Encoders 

(DAE), Deep Belief Network (DBN) and Convolutional Neural Network (CNN). The three 

models are constructed with their own property of feature learning and with different base 

models. The DAE is used to train the un-supervised feature and DBN is used for acquiring 

the joint distribution between the data and the labels. The DBN belongs to the category of 

probabilistic generative models. CNN is widely used for training the un-supervised features 

and has some advantages like shift-variance, weight sharing, high accuracy rate, and data 

encoding.  

 

8.5.1 Basic Concept of CNN 

 

Among the various architecture of DL, in the present study, CNN is selected because of its 

various application and advantages. Typically, CNN structure consists of two layers; feature 

extraction layer and feature mapping layer. The neuron plays a significant role in connecting 

both the layers. The feature extraction layer consists of a local acceptable domain of the 

previous layer which is connected through the neuron. The local characteristics are extracted 

and forwarded to feature mapping layer, which consists of multiple feature mapping of each 

network. Generally, feature mapping is a plane filled with neurons of equal weight. Each 

convolution layer in the neural network is followed by the calculation layer that is used to 

perform the calculation of features.  
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8.5.2 Construction of CNN 

 

The basic structure of CNN model is shown in Figure 8.31. A feed-forward network consists 

of input layer, hidden layer and output layer. CNN is constructed using the auto-encoder 

system, which suits the best for training the un-supervised algorithm.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.31 The basic structure of CNN model. 

 

Additionally, the setup is comprised of one or more convolutional layers and pooling layers 

and they belong to the category of the feed-forward neural network. A pooling network is 

added to the basic structure to reduce the overlapping effects. It just performs the filtration 

process and also a simple discretization process. CNN with the following architecture is used 

for both the modelling and classification task. The layers of the neural network are fully 

interconnected in one direction from the input layer to the output layer including the hidden 

layer. The pooling layers are placed between the hidden layers to perform the data 

preprocessing, and data training is performed in the hidden layer. The counting or number of 

neurons in the hidden layer is decided based on input and output patterns that must be 

recognized. Additionally, auto-encoder consists of two parts; encoder and decoder. The 

encoder is used to extract the feature from the input data and decoder for reconstructing the 

sampling data from the hidden layer. The simple auto-encoder is shown in Figure 8.32, where 
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x represents the input layer {x1, x2…xn}, h denotes the hidden layer {h1, h2...hm} and y is the 

outcomes of the output layer {y1, y2…yp}. It is clear from Figure 8.32, the weight matrix (W1 

and W2) filled with neurons connects the adjacent layers. 

 

 

 

 

 

 

 

 

 

 

 

   

Figure 8.32 Simple auto encoding system. 

 

The encoding process is defined as 

 

                             H = Fe(W1x+b1)                          (8.26) 

  

where Fe is the activation function of encoder and b1 is the encoder bias vector. Similarly, the 

definition of decoding is defined as 

 

                            R = Fd(W2h+b2)                           (8.27) 

 

where Fd is the activation function of decoder, and b2 is the decoder bias vector. According 

to the number of input, the parameters {W1, W2, b1, b2} are adjusted. The CNN network for 

the present study is constructed with two pooling layers and two hidden layers and constituted 

by the auto-encoder system. The architecture diagram is shown in Figure 8.33. 
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Figure 8.33 Architecture of proposed CNN model using auto encoding system. 

 

8.5.3 Diagnosis Procedure 

 

In the present study, an attempt has been made to employ the concept of the DL with CNN 

architecture in motor failure analysis as a diagnostic tool. Since the induction motor bearing 

failure diagnosis is likely to have a complex non-linear mapping problem, CNN of three-

layer feed-forward neural network is selected, so that both the input and output are defined 

as multiple variables without clear linear relationships.  

 

The diagnosis is performed to four different combinations of bearing condition; (H-HO), (H-

S), (H-A), and (HO-S). The entire diagnosis is performed without considering the rotating 

speed of the induction motor i.e. amplitude data of load current of 30 and 90 Hz, four rotating 

speed (1780, 1775, 1770, and 1765 min−1) are combined. The data sets of 30 and 90 Hz 

frequency components are selected randomly in the ratio 70:30. The 70% data of each bearing 

condition are used as the training samples and 30% are used as the diagnosis samples. A total 

of 336 data samples is used for training and 144 as diagnosis samples. Since DL follows stack 

flow method for diagnosis, healthy (H), hole (HO) and scratch (S), and abrasion type scratch 

(A) take stack value 0, 1, 2 and 3, respectively. 

 

Pooling Layer 1 

 

Pooling Layer 2 

 

Hidden Layer 1 

 

Hidden Layer 2 
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The diagnosis result is shown in Table 8.7. The average diagnosis rate is found to be 86.88 %, 

validating the proposed method is suitable to identify the minor fault and able to identify the 

present condition of the motor. The diagnosis result for the case H-S, HO-S, H-A is shown 

from Figures 8.34 to 8.36, respectively. The loss of the proposed CNN model is shown in 

Figure 8.37.  

 

Table 8.7 CNN diagnosis result 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.34 CNN diagnosis result of H-S. 

 

 

Bearing Conditions Accuracy Rate (%) 

H-HO 100 

H-S 80.66 

H-A 79.58 

HO-S 87.29 

Average 86.88 
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Figure 8.35 CNN diagnosis result of HO-S. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.36 CNN diagnosis result of H-A. 
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Figure 8.37 CNN diagnosis loss. 

 

An epoch is a single step in training the neural network. In other words, the number of epochs 

is related to the number of rounds of optimization that is required to train the data. It contains 

one forward pass and one backward pass for all the training samples. The error on training 

the data can be reduced with more rounds of optimization. The error performance or loss is 

reduced as the number of epochs increases. But at the same time, more selection of epochs 

can create a critical point where the network becomes over-fit to the training data and starts 

to lose the performance. For that reason, selection of epochs should be given importance. A 

number of iteration is carried out for all the input data set based on the value of epochs. The 

number of iteration is decided based on the batch size; the number of training samples in one 

forward/backward pass. Therefore, epoch needs to be carefully selected based on the 

available data sets. The relation between epoch and loss is given by equation, 

 

                             Epoch =
1

𝑙𝑜𝑠𝑠
                            (8.28) 

 

Thus, loss can be reduced by increasing the number of iteration or the epoch.  
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8.6 Summary 

 

In this chapter, a detail study about the application of machine learning algorithms and the 

deep learning to bearing failure diagnosis is carried out. The hole, scratch, and the abrasion 

type scratch are selected for the analysis and the diagnosis is performed. To the entire 

diagnosis, the amplitude of the frequency 30 and 90 Hz components of load current has been 

used. The obtained diagnosis rate found to be acceptable in terms of both machine learning 

algorithm and deep learning algorithm. Thus, the proposed spectral frequencies applied to 

detect the motor bearing failure are appropriate.  

 

Among the machine learning algorithm, SVM, KNN are parameters-based diagnosis function 

and the Decision Tree, Random Forest and NBC belong to the category of probability-based 

diagnosis function. The results of all machine learning algorithm belong to the same range, 

yet KNN takes the highest accuracy rate. From the study, the diagnosis method can be 

selected according to the application. For example, if the more number of bearing conditions 

is discussed, KNN and SVM are the best algorithm. If the number of bearing conditions are 

less, for example two or three classes, it is better to go with Random Forest, Decision Tree 

or NBC. These Random Forest, Decision Tree or NBC algorithm becomes complex in case 

of multiple classes, this is because of the probability-based procedure, as it takes more time 

for commutation and produces lower accuracy rate.  

 

Finally, a trail to bring the deep learning algorithm to the motor fault diagnosis is achieved 

and the results are promising and acceptable. It has many advantage over machine learning 

algorithm, as it can be trained for any kind of application. The time consumption is less, and 

programming skill is not required to tune the parameter. The only disadvantage of CNN is 

the requirement of the large data count. If the number of available data is more, high diagnosis 

rate is obtained.
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Chapter 9  

Conclusions 
 

9.1 Conclusion 

 

This thesis presents the diagnosis method to detect the minor electrical and mechanical failure 

occurring in the induction motor. The Fast Fourier Transform (FFT) analysis is carried out 

by characterizing the magnitude of the load current spectrum at various frequencies and has 

been considered as the main feature. The problems in the data analysis and diagnosis due to 

the overlapping of features and the diagnosis rate which requires special technique or control 

methods to detect the fault. To enhance the accuracy of the present research work, a proper 

diagnosis method has been done with the help of the Machine Learning Algorithm (MLA), 

Clustering Techniques like Self Organizing Map (SOM) and Artificial Intelligence method 

(AI). The most commonly used MLA algorithm is Support Vector Machine (SVM). Among 

the AI, Deep Learning Algorithm (DL) has been selected for performing the induction motor 

fault diagnosis. The validity of the proposed method is verified by the experiments carried 

out in the laboratory. 

 

Among the various electrical and mechanical faults of the induction motor, short-circuit 

insulation failure of stator winding fault, broken rotor bar fault and bearing failure has been 

selected and the diagnosis is performed.  

 

9.1.1 Short-Circuit Insulation Failure 

 

Till now it was found that more than two-turn short-circuit fault could be diagnosed and still 

one-turn short-circuit fault could not be diagnosed properly. It is well known fact, at motor 

running condition once the fault begins with the one-turn and if it continues to proceed further, 

the chance of getting the turns to count to increase. The thermal deterioration of insulating 

material progresses gradually and certainly increases the number of short-circuiting turns and 

finally the motor breakdown at some point of time. Thus, it is always better to detect the 
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minor fault at the early stage.  

 

The research work is broadly classified into three distinct categories. First, frequency-

spectrum analysis of the load current is performed, and characteristic frequency components 

are extracted by a Fast Fourier Transform (FFT). Then, the distortion ratio is derived using 

these components. Finally, the diagnostic method is proposed using a support vector machine 

(SVM), and diagnosis of one-turn stator winding fault is achieved.   

 

9.1.2 Broken Rotor Bar Failure 

 

Since there is no solution and research results that show the defect of identifying the slight 

failure in the broken rotor bar (one broken rotor bar), the present thesis work focused on 

diagnosing the minor fault. A three-step analysis is carried out, at first using the characteristic 

frequency components, the trace of investigating the existence or non-existence of the broken 

rotor bar is performed. Next, the analysis is performed to identify the number of the broken 

rotor bar(s) and continues till 4 broken bars. Finally, clustering is carried out using SOM. The 

problem of other diagnostic methods has been overcome and a solution of identifying the 

minor one broken rotor bar is achieved with high accuracy rate.  

 

9.1.3 Bearing Failure 

 

Accordingly, for bearing faults, many research reports are available and have explained the 

differences between the healthy and faulty motor. In most of the cases, the hole has been 

considered as the faulty factor and the dimension are large. The research report lacks in 

detecting the minor bearing faults and several studies, experiments are highly required to 

gain adequate expertise about the physical location of the fault. The challenging factors still 

exist, and further research is necessary.  

 

The proposed method of scrutiny using FFT analysis and SVM diagnosis is employed to 

identify the bearing faults in case of scratch as the possibilities are more when considering 

the hole. Additionally, several analyses with respect to the hole are also performed to have a 

detailed study of its nature. Special compound bearing fault analysis (hole and scratch), and 



Conclusions 

 

 

215 

abrasion scratch analysis is accomplished, and they seem to have an impact on the bearing 

fault as like hole and scratch. The diagnosis results confirm that not only the hole has the 

major factor in determining the bearing faults, but also the scratch and abrasion scratch. The 

minor bearing fault detection is possible and identifying the present state of the bearing is 

also achieved. In case of hole, minor fault detection is made possible with the hole dimension 

of 0.5 mm diameter and similarly for scratch, the detection is achieved till 5 mm scratch 

length. The role of the physical location of the fault is clearly investigated with the multiple 

fault analysis, orientation analysis, and localization analysis. The analysis is performed 

ignoring the rotating speed of the induction motor. This is one of the important criteria of the 

proposed system and begins the revolution to the next step of research.  

 

9.1.4 Common and Multiple Fault Diagnosis Method 

 

The common diagnosis method to identify the broken rotor bar fault and the bearing fault is 

proposed. The FFT analysis is performed and the diagnosis by SVM. The entire analysis is 

performed without considering the rotating speed of the induction motor. The method can 

identify the two different mechanical faults and identifying the present state of the motor is 

made possible. The SVM based diagnosis method overcomes the problem of overlapping and 

the high accuracy rate is obtained.  

 

To the same motor, two kinds of mechanical faults are induced the and the diagnosis method 

of common fault is applied to extend the application. The acceptable diagnosis rate is 

obtained. The selection of the frequency components is correct, and the reliability is high, 

stating the proposed method is suitable for diagnosing the induction motor failure. 

 

9.1.5 Comparison of Machine Learning Algorithm and Artificial Intelligence Method  

 

A detail study about the application of machine learning algorithms and the deep learning to 

bearing failure diagnosis is carried out. To the entire diagnosis, the amplitude of the frequency 

30 and 90 Hz components of load current has been used. The obtained diagnosis rate found 

to be acceptable in terms of both machine learning algorithm and deep learning algorithm. 

Among the machine learning algorithm, SVM, KNN are parameters-based diagnosis function 
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and the Decision Tree, Random Forest and NBC belong to the category of probability-based 

diagnosis function. The results of all machine learning algorithm belong to the same range, 

yet KNN takes the highest accuracy rate. From the study, the diagnosis method can be 

selected according to the application.  

 

The deep learning algorithm is applied to the motor fault diagnosis and the results are 

promising. It has many advantage over machine learning algorithm, as it can be trained for 

any kind of application. The time consumption is less, and programming skill is not required 

to tune the parameter.  

 

9.1.6 Summary 

 

The main objective of the thesis is to propose an simple method is to detect the minor fault 

occurring on the induction motor at the earlier stage. With the results of pinpointing the 

healthy and faulty motor, and the diagnosis is performed without considering the rotating 

speed of the induction motor, the possibility of applying the techniques to the industries is 

high. Additionally, it is well-suited for speed varying application. 
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9.2 Future Work 

 

Though the electrical and mechanical faults are verified experimentally, the failure analysis 

of the induction motor is still the challenging factor in the industrial environment. The 

following works are to be implemented in the future for increasing the reliability and the 

application of the failure diagnosis method.  

 

 Clear and physical explanation regarding the difference observed between 30 and 90 

Hz in case of motor failure. From this, it is possible to examine the applicability of 

the proposed method to other electric motors.  

 

 The proposed system gives the knowledge about the presence or absence of the fault 

on the induction motor. But no information regarding the level of defects is available. 

The decision whether to continue or change the motor is not evident through the 

proposed study. This study is required or necessary to avoid the unnecessary cost and 

time caused. The results may give usefulness to the industries, because the condition 

monitoring and the maintenance can be achieved easily.   

 

 Though the short-circuit fault has been diagnosed, the next step of research will be 

identifying the exact location and position of the raised short-circuit.  

 

 When the data count is increased or if several cases are discussed, the proposed 

method fails in identifying the kinds of faults. In the future, a method to detect and 

state the kinds of fault will be proposed.  

 

 To employ the method in the industrial environment, additional experiments using an 

inverter as a power supply to be done, as most of the motors in the factories are made 

to run using the inverter.  

 

 

     “Towards the bridge, making a way for the electrical machine” 
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