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Chapter 1

　　Introduction

1.1 Medical Imaging

Medical images are used to describe the anatomical structures, bodily functions, and

lesions. Medical images are necessary for doctors to plan medical treatments in hospitals,

and are also referred to in wide clinical research areas in order to observe and unravel

unknown bodily functions and lesions. Nowadays, there is a variety of medical image

modalities, and the respective imaging processes, matters, and objects are different by

the modality.

For example, the X-ray photography, which is the projection imaging of the three

dimensional (3D) bodily structures onto a 2D image, is widely used for medical-diagnosis.

Since X-ray was detected in 1895 to today, it has been the most fundamental medical image

modality to describe inside the living bodies. Histopathological, or pathological images

are commonly used for the study of a pathology or a diagnosis. Given pathological images,

one can observe the 2D cross-sections of the 3D anatomical structures with high spatial

resolutions. They are often used for obtaining the gold-standard of the description of the

very micro anatomical structures. They appeared in 17th century, and have been leveraged

to understand the pathological bodily functions and lesions. In 1970s, the Computational

Tomography (CT) imaging appeared, which is a 3D volume imaging using X-ray. The

X-ray CT imaging is the fundamental modality for observing 3D anatomical structures.

Positron Emission Tomography (PET) and Magnetic Resonance (MR) imaging appeared

in 1980s. PET visualizes the physical function for each body part with a visualized

3D tomographic image. In addition, they can visualize the temporal change of medical

reaction, where a PET image is represented by a four-dimensional image (3D-space +

1D-temporal change). A temporal series of PET images is widely used to analyze the

dynamics of ligands in the human brain [1]. MR imaging is also one of important methods

for 3D volume imaging with high contrast. It measures the density and reactions of

hydrogen nuclei in a body when the body is exposed to several magnetic fields.
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In spite of the broad usability of medical images, however, the improvements of image

qualities are highly required, and are still under the developments for all the medical image

modalities. For doctors to plan more and better medical treatments, or for researchers

and computers to recognize or understand the images deeply, high quality imaging or

measurement is important [2, 3, 4].

There are two principal kinds of limitations accompanied by the measurement of medical

images. First, there are physical limitations of imaging equipment. For instance, lens

apertures of optical cameras restrict the spatial resolutions of the observed images. The

strength of the magnetic fields also restricts the spatial resolutions and signal-to-noise ratio

(SNR) of MR images. Second, there are issues of health risks to our bodies. For example,

some contrast agent is often injected into a patient’s body in CT and MR imaging. In

PET imaging, a patient’s blood is sometimes sampled to analyze the medical reaction

with PET images. Those approaches are widely employed to improve the image qualities

instead of health risks. It is still always desired to obtain high quality images without those

health risks, and there are many studies to avoid health risks during the measurements

of medical images [2, 3, 4]. Apart from those physical and health limitations, there are

also several trade-offs accompanied by the high quality imaging, such as imaging cost,

and time spent for imaging.

In order to achieve the high quality imaging over those limitations, image restoration

tasks such as denoising, tomographic reconstruction, and super-resolution are often de-

sired and employed. Denoising is a typical task since many medical image modalities

suffer from the terrible amount of noise [5, 6, 7]. Super-resolution is also pursued in sev-

eral modalities [8, 9, 10] because the achievement of detail image descriptions over the

measurements is one of the most important factors. In MR imaging, compressed sensing

[11, 12, 13] is widely used and studied to save its imaging time/cost while keeping the

image quality. In this paper, we focus on the several kinds of medical image reconstruc-

tion and super-resolution techniques. In general, those image retrieval tasks are described

by solving inverse problems. We introduce a generalized representation of image inverse

problems and how to solve them, in the next section.

1.2 Inverse Problems of Image Processing

There is a variety of image modalities by the purpose of the measurement such as digital

color images, telescopic images, spectral images, and medical images described in Section

1.1. In many cases, however, a raw observed image is not enough to understand the details

of the observed image or to achieve rich knowledge on it. Almost all modalities suffer

from their degradation of the observed image such as noise, blurs, and artifacts caused

during the imaging process. Given an observed image, the image retrieval techniques such
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as denoising, deblurring, completion, and super-resolution try to obtain an ideal image

which is free of any degradation. The ideal image, here, is defined depending on the

imaging system and the modality while commonly satisfying the following conditions at

least: (1) there is no structural location/shape gaps between the image and the substance

to be imaged, and (2) the SNR diverges to ∞. If the ideal image is obtained, it is made

good progress not only for humans to recognize and understand the image but also for

computers to do.

Most of image restoration, image super-resolution, and image reconstruction tasks can

be represented as solving inverse problems. In order to accomplish those tasks, first, an

observation model is defined and formulated based on the respective observation process.

Equation (1.1) shows the general form of an observation model [14]:

y = f(x) + ϵ, (1.1)

where y is an observed image and x is the ideal image without any degradation. f is an

observation function that degrades the ideal image. ϵ is the noise or artifact model accom-

panied by the observation. For example, in case of super-resolution, f consists of blurring

and downsampling operators which can be expressed as the matrices multiplication. In

case of the tomographic reconstruction, f is the Radon transform and ϵ represents the

noise accompanied with the Poisson distributed observation. Given the observed image

y, the goal is to solve Equation (1.1) with respect to x. In many cases, however, solving

Equation (1.1) is an ill-posed problem and the ideal, unique solution x cannot be ob-

tained from just solving Equation (1.1). The ill-posedness of an image-processing task is

mainly derived form the lack of constraint equations to constrain the solution space. The

ill-posed nature varies depending on the observation model. For example, in the image

completion or inpainting tasks [15, 16], the lack of image pixels makes them ill-posed.

In the image super-resolution [8] and in the compressed sensing of MR images [11], the

ill-posedness is caused by the lack of high-frequency components in the frequency domain

rather than the downsample of image pixels. In the tomographic reconstruction tasks

[17, 18], the ill-posedness is because of the terrible observation noise derived from the

Poisson distribution.

In order to solve an ill-posed inverse problem, we have to constrain the solution space of

x based on some additional priors of the image. These priors would vary depending on the

image-processing tasks and on the image modalities, and we should employ appropriate

priors based on them. In order to introduce the priors to constrain the solution space,

the priors are modeled in the form of mathematical operations. There are typical three

kinds of the prior models to solve the inverse problems. The typical examples of the prior

models are introduced in the next paragraphs.
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Projection onto Convex Sets (POCS)

The brief concept of the POCS is to constrain the solution space by the multiple convex

sets where the ideal image reside. With the POCS, the input observed image is iteratively

projected onto given convex subspaces until the convergence. The generalized POCS

approaches can be formulated by the iterative model [19] as

xk+1 = PJ ◦ · · · ◦ Pj+1 ◦ Pj ◦ xk, (1.2)

where Pj is the j-th of J convex sets and ◦ is the operator to apply a projection. Starting

from the input x0, POCS iteratively imposes the constraints of J convex sets to retrieve

the ideal image. These convex subspaces should be defined based on the purpose of

a task by users. POCS is originally established for super-resolution or phase retrieval

methods [20, 21, 19, 22], and typical convex subspaces for the image retrieval are defined

or established by [19, 22]. Some of them [19, 22, 23] have strong constraint performance

because of their theoretical backgrounds. The details of the conventional POCS methods

including one of a typical model are mentioned in Chapter 2.

Regularization

The regularization would be the most typical approach to solve an ill-posed problem.

In general, the regularization techniques constrain the solution space by additional math-

ematical models based on the priors that the ideal image partially satisfy. Unlike the

POCS models, the ideal image does not strictly satisfy the regularization model. The

regularization supplements the lack of the observation constraint and prevents the image

from over-fitting to the observation model at the same time.

Above all, the spatial smoothness is the widely used prior for the regularization. The

smoothness of an image is usually evaluated by the Lq-norm of the image gradient-features.

One of the typical regularization model is the Tikhonov regularization [24, 14], which is

formulated as

minimize
x

∥Ax− y||22 + λ||Lx||2q, (1.3)

where y, A, and x are respectively the observed image, the linear observation matrix,

and the image to be restored. L is the feature mapping matrix, and q is the regularization

metric. The first term evaluates the fidelity derived from the observance model, and the

second term is the regularization in the feature space Lx. By arguing Problem (1.3), the

solution space is restricted between the data fidelity term and the regularization term.

Two terms are balanced by the parameter λ.

The most fundamental regularizer is L2 norm. Although it is easy to solve using the

partial derivative, the L2-based regularization isotropically degrades the feature weights:

The higher the feature weights are, the more rapidly they are reduced. When the L2-norm
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is applied to the image gradients, all of the edges are simultaneously smoothed. Thus the

L2-norm is not suitable for several retrieval tasks such as super-resolution where it is

desired to preserve edges and detail patterns.

In order to preserve edges, the L0 regularization must be argued. However, it is in

fact quite difficult to directly solve the L0-norm because it is a combination optimization

problem which is nonconvex, discontinuous in the all domain, and NP-hard. The L0-norm

is often approximated with the L1-norm where the function is convex and continuous but

have a small number of undifferentiable points. In recent years, it came to be able to

efficiently be solved by using the Majorization Minimization (MM) algorithm [25] or the

proximal operator [26]. When the L1-norm is applied for the edge features, it is called the

Total Variation (TV) norm. The details of the TV-norm are also presented in Chapter

2. Moreover in recent years, there are several methods proposed to directly solve the

L0-norm by somehow constraining the solution space [27, 28, 29]. It is also reported that

L0-norm regularization outperforms the other smoothness regularizations in several tasks

while the nonconvexity is still remained [27, 28, 29]. Some of the applications of L0-norm

are presented in Chapter 4.

For a regularization model to represent the smoothness prior, the rank can also be

leveraged. The low-rankness evaluates a global connectivity of the image space and can

effectively reduce the observation noise. The rank function can be well approximated

a convex function with the nuclear norm while it is originally nonconvex and NP-hard

[30, 31].

Learning based models

Learning based approaches solve inverse problems by exploiting internal or external

database [32, 33, 10]. In recent years, deep learning has come to be able to be imple-

mented owing to both of hard and software improvements such as online bigdata, big-scale

parallel processing units including GPU. Some complicated problems also became able

to be solved with theoretical improvements such as batch-normalization [34] and ADAM

[35]. Nowadays more and more deep learning based methods are applied to a variety

of inverse problems [36, 37, 38, 39]. Priors derived from deep learning can be expressed

as the learning the projection from input observed images to output ideal images. In

contrast that the other prior modeling methods described in the former paragraphs need

iterative processing, typical deep learning based methods can be processed as just a sin-

gle projection once training has finished. Deep neural networks also contain prior models

in their network architectures themselves. For example, Convolutional Neural Networks

(CNN) would have architectural priors such as the local and uniform convolutions, and

the shift-invariance of features.

Actually, several methods introduce effective priors not only by learning but also by the

architectures and loss functions. For example of super-resolution, SRGAN [40] trains and
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generates photorealistic images. The architecture is modeled with several contrivances to

avoid the blurred result. LAPGAN [41] and LapSRN [42] exploits the Laplacian pyramid

of images, where the high-resolutional images can be well represented as straightforward

hierarchy summations of generated high-frequency patterns and a low-resolutional image.

These methods with additional architectural priors could outperform simple CNN based

methods.

The deep neural networks are widely leveraged also in medical applications, and their

outperformences are reported [43, 36, 44, 45]. Learning-based methods, however, can

achieve the ideal solution only when sufficient number and variation of training data is

available and the target image can be regarded drawn from the probability distribution

the training data represent. As for the super-resolution, for example, given a set of

sufficiently large number of training CT images of healthy subjects, one can improve the

spatial resolution of a CT image of a new healthy subject well but would be difficult to

improve the resolution if a CT image of a subject with tumors. It should be noted that,

in medical image processing, collecting sufficient number and variety of medical images

for the training is challenging [43]. If the training dataset does not support the target

image so well, the resultant solution is imposed a wrong bias derived from nonsupporting

training data. It would be also difficult for humans to grasp the bias because of the

black-box problem of deep learning.

1.3 Subjects in this paper

In this paper, we discuss how to introduce the priors as the mathematical models based

on the modality natures in order to solve inverse problems related to some medical images.

We deal with the following inverse problems associated with three principal medical image

modalities and their tasks. For each tasks, the appropriate priors based on their respective

natures are designed and introduced in the form of the optimization problems to be solved.

1. Super-resolution of MR images

2. PET image reconstruction

3. Blind-deconvolution of pathological images

For each task, the framework for solving the optimization problem is also mentioned or

proposed. The remainder of this paper is organized as the followings.

In Chapter 2, super-resolution of MR images is argued. The proposed method lever-

age the prior that the backgrounds of MR images are essentially zero. The existing

super-resolution method called the Gerchberg method can be effectively applied when the

observation model and the fact that the object-backgrounds are zero is already known.
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However the Gerchberg method does not assume the existence of the observation noise

and the ringing artifacts. In the proposed method, the trouble is shotten by introducing

the sparse regularizations. The main contribution includes how to introduce the sparse

regularization to the algorithm.

In Chapter 3, the PET image reconstruction is argued. The PET image reconstruction

is a task to reconstruct the PET image from a sinogram data. The sinogram is the raw

projected data of a patient’s body by the PET machine. In the proposed method, the

PET observation model, the image spatial model, and the temporal model are introduced

as the prior for the PET image reconstruction. In the PET observation model the data

fidelity is evaluated with the Kullback-Leibler divergence based on the Poisson-distributed

observation. In the image spatial model, the PET image is represented using the basis

vectors, which leverage the priors of the nonnegativity and that the backgrounds are

zero. As for the temporal model, the compartment model which is used in PET dynamics

analysis area is introduced. The PET compartment model is a mathematical model that

represents the dynamics of ligands injected in the patient’s body while imaging. The

compartment model is used in the proposed method to impose the temporal change of

PET voxel values.

In Chapter 4, the blind deconvolution of the pathological images is argued. The objec-

tive is to remove the blur which we do not know profiles on. The problem to be solved

is highly ill-posed as well as nonconvex because both the blur and the ideal image is

unknown and lacking in constraints. In order to solve the problem, the high-resolutional

and continuous sub-slice model is leveraged using the smooth deformation mapping. The

priors based on edge-sparseness and the blur property are also introduced.

For each study above, the performance of the proposed method is evaluated using both

synthetic and clinical data. The behaviors of the proposed models and their solvers are

discussed comparing with those of the conventional methods.
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Chapter 2

　　Super-Resolution of MR Images

MR imaging is one of the most important methods for observing 3D soft tissues with

high contrast[2, 46, 47, e.g.]. However in order to assure sufficiently high SNR, MR images

often have anisotropic spatial resolution: The spatial resolution along the through-slice

direction is lower than the resolution along the in-plane direction as shown in Figure 2.1.

The spatial resolution along the through-slice direction is mainly determined by the slice

thickness and there is a trade-off between the slice thickness and the SNR of MR images.

Increase of the slice thickness would degrade the spatial resolution along the through-slice

direction, though the SNR of each slice image would be improved by the increase of the

slice thickness because the quantity of hydrogen nuclei included in the measured slice

increases and the magnitude of the signals emitted by the hydrogen nuclei also increases.

This is a reason why slice thickness is often set as thick as several times the pixel size and

the spatial resolution along the through-slice direction is lower than that of slice images.

Therefore, the objective is to reconstruct isotropic MR images whose spatial resolution is

equally high along any directions, given anisotropic MR images.

In this study, the new object super resolution technique is proposed to super-resolve MR

images. The proposed method is a framework for incorporating the Gerchberg algorithm,

which is one of the POCS methods, into a regularized optimization based method of super-

resolution. In this framework, we can use the knowledge of the outer contour of a target

and of the measured frequency range with the conventional regularizers simultaneously

for computing higher spatial resolution images. Combining a TV regularization with

the Gerchberg term, one can suppress ringing artifacts often generated by the Gerchberg

method. Here, it should be noted that the incorporation of the Gerchberg method into

regularized optimization based methods is not so straightforward because the Gerchberg

method obtains high-resolution images not by explicitly minimizing some cost function

but by iteratively projecting an image onto convex sets. The main contributions of the

present study are as follows: (1) We reformulate the projections in the Gerchberg super-

resolution algorithm using linear matrix equations, (2) we formulate a convex optimization
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Figure 2.1 An example of observed MR image. The spatial resolution of the through-slice
direction (right) is often lower than those of the in-slice directions (left). This is caused
by the trade-off between the spatial resolution and SNR of MR images, and high SNR is
often preceded.

problem, in which the reformulated projections and the low-TV/low-rank regularization

are represented in a cost function and constraints, (3) we explicitly describe the algorithm

for solving the convex optimization problem with the alternating direction method of

multipliers (ADMM), and (4) we present extensive experimental evaluations conducted

using the proposed method.

The remainder of this chapter is organized as follows. First in Section 2.1.1, we state

the notations used in this study. We provide a problem statement of the MR-image

super-resolution in Section 2.1.2. In Section 2.1.3, we review the Gerchberg algorithm

and recent regularization-based approaches. The proposed method and the description

of its explicit solvers are explained in Section 2.2. Variational experimental results are

presented in Section 2.3 – 2.3.5. Finally, in Section 2.3.6, we discuss the behavior and

various aspects of the proposed method.

2.1 Basic Materials

2.1.1 Notations

In this chapter, a vector is denoted by a bold small letter a and a matrix is denoted

by a bold capital letter A. A 3D tensor is denoted by a bold calligraphic letter A. The

(s, t)-th entry of a matrix A is denoted by Ast and the (s, t, u)-th entry of a 3D tensor A
is denoted by Astu

Given a vector a, the tensor folding operator is denoted by fold(a) : a ∈ RI1I2I3×1 →
A ∈ RI1×I2×I3 , and its adjoint operator is vec(A) : A ∈ RI1×I2×I3 → a ∈ RI1I2I3×1. Given
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a vector a, its matricization is denoted by mat(a) : a ∈ RIJ×1 → A ∈ RI×J . Given a

tensor A, the i-th mode unfolding operator is denoted by unfoldi(A) : A ∈ RI1×I2×I3 →
A ∈ RIi×

∏
l ̸=i Il , and its adjoint operator is foldi(A) : A ∈ RIi×

∏
l̸=i Il → A ∈ RI1×I2×I3 .

Given that A = UΣV T is the singular value decomposition for a matrix A, a singular

value soft-thresholding operator [30, 31] is defined as

SVTτ (A) = UΣτV
T, (2.1)

where Στ = diag([max(σ1− τ, 0),max(σ2− τ, 0), · · · ,max(σI − τ, 0)]T), and σι is the ι-th

singular value of A. The operator ◦ is the Hadamard (element-wise) product.

2.1.2 Problem Statement

Without loss of generality, we can assume that a field of view (FOV) of an MR image

is a cubic space. Let the side length of the cubic FOV be denoted by L and let the three

mutually orthogonal directions corresponding to the sides of the cubic FOV be denoted

by a X-axis, a Y -axis, and a Z-axis.

For simply describing the method, we assume that the slice thickness and the slice

spacing are equal and that an MR image consists of n slice images, each of which has

Nc×Nc voxels. It follows that the voxel size along the through-slice direction is given by

M = L/n and that the voxel size in each slice image is given by m×m, where m = L/Nc.

M > m holds in many MR images in order to assure high SNR. 1 Let the scaling factor

be denoted by β, where β = M/m = Nc/n. The spatial resolution along the through-slice

direction is β times lower than the resolution along the in-plane directions in an MR

image.

In the experiment here, we assume that multiple two MR images are given. When mul-

tiple MR images are given, it is assumed that the MR images are obtained with mutually

orthogonal directions of slice-selective gradient. Let 3D tensors, X1 ∈ RNc×Nc×n,X2 ∈
RNc×n×Nc denote MR images of a same FOV obtained with the slice-selective gradient

parallel to the Z-axis, and the Y -axis, respectively. Let a tensor I ∈ RNc×Nc×Nc denote

an Nc × Nc × Nc isotropic noise-free MR image of the FOV obtained by an ideal MR

scanner. It is assumed that any measured MR image of the FOV, Xd, can be generated

from I by appropriately eliminating higher frequency components in the corresponding

direction of the slice-selective gradient followed by downsampling by β = Nc/n.

Let the Fourier transform of Xd be denoted by Fd and let Ωd denote a frequency region

only in which the Fourier components of Xd are measured: Outside of the region, Ω̄d,

1 Increase of the slice thickness would degrade the spatial resolution along the through-slice direction,
though the SNR of each slice image would be improved by the increase of the slice thickness because the
quantity of hydrogen nuclei included in the measured slice increases and the magnitude of the signals
emitted by the hydrogen nuclei also increases.
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Figure 2.2 Flow of MR image acquisition and super-resolution. The specimen is mea-
sured anisotropically from different directions. The blue arrows denote the through-slice
directions. MR images are obtained with a narrow bandwidth along the through-slice
directions. In most MR images, the spatial resolution along the through-slice direction
is more than three times lower than that in the other two directions. There are still
unknown high-frequency components even when a number of measurements are available.
These components are completed by super-resolution.

in the Frequency space, the frequency components are zero. As shown in Figure 2.2, it

should be noted that Ω := Ω1 ∪ Ω2 does not cover the whole spectrum space and that

diagonal high-frequency regions are not observed in any of the images. The objective

here is to estimate/complete the unknown frequency components and reconstruct a high

resolutional MR image.

It should be noted that there is a fundamental difference between the assumptions

for our input image and that for compressed sensing MRI. For compressed sensing, it is

assumed that the input is random from a sampled k-space, which includes both high and

low frequency components in an incoherent manner [11, 12, 13]. By contrast, our input

MR images have been taken already and only the low frequency components are given;

thus, the completion approaches used for compressed sensing cannot be applied .

2.1.3 Existing Methods for Super-resolution

POCS algorithm

POCS is one of the typical frameworks for the super-resolution [19, 22]. There are

various constraints which the groundtruth image must satisfy. In the image domain,

some of those constraints are expressed as forms of convex sets where the reconstructed

image must be included. A POCS algorithm projects an input image onto the convex

sets one by one repeatedly to obtain the unique solution. The convex sets, which we refer

also as models, vary depended on the various conventional POCS methods. For example,

there are methods which employ data fidelity and nonnegativity as the models [48, 22].

We focus on the Gerchberg algorithm, which is one of the earliest POCS algorithms. The

Gerchberg algorithm employs two models; The fidelity of the spectrum, and the boundary

of the region where the object exists.
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In the following of this section, we introduce the Gerchberg algorithm [20, 21]. The

Gerchberg algorithm assumes that an image signal is spatially finite and that the outer

boundary of the finite region, Γ, is known in advance. In the Gerchberg algorithm, an

image is super-resolved by iteratively repeating two projections onto two convex sets: (I)

setting the image signal outside of Γ, denoted by Γ̄, zero; and (II) updating the spectrum

within the observed region, Ω, so as to remain as the observed value. An example of the

algorithm in the case of a one-dimensional signal is shown in Figure 2.3. The Gerchberg

algorithm is summarized in Algorithm 1.

Let X ∈ RN1×N2×N3 denote an image signal and let F denote its Fourier trans-

form. In the initial state, F = F0, where F0 denotes the observed spectrum. Let

PΓ ∈ {0, 1}N1×N2×N3 be a 3D binary label array such that 0 and 1 indicate the outside

and inside voxels of the target object, Γ, respectively. The first step of the algorithm is

given by X ← PΓ ◦ IDFT(F), where IDFT(·) denotes a linear operator that provides

the inverse 3D discrete Fourier transform (DFT). This operation performs the image

signal outside Γ (inside Γ̄) to zero. Let PΩ denote a 3D index array such that 0 and

1 indicate Ω̄ and Ω, respectively. The second step of the algorithm is then given by

F ← PΩ ◦ F0 + PΩ̄ ◦ DFT(X ), where DFT(·) is a linear operator that provides the

3D-DFT. This operation replaces the calculated spectrum, F , in the region Ω with the

observed spectrum, F0. These two steps are repeatedly conducted and the resultant F
will converge to the unique solution.

The converged unique solution should be the true spectrum under the ideal conditions.

The observed spectrumF0 is interpreted as being the sum of two types of spectra: the true

spectrum to be restored and the error spectrum that represents the difference between

the true spectrum and the observed spectrum (Figure 2.3(a)(b)). It should be noted

that IDFT(F0) denotes a low-resolution image that is blurred because the high frequency

components are not observed. The blurred image is interpreted as being the sum of the

true high resolution image to be restored and the error image that is the IDFT of the error

spectrum, as shown in Figure 2.3. In step (I), the operator PΓ reduces only the power of

the error image by removing the blur image components in Γ̄. In step (II), the operator

PΓ has no effect on the true signal, which is zero in PΓ̄. Here, one can remove only the

energy of the error spectrum by replacing only the spectrum components within Ω with

the observed values, F0 because the true spectrum is observed in the lower frequency

region, Ω. Repeating the two projections (I) and (II) described above, the error spectrum

converges toward zero and the resulting spectrum converges toward the true spectrum.

In practice, however, it is assumed in the Gerchberg algorithm that the observed low-

frequency spectrum is strictly same as that of the groundtruth image. Thus the resultant

image reaches to an invalid solution that deviate from the true spectrum when the observed

image is contaminated with some noise. It is also assumed that the object exists inner Γ

in the image domain. This assumption means that Γ should not invade the true region
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where the object of groundtruth exists. On the other hand, if Γ is redundant from the true

region, the reconstruction performance would more or less degrade though the algorithm

attempt to reach towards the groundtruth. It is also known that the reconstructed image

could be contaminated by ringing artifacts even under the ideal conditions [49, 50, 51].

In order to improve the performance, we introduce regularization approaches. In the next

sub-section, we describe the introduced regularizers.
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(a)

(b)

(c)

Figure 2.3 Illustration of the Gerchberg algorithm. (a) The observed image (left) and its
spectrum (right). (b) The interpretation of (a). The observed image is the sum of the true
signal/spectrum (blue line) and the error signal/spectrum (red line). (c) The procedure
followed by the algorithm. The error spectrum is reduced by iterating in both the signal
and Fourier domains.
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Algorithm 1 Gerchberg Algorithm [20, 21]

1: input: An observed spectrum F0, a boundary index array PΓ, and a pass-band index

array PΩ.

2: F = F0;

3: repeat

4: X ← PΓ ◦ IDFT(F);

5: F ← PΩ ◦F0 +PΩ̄ ◦DFT(X );

6: until F converges

7: output: F and X

Regularization-Based Methods

In this section, we review conventional regularization-based super-resolution approaches

introduced in our method: TV regularization, rank regularization, and their combination.

TV is an evaluation measure for the smoothness of an image and its minimization plays

an important role in solving the inverse problem in signal processing, such as denoising,

interpolation, deconvolution, and super-resolution [52, 53, 54, 55, 56, 57]. Using simple

notations, super-resolution problem with TV regularization can be formulated as

argmin
X

DS(X0,X ) + λ||X ||TV, (2.2)

where X0 is the observed signal, || · ||TV is the total variation, and DS(·), which is some

kind of distance measure between X0 and X , evaluates the image fidelity. TV is defined

as

||X ||TV :=
∑
s,t,u

√√√√ 3∑
d=1

[∇d(X ) ◦ ∇d(X )]stu, (2.3)

where s, t, u are voxel indices for an 3D tensor, and ∇d is a partial differential operator

with respect to the d-th axis of a 3D image.

In many cases, DS(·) is a linear operator such as L2-norm for the image fidelity con-

sidering the existence of gaussian noise. Thus the problem in (2.2) is often a convex

optimization problem. However, classical gradient-based and Newton-like methods can-

not be used since ||X ||TV is not a differentiable function. The primal-dual splitting (PDS)

method [53, 58, 57], ADMM [59, 60], and the majorization-minimization (MM) algorithm

[25] can solve the TV regularization problem in an efficient manner.

For the regularization term, it is also possible to use the low rank property in the image

restoration. For tensor completion, regularization with rank is known to obtain superior

reconstructions [61]. The rank of a matrix is not a convex function, but its approximation

can be minimized as convex optimization using the trace norm [62, 63, 64]. The trace
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norm of a matrix is defined as the sum of all the singular values. The rank of a tensor

can also be approximated effectively as the trace norm of a tensor, which is defined as

the weighted sum of all the matrix trace norms for the individual mode-matricization of

a tensor [30]:

||X ||∗ =
N∑
i=1

αi||X(i)||∗, (2.4)

where N is the number of tensor dimensions and {αi}Ni=1 are parameters that satisfy∑N
i=1 αi = 1 and αi >. X(i) ∈ RNi×NjNk , where i, j, k ∈ {1, 2, 3} (i ̸= j ̸= k), is the matrix

obtained by X(i) = unfoldi(X ). In the following, αi = 1/N and N = 3 are set because

3D MR images are 3D tensors. Then, the 3D tensor completion problem regularized by

rank is configured as

argmin
X

DS(X0,X ) + λ||X ||∗, (2.5)

where PΨ ∈ {0, 1}N1×N2×N3 indicate the indices where the elements are observed. (2.5)

can be optimized by ADMM using the singular value thresholding operator(2.1) [30].

In an application of regularized-based super-resolution for MR imaging, [56] also im-

posed rank regularization on the problem(2.2) and achieved a satisfactory improvement

in performance. They configured the optimization problem as

argmin
X

DS(X0,X ) + λTV||X ||TV + λLR||X ||∗. (2.6)

In practice, the tensor trace norm can be minimized by using slack variables for each

dimension [30, 56].

2.2 Proposed Method

We have introduced two types of super-resolution methods: the Gerchberg algorithm

[20, 21] and regularization-based approaches [65, 30, 66, 56]. The Gerchberg algorithm

can be characterized by the global boundary prior and the observed spectrum mainte-

nance. By contrast, regularization-based methods can be characterized as performing

super-resolution by signal fitting with a local smoothness (low TV) or global similarity

(low rank) prior, which is generally satisfied in natural images. The proposed super-

resolution algorithm combines both strategies and modifies it by including signal and

spectral fitting with smoothness (low TV) and global (low rank and the boundary) pri-

ors.

Outline of the Proposed Method

The proposed method is obtained by combining LRTV super-resolution [56] and the

Gerchberg algorithm. As mentioned in Section 2.1.3, the Gerchberg algorithm is given in
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the form of an iterative projection with PΓ, PΩ, and PΩ̄, and hence these two methods

cannot be combined straightforwardly. Thus, in order to impose regularization technique

on the Gerchberg algorithm, we first give a re-interpretation of the Gerchberg algorithm.

The Gerchberg algorithm can be re-interpreted as solving the following convex optimiza-

tion problem for the spectrum F :

argmin
F
||PΩ ◦ (F0 −F)||2F ,+iΓ(X ),

s.t. X = IDFT(F), (2.7)

where F0 is the observed spectrum (See Section 2.2 in detail). In Problem (2.7), iΓ(X )

is the following indicator function:

iΓ(X ) =

{
0 if PΓ̄ ◦X = O
∞ otherwise

(2.8)

where PΓ̄ = 1−PΓ, O ∈ {0}N1×N2×N3 is a zero 3D array. The first term in Problem (2.7)

represents fitting the spectrum F with F0 for the pass-band, considering the existence of

gaussian noise with the observation. The second term, iΓ(X ), implies that all the outside

voxels of the image are zero. Each linear term in (2.7) corresponds to the projection onto

the convex set in the signal or Fourier domains in the Gerchberg algorithm.

Based on (2.7) and LRTV regularization, we propose to solve the following convex

optimization problem:

argmin
F

λTV||X ||TV + λLR||X ||∗

+ iΓ(X ) +
1

2
||PΩ ◦ (F0 −F)||2F , (2.9)

s.t. X = IDFT(F),

where λTV, λLR > 0 are parameters that control the balance between the respective terms.

In contrast to the image-fidelity-based problems in Equations(2.2) and (2.6), the error

terms in the proposed method are for fitting the Fourier spectrum. The image/frequency

fidelities are regularized/constrained by TV, rank, and the region Γ. The behavior of each

term in (2.9) is considered in Section 2.3.6.

The following notice must be considered before the optimization of Problem (2.9). First,

the Gerchberg algorithm assumes that the spectrum profile is a rectangular function.

However, in clinical MR imaging, the spectrum of the slice-profile forms a Gaussian or

windowed-sinc function e.g.[67, 68, 69]. With this notice, we use F ′
0 = F0 ⊘PΞ instead

of F0 , where PΞ is the spectrum of the slice-profile along through-slice directions and ⊘
is the element-wise division operator. Next, a slack variable for each dimension, Mi ∈
RN1×N2×N3 for the optimization process. Considering (2.4) and setting iΓ(X ) into the
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constraints, (2.9) is rewritten as

argmin
F

λTV||X ||TV +
λLR

N

N∑
i=1

||Mi(i)||∗

+
1

2
||F ′

0 −PΩ ◦F ||2F ,

s.t. X = IDFT(F), O = PΓ̄ ◦X , (2.10)

X(i) = Mi(i), i = 1, · · · ,N

whereMi(i) = unfoldi(Mi). The constraints can be simplified by introducing a variable Vi

with respect to the third constraint. Then, the vector form of the proposed problem (2.10)

with relaxation is given by

argmin
f

λTV||x||TV +
λLR

N

N∑
i=1

||Mi(i)||∗

+
1

2
||f ′

0 −RΩf ||22

+
ϵ

2

N∑
i=1

(||x−mi + vi||22 − ||vi||22),

s.t. x = Gf , 0 = RΓ̄x, (2.11)

where x = vec(X ), x0 = vec(X0), f = vec(F), f
′
0 = vec(F ′

0), RΩ = diag(vec(PΩ)),

mi = vec(Mi), RΓ̄ = diag(vec(PΓ̄)), 0 = vec(O). G is a linear operator (matrix) that

gives the inverse 3D DFT. ϵ > 0 is an additional parameter for the fitting term of the

slack variables. Note that all of the terms and constraints in (2.11) are convex or linear;

thus, (2.11) is a convex optimization problem that can be solved using the PDS, ADMM,

and MM algorithms.

An Optimization Algorithm

Several algorithms can be used to solve (2.11). In this section, we introduce a convex

optimization algorithm that uses ADMM [59] as an example.
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To hold proximity, we reformulate the (2.11) as

argmin
f

λTV||Y ||1,2 +
λLR

N

N∑
i=1

||Mi(i)||∗

+
1

2
||f ′

0 −RΩf ||22

+
ϵ

2

N∑
i=1

(||x−mi + vi||22 − ||vi||22),

s.t. Y = [L1x,L2x,L3x], (2.12)

x = Gf , 0 = RΓ̄x,

where ||[z1, z2, ..., zN ]
T||1,2 :=

∑N
n=1 ||zn||2 is an l1,2-norm and Ld is a partial differential

operator with respect to the d-th axis. The first constraint can be rewritten as y :=

vec(Y ) = [LT
1 ,L

T
2 ,L

T
3 ]

Tx =: Lx.

The augmented Lagrangian of (2.12) is given by

L(f ,x,y, z,α,γ) = λTV||Y ||1,2 +
λLR

N

N∑
i=1

||Mi(i)||∗

+
1

2
||f ′

0 −RΩf ||2

+
ϵ

2

N∑
i=1

(||x−mi + vi||22 − ||vi||22)

+ ⟨z,y −Lx⟩+ ⟨α,x−Gf⟩+ ⟨γ,RΓ̄x⟩ (2.13)

+
ρ

2
||y −Lx||22 +

ρ

2
||x−Gf ||22 +

ρ

2
||RΓ̄x||22,

where z, α, and γ are the Lagrange coefficients, and ρ > 0 is the penalty weight. By

minimizing (2.13) with respect to f , x, y, and mj, the following update rules can be

obtained:

fk+1 = (RΩ + ρI)−1[RΩf
′

0 +GT (αk + ρxk)], (2.14)

xk+1 =
(
ρ(I +RΓ̄ +LTL) +NϵI

)−1

[
ϵ

N∑
i=1

(mi − vi)

−LTzk +α+RΓ̄γ + ρ(Gf −LTyk)
]
, (2.15)

[Y k+1]st = max(1− λTV · (ρ||wk
s ||2)−1, 0)wk

st, (2.16)

mk+1
i = vec(Mk+1

i )

= vec(foldi[SVTλLR
Nϵ

(unfoldj(X
k+1 + V k

i ))]), (2.17)

vk+1
i = vk

i + x−mi (2.18)
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Algorithm 2 LRTVG algorithm

1: input: Observed images along multiple dimensions Xj, j = 1, · · · , D, and their com-

bined spectrum F0.

2: f
′
0 = vec(F0 ⊘PΞ), f = f

′
0, and x = Gf ;

3: repeat

4: Update f based on (2.14);

5: Update x based on (2.15);

6: Update Y based on (2.16);

7: Update mi based on (2.17);

8: Update vi based on (2.18);

9: Update z based on (2.19);

10: Update α based on (2.20);

11: Update γ based on (2.21);

12: until The cost (2.13) converges

13: output: F = fold(f) and X = fold(x)

where I is an identity matrix, wk
s = [wk

s1, w
k
s2, w

k
s3]

T , and wk
st = [mat(Lxk+1 − ρ−1zk)]st.

The derivations of the update rules given above are described in Appendix. The Lagrange

multipliers are updated by

zk+1 = zk + ρ(yk+1 −Lxk+1), (2.19)

αk+1 = αk + ρ(xk+1 −Gfk+1), (2.20)

γk+1 = γk + ρ(RΓ̄x
k+1). (2.21)

For (2.15), the conjugate gradient method can be used instead of the inverse matrix,

which requires a large amount of calculations. The parameters are updated by repeat-

edly applying (2.14)–(2.21) alternatively until convergence of the original cost function in

(2.11). The proposed method with the above notations is summarized in Algorithm 2.

2.3 Results and Discussion

We examined the characteristics of the proposed method using MR images of a brain

phantom and of human head portions. The experiments were performed with brain phan-

tom images [70] and with clinical MR images.

For the phantom images, different four images, which vary together in the modality (T1

or T2 weighted) and in the pathological status (with or without lesion), were used. Each

phantom image had a spatial resolution of 1×1×1mm3. After setting an original phantom

image as the ground truth, we simulated two anisotropic observed images by downsam-

pling toward different orthogonal directions. The blurring kernel for downsampling was
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rectangular (average) toward the downsampling direction and we assumed that the slice

profile in the signal domain was rectangular along the through-slice direction. Thus, the

two observed images had spatial resolutions of 1/β × 1 × 1mm3 and 1 × 1/β × 1mm3,

where β is the scaling-factor. The variational settings of scaling-factors and noise-levels

are simulated for the observations. 16 settings of the observations in total, which vary

together in modalities, in pathological status, in scaling-factors, and in noise-levels, were

simulated and are shown in Table 2.1.

As for the clinical images, 37 MR images from the OASIS [71] were used for the ex-

periment. MR images of different subjects were randomly chosen from disc1 in OASIS-1

dataset. For each session (subject) of OASIS, the first scanned image was chosen for the

evaluation. Each image had a spatial resolution of 1 × 1 × 1.25mm3. We employed the

same observation procedure described above.

Using the MR images of a brain phantom, we at first examined the sensitivity of the

accuracy of the image reconstruction against the hyper parameters in Section 2.3.1 and

the computational time in Section 2.3.2. Then we compared the accuracy of the images

reconstructed by the proposed methods and other conventional super-resolution methods

and evaluated the reconstruction stability against the change of the noise level and scaling

factor in Section 2.3.3 and 2.3.4. As described, our method requires to label the outer

boundary of the target in a given image. We also evaluated the sensitivity of the recon-

struction accuracy with respect to the accuracy of the labeled outer boundary in Section

2.3.4. Each performance was evaluated based on the peak signal to noise ratio (PSNR)

in the target region of the restored images.

The performance of the proposed method is compared with the following existing meth-

ods: nearest neighbor interpolation (NN), bicubic interpolation, zero-padding in the

Fourier space (ZP) [72], the Gerchberg algorithm [20], TV regularized super-resolution

[66], and LRTV [56]. In the remainder of this paper, the proposed method is denoted as

LRTVG and the proposed method without the rank regularization term (λLR = ϵ = 0) is

denoted as TVG.

2.3.1 Sensitivity with respect to Hyper Parameters

First, we show behaviors of the parameters in the proposed model. Figure 2.4 shows an

example of changes in the PSNR with respect to λTV, λLR, and ϵ in (2.9). The changes

in the PSNR with respect to λTV are more steeper than those with respect to λLR. We

can say that TV regularization must be more carefully tuned than LR regularization. ϵ

should be set enough small so that the data fidelity term is retained well, as it is shown

in Figure 2.4 that larger ϵ rapidly degrades the performance.

The proposed method as well as TV and LRTV needs to be tuned the hyper parameters

by the input image. Figure 2.5 shows two examples of the different input images when
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λTV and λLR are simultaneously changed. As shown in Figure 2.5, λTV and λLR, which

actually control the regularization weights, should be varied by the image so as to exert

the best performance for each image. Although the balance of the two parameters is case

by case, it can be said at least that λTV and λLR would be larger when the noise-level

gets higher, and that λTV and λLR would be smaller when the scale-factor gets larger.

With those considerations, λTV, λLR were manually tuned by the input image while

fixing ϵ = 0.01 in the following experiments.

Figure 2.4 An example of PSNR results obtained using the proposed method in terms of
the parameters λTV, λLR, and ϵ. The input image was the Image (a) in Table 2.1.

Figure 2.5 Examples of PSNR results of the proposed method when λTV and λLR are
simultaneously changed. The input images were the Image (a) and (m) in Table 2.1.
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2.3.2 Computational Time

Next, we show the number of iterations each method took until the convergence in

Figure 2.6, and the average processing times for one iteration in Table 2.2. The number

of iteration until the convergence of the proposed method was larger than that of LRTV

and TV. We suppose that this is because the additional two Lagrange multipliers, α and

γ, are necessary for the optimization. The Gerchberg model, which also needs α and γ

when solved with ADMM, took the much more iterations than the other methods. It can

be said that regularizations accelerate the convergence speeds of the POCS methods.

Theoretically speaking, the computational orders of LRTVG/TVG for each iteration

equal to those of LRTV/TV. The experimental results in Table 2.2 show that compu-

tational times of LRTVG/TVG are a little longer than those of LRTV/TV, which is

because more several times of FFT are necessary for the proposed method compared with

LRTV/TV. We discuss the computational complexity in detail in Section 2.3.6.

2.3.3 Comparison of Accuracy of Reconstruction

In this section, we show the reconstruction accuracy of the proposed method compared

to the existing methods: NN, bicubic interpolation, ZP, the Gerchberg algorithm, TV

regularized super-resolution, and LRTV super-resolution. The restored images and PSNR

results of the simulational observations in Table 2.1 are shown in Figure 2.7 and Figure 2.8.

All of the PSNR results were calculated in the region Γ. The parameters of TV, LRTV,

and the proposed method are set by manually tuning as mentioned in Section 2.3.1

The simple interpolation methods, i.e., NN, bicubic, and ZP, generated blurred images.

The Gerchberg algorithm was affected severely by ringing artifacts and noises, although

sharp edges and high frequency components can be observed in the results. Although

the TV-based approaches preserved their edges clearly, the results of TV and LRTV lack

high frequency components in the Fourier space. The proposed method restored the

high frequency components as well as clear edges, and had the best performance for all

the input images in Table 2.1. All the PSNR results of T2-weighted images are clearly

degraded compared to T1-weighted images. This would be because the image gradients

in T2-weighted images more steeply change than those of T1 weighted images because of

their modality characteristics.

We also show the reconstruction accuracy of the 37 subjects from OASIS [71]. Box-plots

of the results when β = 6, and when β = 12 are shown in Figure 2.9. The proposed method

performed better than the others in terms of the PSNR. We examined the statistical

significance of the performance difference the proposed methods (LRTVG and TVG)

and others. In case β = 6, the proposed LRTVG significantly outperformed all other

methods according to the t-test. In case β = 12, both of LRTVG and TVG significantly

outperformed all other methods.
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Table 2.1 Correspondences of simulational settings and image indices. N/L of the Status
row means the normal/lesional brain. Data ID is used to index in Figure 2.7 – 2.8.

Data ID (a) (b) (c) (d) ( e) (f) (g) (h)

Modality T1 T1 T1 T1 T1 T1 T1 T1

Status N N N N L L L L

β 4 4 8 8 4 4 8 8

Noise level [%] 1 5 1 5 1 5 1 5

Data ID (i) (j) (k) (l) (m) (n) (o) (p)

Modality T2 T2 T2 T2 T2 T2 T2 T2

Status N N N N L L L L

β 4 4 8 8 4 4 8 8

Noise level [%] 1 5 1 5 1 5 1 5

Table 2.2 The average processing times for one iteration. The image size was
220× 220× 220.

Methods LRTVG TVG LRTV TV Gerchberg

Avg. Process. Time (sec.) 5.73 4.81 5.24 4.54 4.86

Figure 2.6 The numbers of iterations until the ADMM convergence. Each threshold of
the stopping criteria was 1.0× 10−7.
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Figure 2.7 PSNR results of the variational simulations in Table 2.1
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Figure 2.8 Reconstructed images of the brain phantom. Top three rows show illustrations
of axial cross-sections, zoomed sagittal cross-sections, and the Fourier spectrums of the
T1-weighted brain without lesion (data (c)). The next three rows show those of the
T2-weighted brain without lesion (data (k)), and the bottom rows show those of the
T2-weighted brain with lesion (data (o)). β = 8 and the noise-level was 1% for the
observation settings.
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(a)

(b)
Figure 2.9 Box-plots of the PSNR results obtained using different methods with 37 images
from OASIS. The proposed method (LRTVG and TVG) performed better than the other
methods. (a) β = 6, (b) β = 12.

2.3.4 Stability against Noise Level and Scaling Factor

We evaluated the change of the performance with respect to (i) noise level and (ii) scale

factor. Figure 2.10 demonstrates some examples of the experimental results. Figure 2.10

(a) shows PSNR for all noise levels when β = 12. Figure 2.10 (b) shows PSNR for all

scaling-factors when the observations are free of noise. The proposed method outper-

formed the other methods in all cases. With high noise level, the performance of the

proposed method converge next to that of LRTV/TV. With the larger scaling factor, the

proposed method performed significantly better compared with the other methods. These

behaviors of the proposed method can also be observed in the results in Section 2.3.1,

where the larger regularization weights work with high noise levels, and the smaller reg-

ularization weights work with large scaling factors.

2.3.5 Stability against Boundary Label

Finally, we focus on the boundary constraint of the proposed method. The boundary

contour will differ depending on the boundary detection procedure (e.g., manual, simple

thresholding, or contour detection methods), so we examined the performance with re-

spect to the boundary by dilating/shrinking the true boundary. The true boundary was

dilated/shrunk by thresholding the distance map created from the level-set function. Fig-

ure 2.11 shows the PSNR results as the distance from the true boundary changed. This

distance corresponds to the difference in radius between the true boundary and the re-

ferred boundary. When the distance was positive (the referred boundary was redundant),
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(a) (b)

(c)
Figure 2.10 Experimental results obtained for an image from OASIS. (a) PSNR in terms
of the Gaussian noise level (upper) and enlarged views (lower). (b) PSNR in terms of
the scaling factor β (upper), and enlarged views (lower). (c) Reconstructed images and
spectra obtained with β = 12.

the performance increased slightly toward a distance of zero where the boundary was per-

fectly accurate. The performance decreased steeply when the distance gets negative (the

referred boundary was insufficient). This is obviously because not only the background

but also the true signal is regarded as noise and the constraint is broken. Thus the target

region must not to be underestimated so that the proposed method works. When the

boundary was more accurate, the proposed method performed better, but we need to be

careful when setting the boundary not to encroach into the true target region.
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Figure 2.11 Differences in PSNR performance of the proposed method when the boundary
became redundant (positive values) or insufficient (negative values) compared with the
true boundary (the value is zero). The input image of the left figure was T1-weighted
image of normal brain phantom, and that of the right one was T2-weighted image of
lesional brain phantom.

2.3.6 Discussion

We consider the aspects of the proposed method and its other features. In terms of

POCS approaches [19, 73, 22], the proposed method can be regarded as handling two

convex sets: fidelity of the spectrum, and signal boundary. In the proposed method, the

projections onto these convex sets can be controlled by TV and rank regularization.

Actually, general regularization-based super-resolution methods simply assume that the

resultant image will be smoother or spatially more similar than a noisy input image; there

is no assumption for the restoration of fine structures themselves. On the other hand,

POCS approaches can retrieve fine structures theoretically as described in Section 2.1.3.

However, POCS approaches strictly obey their convex sets, and sometimes they will not

be able to compete with images which are out of their model. For example, the Gerchberg

model cannot compete with noisy inputs theoretically, and with ringing artifacts which

is caused by the discrete Fourier transform. Unlike those methods, the proposed method

can allow both the restoration of fine structures, and existence of noise or artifacts.

As same as the general regularization-based super-resolution methods, influence of noise

are controlled by regularization terms. The weights for regularization are decided by λTV

and λLR. As λTV becomes larger, image gradients will get sparse and the restored image

becomes smoother. When λLR becomes larger, the reconstructed image becomes low

rank. Results in Section 2.3.1 showed the behaviors of the two parameters vary be the

image. Note that the super-resolution model of the proposed method actually includes

the Gerchberg model and equals to it when λTV = λLR = 0 and PΞ denotes rectangular

profile.

In addition to the regional constraint limitation described in Section 2.3.5, there are

some implicit limitations of the proposed method considered: (i) the PSF is known in

advance (the problem to be solved is not the blind deconvolution), (ii) the outer boundary
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of the target can be labeled in a reasonable time, and (ii) image noises can be well

represented by the normal distribution. The limitations (i) and (iii) are derived from

the data fidelity term of the proposed model. TV and LRTV also have these limitations

(i) and (iii). Without (i), when the PSF is unknown, the problem to be solved is the

nonconvex optimization and cannot be solved easily. When the image noises do not obey

the normal distribution, the error function must be corrected by the noise distribution, or

some pre-processing is necessary for denoising. The limitation (ii) would be necessary for

the clinical applications, and would rarely be broken. When the limitation (ii) is broken,

the observed image would be contaminated severely with noises, and the target region/

background cannot be determined easily. However, in the case when the super-resolution

is necessary for an input MR image, the slice-thickness is enough large and the noise-

level of the observed image would be enough small so that the labeling could be easily

conducted.

We also discuss the computational complexity of the proposed method. In the follow-

ings, a tensor of the size Nc×Nc×Nc is assumed, and the total number of the voxel is N3
c .

First of all, Equations (2.16), and (2.18)–(2.21) cost O(N3
c ) obviously. Equation (2.14)

cost O(N3
c logNc) for the FFT when it is calculated by each fibers of an 3D tensor. When

the multiplication of the convolution-matrix and its inversion in (2.15) are calculated in

the Fourier space, the cost of the inverse multiplication itself can be reduced to O(N3
c ).

Thus (2.15) also costs only O(N3
c logNc) for the FFT. For (2.17), the size of a matrix,

unfoldj(X
k+1 + V k

i ), is Nc × N2
c and its SVD costs O(N4

c ). Therefore O(N4
c ) for the

proximal operator of rank is the worst computational cost for each iterations, which is

the same as that of LRTV.

The convergence speed/ number of iterations of the proposed method are slower/ larger

than that of LRTV. As mentioned in Section 2.3.2, this would be because the additional

two Lagrange multipliers, α and γ, are necessary for the optimization. The convergence

speed also depends on the optimization frameworks and total variation minimization

algorithms employed.

There are several future works considered in this study. We proposed the super-

resolution model itself and the parameters of the proposed method are hand-tuned so

far as discussed above. Actually, there are several methods proposed for automatically

tuning the parameters of the TV optimization ([74, e.g.]), and the proposed model also

would be able to be applied these auto-tuning methods. For the clinical application, this

would be necessary in order to process in shorter time. In order to achieve more accu-

rate results, processing the segmentation of the target region and the super-resolution

of the image at the same time can be considered. This can be performed by optimizing

X, F , and PΓ̄ at the same time. The fact that the fidelity term would explode when

the target region is underestimated could be exploited for the simultaneous optimization.

However this would lead the model to be an nonconvex optimization problem, which is
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much more difficult of initialization and selecting the solvers. The other work to enforce

the performance is introducing the regularization based on deep neural networks like [75]

and [76], for example. [75] uses trained DCNN and its population as the regularization of

the signal fidelity term. [76] exploits the structure itself of deep neural networks for the

regularization. The combination of POCS optimization and deep neural networks would

lead to the higher performance.
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Chapter 3

　　PET Image Reconstruction

A temporal series of Positron Emission Tomography (PET) images is widely used to

analyze the dynamics of ligands in the human brain [1]. A PET image represents a

3D spatial concentration distribution of the ligand and is reconstructed from sinogram

data, which are measured by a PET scanner. A sinogram measured by a PET scanner is

modelled by the Radon transformation of the spatial ligand distribution, and the Radon

transformation can be represented by a linear projection. SNR of sinograms is low in

general, and it is known that PET image reconstruction is an ill-posed problem in that

the reconstruction is highly sensitive to measurement noises. It is still an important

problem to reconstruct accurate PET images from measured sinograms stably against

noise.

Most methods for PET image reconstruction solve the ill-posed problem based on reg-

ularization. For example, there are many methods where some smooth regularizers are

introduced [77, 78, 79, 80, 81, 82]. The works in [83, 84, 82] introduced nonnegativity.

The works in [85, 86, 87] introduced the Total Variation (TV) norm of resultant images,

or both resultant images and sinograms. These methods reconstruct a PET image from

a sinogram measured each time one by one. Several methods have been proposed that

reconstruct 4D PET images from a temporal series of measured sinograms at the same

time [88, 89, 90]. For example, Reference [90] introduced a set of basis functions for

representing the temporal change of each voxel value. The objective of this study is to

develop a method that reconstructs accurate 4D PET images from a temporal series of

sinograms stably against noise. Analogous to the existing methods, in this study, 4D PET

image reconstruction as a constrained optimization problem. Particularly, the consistency

between models is focused on, which is introduced for constraining the solution space and

the characteristics of the measurement noises, the dynamics of the ligand and the spatial

patterns of brain PET images.

Different from typical image sensing, the measurement noises of sinograms cannot be

well represented by a normal distribution, but by a Poisson distribution, which obeys
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the events of gamma photon emission. This is a reason why the Kullback–Leibler (KL)

divergence with a Poisson representation, and not a squared error, should be used for

the distance evaluation [91, 92]. As for the noises included in reconstructed PET im-

ages, approximation with a Gaussian distribution is acceptable [93, 94] and is widely

employed [95, 91]. This means that one can employ the squared error derived from the

negative log likelihood when evaluating the distance between two PET images.

The nonnegativity of voxel values in PET images is consistent with the characteristics

of PET images and is widely introduced for constraining PET images to be reconstructed

[83, 84, 82]. A smooth regularizer such as the TV norm of reconstructed PET images is also

widely introduced as a regularizer. It is reported that TV-norm regularization improves

the SNR of reconstructed PET images [85, 86, 87]. Lower values of the TV norm can

be obtained when the images are partially constant. Hence, TV-norm regularization can

smooth out image noises. The method proposed in this study introduces the nonnegativity

constraint, but not the TV-norm regularization technique because a TV regularizer can

also smooth significant small spot patterns when the regularization is too strong. In order

to constrain the spatial patterns in a reconstructed PET image, we constrain the outer

boundary of a target body region in the image. We assume that a background region in

which no radioligand exists is known. In most clinical PET images, a target body part such

as the brain can be observed in a limited region surrounded by an empty background.

Many artifacts and noise patterns, however, are often observed in the background in

a reconstructed PET image. Thus, the proposed method restricts the voxel values in

the background to be zero. One can find that some image super-resolution techniques

introduce such an assumption on the empty background and that such an assumption

works well [23].

The 4D or spatiotemporal reconstruction of a PET image can improve the image qual-

ity by introducing such models that represent the characteristics of the temporal changes

of voxel values [89, 80, 90]. A tissue Time Activity Curve (tTAC) represents the tem-

poral change of the ligand concentration at each location. A tTAC should be smooth,

although nonsmooth tTACs are often obtained when one reconstructs each PET image

captured at different times independently. For example, a method proposed in [90] recon-

structs 4D PET images by representing tTACs with linear combinations of spline basis

functions. Another method [96] introduces smoothness regularization in order to obtain

smooth tTACs. By introducing such models of tTACs, one can improve the accuracy

of reconstructed tTACs. The models employed by the existing 4D reconstruction, how-

ever, are not necessarily consistent with the dynamics of the ligand in human bodies. For

example, even if no measurement noise exists, the linear combination of given spline basis

functions would fail to describe tTACs perfectly. Smoothness regularization, which often

cuts high-frequency components, would also fail to remove large amounts of noises while

preserving the accurate shapes of tTACs. In order to accurately reconstruct tTACs, a
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model that accurately represents the receptor-ligand kinetics needs to be introduced. To

represent the kinetics, a compartment model, which is widely used to represent receptor-

ligand kinetics, is introduced. In the compartment model, each of the compartments

corresponds to some component of the human body. The transmission of the ligand be-

tween compartments is represented by a system of differential equations. Details of the

compartment model will be described later. The proposed method introduces a constraint

of tTACs that can be explicitly derived from the multi-compartment model. The proposed

method reconstructs 4D images based on the following models:

• Noise model:

A Poisson distribution model is employed. The distance between the given measured

sinogram and the projection of the reconstructed PET image is measured by using

the KL divergence.

• Spatial model:

The nonnegativity of voxel values is assumed. In addition, it is assumed that the

foreground/background regions and the reference region in an image are known in

advance. The voxel values in the background are set to zero.

• Temporal model:

A compartment model is employed. It is assumed that, given the ligand, one can

identify the number of compartments appropriate for the representation of the ki-

netics. In this study, we assume a three-compartment model, which is appropriate

for a variety of ligands, such as a [11C]carfentanil and a [18F]fludeoxyglucose [97, 98].

In this study, we clearly define the constrained optimization problem to be solved for

the 4D PET image reconstruction and clarify a detailed algorithm that can reach the

local minimum of the optimization problem.

In summary, the contributions of this study include:

1. A compartment model-based constraint is explicitly introduced in order to constrain

the tTACs to the solution space in which the relationships between the tTACs are

consistent with the compartment model, while retaining the KL-divergence of data

fidelity as a convex function.

2. A constraint of a target region in an image is introduced to restrict the pixel values

of the background to be zero.

3. The dependency of the solutions on the initial values is discussed and is experimen-

tally shown.

In the following, first we describe basic materials of mathematics for the PET recon-

struction, and then, we describe the compartment model for the PET imaging in Section



35

3.1. Next, we describe the proposed method in Section 3.2. In Section 3.3, simulation and

clinical experimental results are presented. Some behaviors or aspects of the proposed

method are discussed in Section 3.3.3.

3.1 Basic Materials

3.1.1 PET Image Reconstruction

In this chapter, let an N -dimensional vector xf ∈ RN (f = 1, 2, · · · , F ) denote the

f -th frame of a temporal series of PET images where N denotes the number of voxels

and F denotes the number of frames. Let t1 < t2 < · · · < tF denote the times when the

sinograms are measured. Let an M -dimensional vector yf ∈ RM denote sinogram data

measured by an ideal PET machine at the time t = tf where M denotes the number of

bins.

The measurement model of the sinogram is mathematically represented by a linear

projection of the PET image as follows:

ȳf = Pxf , (3.1)

where the projection matrix is denoted by an M × N matrix, P , and is assumed to be

known in advance. The projection by P corresponds to the Radon transform. Let mea-

sured sinogram data corresponding to ȳf be denoted by ỹf , and let the m-th component

of ȳf and ỹf be denoted by ȳf,m and ỹf,m, respectively. It is assumed that each component

of the measured sinogram data obeys a Poisson distribution such that:

Pr(ỹf,m|ȳf,m) =
ȳ
ỹf,m
f,m

ỹf,m!
exp{ȳf,m} . (3.2)

Conventional methods for 3D PET image reconstruction estimate xf from a measured

sinogram ỹf . Employing the Poisson model (3.2), one can estimate xf from ỹf by mini-

mizing the KL divergence between ỹf and Pxf as follows:

x̂f = argmin
xf

DKL(ỹf ||Pxf ) . (3.3)

There are several methods that reconstruct 3D PET images by minimizing the KL

divergence with some regularizers of the PET image, as follows:

x̂f = argmin
xf

DKL(ỹf ||Pxf ) + λη(xf ) , (3.4)

where η(·) is a function to penalize the undesirable characteristics of images and λ is

a weight parameter. For example, several methods in [85, 86, 87] set η(·) as the total

variation. The Expectation Maximization (EM) algorithm and the Ordered Subset EM
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(OSEM) algorithms are commonly employed for the minimization. Later in this chapter,

a method based on the temporal smooth regularizer is introduced and arranged for a

comparison. It is described as follows:

X̂ = argmin
X

DKL(Ỹ ||PX) +
λ

2

F−1∑
f=1

||xf+1 − xf ||22 , (3.5)

where X = [x1,x2, · · · ,xF ] ∈ RN×F and Ỹ = [ỹ1, ỹ2, · · · , ỹF ] ∈ RM×F . Problem (3.5) is

configured to make the reconstructed image smooth along the temporal change.

3.1.2 Compartment Model

There are several kinds of compartment models that represent ligand dynamics [99,

100, 1]. A three-compartment model [99] consists of three compartments that correspond

to plasma, free and bound compartments. The plasma compartment corresponds to the

arterial plasma. The ligand transports from the plasma into and back from the free com-

partment, which is represented by the other two compartments. The free compartment

corresponds to the intracellular region, in which the ligand does not bond with receptors.

As shown in Figure 3.1(a), the ligand can transmit only between the plasma com-

partment and the free compartment. The ligand in the free compartment can also be

transmitted to the bound compartment, in which the ligand binds to receptors. Let the

ligand concentrations at time t in the plasma, free and bound compartments be denoted

by Cp(t), Cf (t) and Cb(t), respectively. The three-compartment models have four param-

eters: K1, k2, k3 and k4. The dynamics of the ligand transmission are represented by a

system of differential equations with the four parameters, as follows:

dCb

dt
= k3Cf (t)− k4Cb(t), (3.6)

dCf

dt
= K1Cp(t)− k2Cb(t)− k3Cf (t) + k4Cb(t). (3.7)

(a) (b)
Figure 3.1 (a) Three-compartment model. (b) Simplified Reference Tissue Model
(SRTM).
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A PET image captured at time t describes the spatial distribution of Cb(t) + Cf (t),

which represents the total ligand concentration in the tissue. A PET image cannot dis-

tinguish between the ligand in the free compartment and that in the bound compartment.

Let C(t) denote the tTAC, where C(t) = Cb(t) + Cf (t). Given Cp(t), one can represent
C(t)
dt

as follows:
dC

dt
= K1Cp(t)− k2C(t). (3.8)

From the above notations, C(t) can be represented with the four free parameters as:

C(t) =
K1

θ2 − θ1
{(k3 + k4 − θ1)e

−θ1t + (θ2 − k3 − k4)e
−θ2t} ∗ Cp(t), (3.9)

where ∗ denotes the convolutional operator, and θ1,2 =
1
2
{k2+k3+k4±

√
(k2 + k3 + k4)2 − 4k2k4}.

The above equation is widely used for estimating the values of the kinetic parameters in

the brain. For example, in [99, 101], the model was fit to clearly analyze the transfer

of ligands in the ROI (Region Of Interest) where tTACs suffer from severe noise. How-

ever, a significant weak point is that one needs to measure not only the tTACs C(t), but

also the plasma Time Activity Curves (pTACS) Cp(t). The measurement of the pTACs

requires the invasive treatment of patients: it requires that patient plasma is sampled for

a long time. This is why a Simplified Reference Tissue Model (SRTM) is also clinically

used. It is called a reference region in the tissues where no receptor for the ligand exists.

Hence, no ligand is bound in the regions. In the compartment of the reference region, the

values of k3 and k4 are zero. As shown in Figure 3.1(b), let a tTAC in the reference region

be denoted by Cr(t). Then, given Cr(t), the tTACs observed at the i-th voxel Ci(t) on

the outside of the reference region can be represented as follows [100, 97]:

Ci(t) = R1Cr(t) +

{
k2 −

R1k2
1 +BPND

}
Cr(t) ∗ exp

{
− k2t

1 +BPND

}
, (3.10)

where R1 = K1

K
′
1

= α and BPND = k3
k4

= β. The tTACs satisfy the compartment model

only when Equation (3.10) is satisfied. When one analyzes a temporal series of PET

images using SRTM, one manually labels the reference regions in the measured PET

images [102, 103]. The proposed method introduces an SRTM shown in Equation (3.10)

for the constraint with tTACs.

3.2 Proposed Method

3.2.1 4D PET Image Representation

Let a temporal series of measured sinograms be denoted by an M × F matrix,

Ỹ = [ỹ1, ỹ2, · · · , ỹF ] ∈ RM×F , and let the spatiotemporal PET images to be reconstructed

be denoted by an N ×F matrix, X = [x1,x2, · · · ,xF ] ∈ RN×F . Let Rowi[X] denote the
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i-th row of a matrix X. Each row of X describes a tTAC observed at the corresponding

voxel such that:

Rowi[X] = [Ci(t1), Ci(t2), · · · , Ci(tF )]. (3.11)

Let a temporal series of sinograms that corresponds linearly to X be denoted by a

M × F matrix, Ȳ = [ȳ1, ȳ2, · · · , ȳF ] ∈ RM×F . Similar to the static case in Equation

(3.1), we have:

Ȳ = PX . (3.12)

The measured sinograms Ỹ are assumed to be derived from the Poisson distribution of

which the average is Ȳ . Given Ỹ , the proposed method estimates the PET images X by

solving a constrained optimization problem described below.

3.2.2 Description of Proposed Method

First, we assume that the whole brain region and reference region for an SRTM in a

PET image are known. Let the whole and reference regions be denoted by Ω and Γ,

respectively (Γ ⊂ Ω).

Let NΩ = |Ω| (NΩ < N), and let the j-th voxel in Ω (j = 1, 2, · · · , NΩ) be denoted by ij.

Let a set of indexes J = {ij| j = 1, 2, · · · , NΩ}, represent voxels in Ω. An N×NΩ matrix

Ψ is defined as Ψ = [ei1 , ei2 , · · · , eiNΩ
], where all components of the N -dimensional vector

ei are zero, except that the i-th component of ei is one: [ei]i = 1. Then, we can represent

an entire PET image xf using a lower-dimensional vector zf as follows:

xf = Ψzf , (3.13)

where zf is an NΩ-dimensional vector. The j-th component of zf is a voxel value of the

ij-th voxel in xf : [xf ]ij = [zf ]j. Let Z = [z1, z2, · · · , zF ]. Then, we have:

Ȳ = PΨZ , (3.14)

and we can reconstruct PET images by estimating Z. By representing PET images with

Z, one can reduce the dimensions of the image representation and impose that the values

in the empty backgrounds of PET images are zero.

Let us assume that the tTAC Cr(t), which is observed in the reference region Γ, is

known. Then, following Equation (3.10), a tTAC observed on the outside of Γ is consistent

with the compartment model only when Cij(t) (ij ∈ J ) can be represented with three

parameters αj, βj, γj, as follows:

Cij(t|αj, βj, γj) = αjCr(t) + βjγjCr(t) ∗ exp
{
−βj(1− γj)

αj

t

}
. (3.15)
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Let α = [α1, · · · , αNΩ
]T, β = [β1, · · · , βNΩ

]T, γ = [γ1, · · · , γNΩ
]T, and let a parametric

representation of Z in (3.14) be denoted by Z(α,β,γ) such that:

Rowj[Z(α,β,γ)] = [Cij(t1|αj, βj, γj), Cij(t2|αj, βj, γj), · · · , Cij(tF |αj, βj, γj)] (j = 1, 2, · · · , NΩ).

(3.16)

Each row of Z(α,β,γ) denotes the tTAC that is consistent with the tTAC Cr(t) ob-

served in the reference region Γ. Then, the problem to be solved here is to estimate the

parameter values αj, βj, γj (j = 1, 2, · · · , NΩ) that minimize the KL divergence with the

measured sinograms:

Ẑ = arg min
α,β,γ

DKL(Ỹ ||PΨZ(α,β, γ)). (3.17)

It should be noted that the reconstructed series of temporal images denoted by ΨẐ

satisfies the following constraints: (1) all voxel values are nonnegative; (2) all voxel values

in the backgrounds (Ω̄) are zero; (3) all tTACs in Ω are consistent with the tTAC in

the reference region Γ from the viewpoint of the SRTM; and (4) the distance from the

sinogram is minimized. A description of the reconstructed image is shown in Figure 3.2.

Figure 3.2 Description of reconstructed image through the proposed method.

However, it is difficult to solve the problem in (3.17) directly. The objective function

DKL(Ỹ ||PΨZ(α,β,γ)) has 3×NΩ parameters: α ∈ RNΩ , β ∈ RNΩ , and γ ∈ RNΩ . The

PET images X to be reconstructed have N×F voxels in total, and 3×NΩ is much smaller

than N × F . The objective function, however, is not convex in the 3 × NΩ-dimensional

kinetic parameter space. Conventional techniques such as the steepest descent method

can fail to obtain the appropriate parameter values.

To solve this problem, the proposed method leverages the fact that the target function

DKL(Ỹ ||PΨZ) is convex with respect to Z. We reformulate Problem (3.17) into a

constrained optimization problem such that:

Ẑ = argminZ DKL(Ỹ ||PΨZ) ,

s.t. Z ∈ S, Z ≥ 0,
(3.18)
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where:

S = {Z(α,β, γ|Cr(t))| ∀αj ∈ Rα,∀βj ∈ Rβ,∀γj ∈ Rγ}. (3.19)

Cr(t), which is assumed to be given in advance, is a tTAC in the region Γ. The

minimization of the objective function DKL(Ỹ ||PΨZ) can be transformed as:

argminZ DKL(Ỹ ||PΨZ) =
∑

mf

(
Ỹmf log

Ỹmf

[PΨZ]mf
− Ỹmf + [PΨZ]mf

)
= argminZ

∑
mf

(
−Ỹmf log[PΨZ]mf + [PΨZ]mf

)
.

(3.20)

Here, DKL(Ỹ ||PΨZ) is convex with respect to Z ∈ RNΩ×F and S is a nonconvex set

that can be represented by a 3 × NΩ-dimensional manifold in the NΩ × F -dimensional

space of Z. The proposed method solves the problem (3.18) by means of a projected

gradient descent. That is, the constrained optimization problem is decomposed into two

subproblems. One is a convex optimization problem, such that:

argminZ DKL(Ỹ ||PΨZ) ,

s.t. Z ≥ 0,
(3.21)

and the other is a problem of a projection onto the manifold, which is not a convex, but

a tractable optimization problem:

argminZ ||Z̆ −Z||2F ,

s.t. Z ∈ S,
(3.22)

where Z̆ is a current value of Z before the projection. The proposed optimization al-

gorithm consists of two steps, i.e., a gradient step and a projection step, as shown in

Figure 3.3. These two steps are applied in order at each iterative update of Z. Let

k (k = 1, 2, · · · ) denote the number of the update iteration, and let Z(k) denote the initial

value of Z at the k-th iteration. The update rule at the gradient step is derived from the

gradient of the subproblem (3.21) as follows:

Z̆(k) = G[Z(k)] = Z(k) − ϵ(k)
∂DKL

∂Z(k)
, (3.23)

where ϵ(k) is the step size. The update rule at the projection step solves the problem

(3.22) as follows:

Z(k+1) = P [Z̆(k)] = argmin
Z∈S

||Z̆(k) −Z||2F , (3.24)
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Figure 3.3 Illustration of the proposed algorithm. Red arrows indicate multiplicative
update operations G, and blue arrows indicate projections onto sets spanned by the SRTM
P .

In summary, the two update rules are applied to Z to obtain Z(k+1) as follows:

Z(k+1) = P ◦ G[Z(k)]. (3.25)

The details of G and P are explained in Section 3.2.2 and 3.2.2.

The Gradient Step, G

The gradient of the objective function in (3.21) is:

∂DKL

∂Z
= ΨTP T1−ΨTP T(Ỹ ⊘ [PΨZ]) , (3.26)

where 1 = {1}M×F and ⊘ denotes the element-wise division operator. Although the

update rule in (3.23) is a basic form for a gradient descent, it is difficult to set each step

size appropriately for DKL(Ỹ ||PΨZ). For Z ≥ 0, we can employ a multiplicative update

rule [104] to effectively solve Problem (3.21). From (3.26), the multiplicative update rule

for Z(k) described by G is derived as follows:

G[Z(k)] = Z(k) ◦ (ΨTP T{Ỹ ⊘ [PΨZ(k)]})⊘ [ΨTP T1] , (3.27)

where ◦ denotes the Hadamard (element-wise) product. This update rule is analogous to

that of EM [105, 106].
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The Projection Step, P

In order to obtain the projection P in (3.24), a tTAC Cij(t|αj, βj, γj), which is consis-

tent with the compartment model as shown in (3.15), is fitted to Rowj[Z̆
(k)]. Given a

reference signal Cr(t), Z̆
(k) can be projected onto the manifold S by solving the following

minimization problem for each voxel:

minimize
αj ,βj ,γj

g(αj, βj, γj) =
F∑

f=1

||zj(tf )− Cij(tf |αj, βj, γj)||2F , (3.28)

where zj(tf ) = Rowj[Z̆
(k)](tf ). It should be noted that each voxel in Ω has three pa-

rameters to be estimated: αj, βj and γj. Problem (3.28) can be iteratively solved voxel

independently through a gradient descent method as follows:

αj ← αj − ϵαj

∂gj
∂αj

, (3.29)

βj ← βj − ϵβj

∂gj
∂βj

, (3.30)

γj ← γj − ϵγj
∂gj
∂γj

, (3.31)

where ϵαj
, ϵβj

, ϵγj are step sizes. Each derivative is obtained as (3.32)–(3.37):

∂gj
∂αj

=
F∑

f=1

2{zj(tf )− αjCr(tf )− βjγjhj(tf |αj, βj, γj)}
{
−Cr(tf )− βjγj

∂hj

∂αj

}
, (3.32)

∂hj

∂αj

=
βj(1− γj)

αj
2

{
Cr(t) ∗ texp

[
−βj(1− γj)

αj

t

]}
, (3.33)

∂gj
∂βj

=
F∑

f=1

2{zj(tf )− αCr(tf )− βjγjhj(tf |αj, βj, γj)}
{
−γjhj(tf |αj, βj, γj)− βjγj

∂hj

∂βj

}
,

(3.34)

∂hj

∂βj

= −(1− γj)

αj

{
Cr(t) ∗ texp

[
−βj(1− γj)

αj

t

]}
, (3.35)

∂gj
∂γj

=
F∑

f=1

2{zj(tf )− αCr(tf )− βjγjhj(tf |αj, β,j γj)}
{
−βjhj(tf |αj, βj, γj)− βjγj

∂hj

∂γj

}
,

(3.36)
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∂hj

∂γj
=

βj

αj

{
Cr(t) ∗ texp

[
−βj(1− γj)

αj

t

]}
, (3.37)

where hj(t|αj, βj, γj) = Cr(t) ∗ exp
{
−βj(1−γj)

αj
t
}
. Let α̂j, β̂j, γ̂j denote the estimated

kinetic parameters for the j-th voxel. Then, the projection operator P is given as follows:

P [Z̆(k)] = Z(α̂, β̂, γ̂). (3.38)

In practice, it should be noted that the gradient descent scheme (3.29)–(3.31) can be

efficiently computed for all voxels in parallel. Cr(t) can be obtained by, for example,

averaging temporally-smoothed tTACs in Γ in advance.

In summary, the proposed algorithm is shown in Algorithm 3.

Algorithm 3 Description of proposed method.

1: input: An observed temporal series of sinograms Ỹ , the region Ω where the target

object exists and the reference region Γ.

2: Ψ is configured based on Ω.

3: Initialize X;

4: Initialize Z = ΨTX;

5: repeat

6: Update Z based on Equation (3.38);

7: Update Z based on Equation (3.27);

8: Solve the Problem (3.28) via the steepest descent method based on gradients (3.32)–

(3.37);

9: until Z converges.

10: output: X = ΨZ.

3.3 Results and Discussion

3.3.1 Evaluation with Simulated Data

We constructed a temporal series of 2D PET images to evaluate the performance of the

proposed method. The simulated image Xorg is first designed to obey the SRTM. The

image consists of four regions where the kinetic parameters α,β,γ are different from each

other. Given α, β and γ, we generated a tTAC for each pixel in each region respectively

based on (3.15). In order to simulate sinograms with variational Poisson noise levels,
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we conducted the following procedure: The sinogram data were first obtained from the

simulated image as follows:

Ȳsml = µPXorg , (3.39)

where µ > 0 is a weight parameter that affects the total counts of the sinograms. An

artificial measurement of the sinogram, Ỹsml, was derived from the Poisson distribution

shown in Equation (3.2). The noise level of Ỹsml can be controlled by changing the value

of µ.

Multiple reconstruction methods were applied to restore the original image from the

simulated measured sinograms Ỹsml. The performance was evaluated based on the Nor-

malized Root Mean Squared Error (NRMSE) between the simulated original image Xorg

and the reconstructed one. A comparison evaluation was performed with the methods

of which constraints are different from each other. The comparison methods are sum-

marized in Table 3.1. In Table 3.1, the method NC (Non-Constraint) minimizes the

KL-divergence DKL(Ỹ ||PX) without any constraints nor regularizers [106]. TR (Tempo-

ral Regularization) minimizes the KL-divergence with a regularizer that imposes temporal

smoothness [96]. The option “+ spatial bases” denotes that spatial image patterns are

represented by ΨZ as shown in (3.13) in each corresponding method in order to constrain

the pixel values outside of the target to be zero. The proposed method minimizes the

KL-divergence with respect to the constraint of the manifold and the optimization using

the spatial bases. The solver to optimize Problem (3.5) (TR) is summarized in the Ap-

pendix. The parameter λ in Problem (3.5), which corresponds to TR in Table 3.1, was

manually tuned with regard to the NRMSE performance that is best for each noise level.

The variable Z of the proposed method is initialized with the resultant image of TR +

spatial bases. The tTAC in the reference region Cr(t) was estimated by averaging tTACs

in Γ as:

[Cr(t1), Cr(t2), · · · , Cr(tF )] =
1

|Γ|
∑
ij∈Γ

Rowij [X], (3.40)

from the result of TR + spatial bases.

Table 3.1 Correspondence of notations of methods and their constraints for comparison.
NC, Non-Constraint; TR, Temporal Regularization.

Notations of Methods Problems to Be Optimized

NC minX DKL(Ỹ ||PX).

NC + spatial bases minZ DKL(Ỹ ||PΨZ).

TR minX DKL(Ỹ ||PX) + λ
2

∑F−1
f=1 ||xf+1 − xf ||22.

TR + spatial bases minZ DKL(Ỹ ||PΨZ) + λ
2

∑F−1
f=1 ||Ψ(zf+1 − zf )||22.

Proposed minZ DKL(Ỹ ||PΨZ) , s.t. Z ∈ S, Z ≥ 0.
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Figure 3.4(a) shows the NRMSEs for various Poisson noise levels. Figure 3.4(b) shows

the Root Mean Squared Errors (RMSEs) calculated only in the backgrounds, and Figure

3.4(c) shows the RMSEs calculated only in the target region, Ω. Figures 3.5 and 3.6 show

the reconstructed images and tTACs where the SNR of the measured sinograms is 50 dB

(Figure 3.5) and 35 dB (Figure 3.6). The SNR of the measured sinograms Ỹsml is derived

from the error between Ỹsml and Ȳsml. The NRMSE of NC deviates with a high noise level

in Figure 3.4. The performance was drastically improved using the temporal regularizer.

The performance was also improved especially with a high noise level when the spatial

bases is introduced to TR. Furthermore, the proposed method, which uses constraints of

the SRTM and spatial bases, outperformed the other methods. Not only RMSEs in the

backgrounds, but also RMSEs in the target region were reduced in Figure 3.4(b), (c) when

the spatial bases are used. The usefulness of the spatial bases and the model constraint

was confirmed.

(a) The whole image

(b) The background Ω (c) The target region Ω

Figure 3.4 NRMSE and RMSE results in terms of Poisson noise level. Each graph (a–c) is
different in regions where the error is evaluated: (a) NRSME in whole images, (b) RMSE
only in backgrounds and (c) RMSE only in the target region, Ω.
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Figure 3.5 Illustrations of three time frames picked from reconstructed image (top) and
some corresponding tTACs (bottom) for each method. The SNR of simulated sinograms
is 50 dB.

Figure 3.6 Illustrations of three time frames picked from reconstructed image (top) and
some corresponding tTACs (bottom) for each method. SNR of simulated sinograms is 35
dB.

Furthermore, Figure 3.7 shows the behavior of the convergence of the proposed method
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with respect to the number of the projection obtained from different initial values. For

the comparison purpose, we employed four different reconstruction methods, TR, TR +

spatial bases, NC, and NC + spatial bases, shown in Table 3.1, all of which reconstruct

PET images via convex optimization. Each panel shows four graphs obtained from iden-

tical sinogram data with different initialization, and the graphs shown in different panels

are obtained from different SNRs of the sinogram. Since the proposed method solves

a nonconvex optimization problem, the performance of the proposed method depends on

the initial value of Z. It can be said the spatial bases are also effective for achieving the

better initialization of the proposed method.

(a) (b)

(c) (d)

Figure 3.7 NRMSE improvement of proposed method in terms of the number of projec-
tions, k. The colors of curves vary in initialization methods, which give initial values of
Z to the proposed method. The noise level of Ỹsml varies in each graph: (a) 45 dB, (b)
40 dB, (c) 35 dB and (d) 30 dB.
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3.3.2 Practical PET Images Reconstruction from Clinical Sino-

grams

We also applied the proposed method to clinical data. Sinogram data were obtained

by injecting [11C]carfentanil into a patient. The size of the resultant 3D PET image is

96 × 96 × 63 (M = 580, 608), and the number of time frames is F = 26. The reference

region Γ and the target region Ω were manually obtained from the resultant image of

OSEM [77, 102, 103]. The tTAC in the reference region Cr(t) was estimated by averaging

tTACs in Γ as (3.40). The initial value for the proposed method is given from the result

of TR with λ = 0.0025.

Figures 3.8–3.10 show the reconstructed images of TR with variational parameters

(λ = 0.005, 0.0025, 0.001) and the proposed method. The differences between the proposed

method and the others are especially clear in the first and fourth time frames. Although

the resultant images of TR vary sensitively with changes in λ, the images reconstructed

by the proposed method are both distinct and smooth compared to the other images.

Figure 3.8 PET Data (1): Illustrations of reconstructed image with multiple methods (left)
and some of their corresponding tissue Time Activity Curves (tTACs) (right). From left
to right, four of 26 time frames (7, 10, 13 and 16) are described for each method (left).
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Figure 3.9 PET Data (2): Illustrations of reconstructed image with multiple methods
(left) and some of their corresponding tTACs (right). From left to right, four of 26 time
frames (7, 10, 13 and 16) are described for each method (left).
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Figure 3.10 PET Data (3): Illustrations of reconstructed image with multiple methods
(left) and some of their corresponding tTACs (right). From left to right, four of 26 time
frames (7, 10, 13 and 16) are described for each method (left).

We employed the Coefficient of Variation (CV) [107] for the validation of the results

obtained from clinical data. The CV value is defined as (3.41) and is evaluated for each

ROI (Region Of Interest) that is manually labeled by an expert. In each ROI, the kinetic

parameters are known to be identical, and hence, tTACs are ideally the same at every

location.

CV(Xξ) =
1

F

F∑
f=1

CV(Xξ,f ) =
1

F

F∑
f=1

σ(Xξ,f )

µ(Xξ,f )
, (3.41)

where Xξ,f denotes a set of voxel values observed in the ξ-th ROI at the f -th frame and

ξ and f denote the indices of the ROI and the frame, respectively. σ(Xξ,f ) and µ(Xξ,f )

denote the standard deviation and the mean of Xξ,f , respectively. CV(Xξ) should be

small if 4D PET images are accurately reconstructed. The evaluated values are shown in

Table 3.2. The ROIs for which we evaluated CV values are as follows: cerebellum (ξ = 1),

occipital lobe (#2), frontal lobe (#3), temporal lobe (#4), thalamus (#5), putamen (#6)

and caudate nucleus (#7), respectively. The parameter λ for TR was manually tuned to

achieve the best results. The proposed method was initialized from the results obtained

by TR with λ = 0.0025. For all ROIs, the proposed method outperformed TR: the images

reconstructed by the proposed method have more uniform voxel values in each ROI in

each time.
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Table 3.2 CV(Xξ) calculated in each ROI w.r.t. variational methods.

Data Method #1 #2 #3 #4 #5 #6 #7

(1) TR 0.507 0.663 0.515 0.645 0.660 0.486 0.647

Prop. 0.174 0.302 0.219 0.236 0.214 0.240 0.304

(2) TR 0.859 1.01 0.864 0.795 1.166 0.745 0.752

Prop. 0.136 0.245 0.164 0.124 0.134 0.165 0.153

(3) TR 0.710 0.812 0.640 0.616 0.618 0.616 0.772

Prop. 0.240 0.295 0.251 0.199 0.240 0.221 0.351

3.3.3 Discussion

Optimization Strategy

In this study, we considered solving the minimization problem of the KL-divergence

between measured sinograms and simulated sinograms, which are modeled with kinetic

parameters as shown in (3.17). In addition, we incorporated a boundary prior of a brain

region by using nonnegative spatial bases. Note that our objective is different from con-

ventional penalized/regularized methods such as temporal or spatial smoothing because

the compartment model strictly satisfies the theoretical consistency of 4D PET images.

Furthermore, we do not need to tune any trade-off parameters unlike penalized methods.

The problem here is that the cost function in (3.17) is nonconvex with respect to kinetic

parameters, and it is very difficult to solve directly.

In order to solve the nonconvex optimization problem (3.17), we have rewritten (3.17)

as (3.18), which consists of the convex objective function and the nonconvex constraint

set. Note that the problems (3.17) and (3.18) are theoretically equivalent; however, the

parameter space is expanded from 3 × NΩ to NΩ × F . This modification relaxed the

nonconvex objective function to the convex objective function which helps to apply the

projected gradient method for our problem. The proposed optimization algorithm consists

of two steps: the gradient step to minimize the objective function and the projection step

to put the 4D PET images on the manifold based on the SRTM.

The proposed algorithm of the projected gradient scheme is similar to those of [105,

90, 108] as also described in Section 3.3.3, but is a more generalized one. The gradient

step of the proposed algorithm is based on a gradient descent that substantially includes

the EM update used in [90, 108]. Furthermore, the estimation of the kinetic parameters

is solved in the proposed method via a gradient descent scheme where each derivative is

explicitly used. The conventional methods solve the estimation of the kinetic parameters

through numerical analytic approaches where derivatives are implicit and approximated.



52

Sensitivity to Initialization

As the optimization problem to be solved is nonconvex, the reconstruction results de-

pend on the initial value of the coefficient, Z. From Figure 3.7, it can be said that the

better the initialization adopted, the better the performance of the proposed method be-

cause of the nonconvexity of the manifold. Thus, the proposed method using the SRTM

would always outperform the other regularization-based methods where the SRTM is not

used as a constraint. As shown in Figure 3.7, the TR-based initialization always recon-

structed images that have better NRMSE than the NC-based ones. NC-based methods

reconstruct images with less constraints/regularization than TR-based ones, and hence,

the images reconstructed by the NC-based methods are more consistent with the mea-

sured sinograms that are contaminated by Poisson noises: PET images reconstructed by

NC-based methods would more easily overfit to the noisy data, and the NRMSE of these

images rapidly increased with respect to the Poisson noise level of the sinogram data, as

shown in Figure 3.7. The initialization via NC-based methods would be useful when one

prefers PET images that are more consistent with measured data (often contaminated

with noise), and the initialization with TR-based methods is recommended if images with

less NRMSE should be reconstructed. One can of course introduce the knowledge of the

target region for the initialization in order to improve NRMSE.

Related Works

There exist many methods for 4D PET image reconstruction, and our proposed method

has strong relationships especially with the methods that constrain tTACs based on the

compartment model [109, 110, 80, 89, 105]. First of all, we have to point out that none of

these papers explicitly show a constrained optimization problem to be solved, but show

only corresponding sub-problems. This fact makes it difficult to discuss the problem of

4D PET image reconstruction and its corresponding solution algorithm. As far as we

know, none of the existing compartment model-based methods for the 4D PET image

reconstruction except one method [108] proposed by Gravel and Reader (GR) directly

use the nonlinear model derived from the compartment model, but use some linearly

approximated models for the constraint, as described in their paper [108]. Only the GR

method explicitly introduces the nonlinear kinetic model derived from the compartment

model to constrain the solution space. The paper [108], though, does not explicitly show

the main optimization problem to be solved, and no details of the solution algorithm for

satisfying the nonlinear constraint are described. In addition, the sensitivity of the results

to the initial values is not discussed. We, on the other hand, clearly show the problem to

be solved as in (3.18), discussing the sensitivity to the initialization and experimentally

demonstrating the results about the sensitivity. Furthermore, the convergence of the GR

method would not be guaranteed. The GR method updates the reference signal Cr(t)



53

every other iteration. This would lead to the manifold spanned by the SRTM being

reshaped every other iteration, and projections could sometimes diverge. On the other

hand, Cr(t) is fixed in the proposed method, which is given from the temporally-smoothed

image by TR in this study. The fixed shape of the manifold would ensure the convergence

of the proposed method. The constraint about the target/background regions in images is

also newly incorporated in the problem of the compartment-model-based 4D PET image

reconstruction.
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Chapter 4

　　 Blind-Deconvolution of 3D

Pathological Images

In this chapter, we deal with the blind-deconvolution of the pathological images. Patho-

logical images describe very micro anatomical structures such as cell cores, capillaries, and

bile-ducts. Because of the quite delicate imaging process, the pathological images often

have several kinds of the degradation of image qualities.

The blur, which is one of the typical degradations, is assumed to be caused not only by

some kinds of filtering derived from the camera but also by the outlayers of a slice sample

[111, 112, 113]. For example, when an undulating or holding slice sample is captured, the

surroundings of the undulating/holding pixels would be affected by the out-of-focus blur.

If parts of a pathological image are blurred, redoing the imaging process would be higher

cost compared to the other modalities because mending and checking of a slice sample

are necessary in the much larger image scale.

In our study, the pathological images are assumed to be captured by the following

procedure. An target organ sample is first removed from the body and is separated into

thin slices. Then each thin slices is stained with some chemical substances such as H&E

and Ki67. Finally, the stained slices are captured one by one using a microscopic camera.

The resultant pathological images are composed of a series of continuous pathological

sections. Some of the slice images have blurred parts in certain regions of them.

The objective of this study is to restore the deblurred pathological image from a blurred

one. This task is a blind-deconvolution problem because not only the ideal image but also

the blur kernel is unknown. In general, the observation model of the blind-deconvolution

is formulated as

y = h ∗ x+ ϵ, (4.1)

where y, h, x, and ϵ are the observed image, the ideal deblurred image, the observation

blur kernel, and the observation noise. In the general model, the blur kernel is assumed



55

to be uniform in the image space. We also assume that a blur in a pathological image

is uniform in a certain region of a pathological image. The blind-deconvolution problem

would be one of the most complicated ill-posed problems because both of the observation

blur and the ideal image are unknown and there are not enough constraints for both the

blur and the image. We should constrain the solution spaces based on appropriate priors

of both the blur and the image. Moreover, the problem to be solved is not only ill-posed

but also nonconvex. We also have to employ an appropriate initial values so as to achieve

a good local optimum.

As for the case of our problem setting, we leverage the following priors to restore blurred

images.

Priors on Images

Given a blurred part of a slice image, the same locations of the adjacent slice images

are assumed to be not blurred since the blurred parts of pathological images would rarely

exists. Thus the adjacent slice images, which are high-resolutional compared to the blurred

target image, can be used for the prior. We leverage the structural similarity between the

target blurred image and its adjacent high-resolutional ones. Since there is little differences

between the captured structures in the target image and those in the adjacent images,

the adjacent images would be able to be used as guide images for the deconvolution

. In using the adjacent slice images as the reference images, there is a trouble that

there exists location/shape gaps of anatomical structures captured in the adjacent images.

To tackle this problem, we model the smooth deformations of anatomical structures by

Large Deformation Diffeormorphic Metric Mapping (LDDMM). With the LDDMM, the

smoothly deforming sub-slices between the upper and lower high-resolutional slices are

well represented.

Furthermore, it can be said that the total number of gradients in the deblurred tar-

get image is almost equals to that of the adjacent high-resolutional ones. The accurate

smoothness prior from this assumption is also introduced. The high-resolutional sub-slice

images and the sparse representation of the image gradients are leveraged in the proposed

method.

Priors on Blur Kernels

The blur to be estimated is assumed to be represented by the uniform kernel for the

blurred part of a pathological image. Since pathological slice images are statically cap-

tured by microscopic camera, we also assume that the blur kernels would have the non-

negative smooth shapes rather than high-frequencial ones such as those of motion blurs

and sinc-like blurs.

Similarly to the most general blind-deconvolution methods, the above priors are mod-
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eled in the form of the optimization problem that is solved by the Alternating Optimiza-

tion (AO) framework. Unlike those approaches, however, we employ ADMM to optimize

the subproblems for the sake of the optimization stability rather than the processing

speed. We also define the proximal operator for the blur kernel prior in order to explic-

itly constraint and appropriately optimize the kernel estimation problem. Furthermore,

coarse-to-fine estimation procedure is employed so as to avoid the initialization depen-

dency of the nonconvex optimization as well as to achieve relatively good performances.

In the remainder of this chapter, we first mention the details of some existing blind-

deconvolution methods including their solvers in Section 4.1.1. Next in Section 4.1.2,

we describe the brief introduction of the LDDMM [114, 115], which is the generalized

method for the image deformation technique and is implicitly employed in our approach.

The proposed method is stated in Section 4.2. The experimental results using both of

synthetic slice images and real slice images are presented in 4.3. Finally, the discussions

related to the proposed method are mentioned in Section 4.3.3.

4.1 Basic Materials

4.1.1 Existing Methods for Blind-deconvolution

In this Section, the existing blind-deconvolution methods are reviewed. The gen-

eral observation model Equation 4.1 is assumed to be solved in many existing methods.

The problem is highly ill-posed and is much more complicated than some other ill-posed

problems because both the image and the blur are unknown: in the nonblind super-

resolution as described in Chapter 2, only the ideal image is unknown. It is necessary

for the blind-deconvolution to constrain the solution space based on additional priors of

both the blur and the image. In fact, there are few studies for the blind-deconvolution of

histopathological images [116, 111] while there are several blur detection methods of them

[112, 111]. In the following, therefore, we review the typical deblurring models including

the other modalities. The existing methods that are based on the iterative estimation

[28, 117, 27, 118, 119, 120, 121, 122] including few methods for pathological images [116]

are generalized in the form of the following optimization problem:

argmin
X,H

λO||H ∗X − Y ||2F +Rx(X) +Rh(H),

s.t. H ∈ S, (4.2)

where H ∈ RH×W and X ∈ RH×W×3 are the blur and the image to be restored, and

Y ∈ RH×W×3 is the observed image. Rx(X), Rh(H), and S are the regularization terms

of X and H , and the constraint subspace of H . Note that Problem 4.2 is nonconvex

while the general super-resolution tasks deal with convex optimization as described in
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Chapter 2. Fundamentally, most of the existing methods impose the image smoothness

prior by R(X), and the smoothness and sparsity of a blur by R(H). There are additional

regularizations and constraints vary by the methods and their respective problem settings.

In Reference [28], the text image deconvolution model is proposed, which uses sparsities of

text images themselves and of their gradients. Reference [117] leveraged the dark channel

prior, which is an effective sparse representation for natural images. Reference [116]

introduced TV and the Gaussian-based semi-parametric representation of blur kernels for

pathological images. In several methods which assume blurs derived from the motion, the

optimization of H is solved in the gradient space [118, 119], where the sparsity of a blur

kernel is implicitly assumed. The existing methods described above introduce appropriate

priors on X and H for their own modalities.

The nonconvex optimization problem is commonly solved by the AO framework, where

the subproblems of X and H are iteratively solved. The AO framework is consistent for

the blind-deconvolution task because the subproblems of X and H are convex. Quite a

lot methods, however, optimize the subproblems just by the conjugate gradient method

[28, 117, 27, 118, 119]. That is, the constraint on H is ignored during the optimization

process of H and is imposed after the optimization. On the other hand, it is also reported

that the global optimization is stabled when the constraint is strictly satisfied during the

optimization of the subproblems [121, 120]. The stability derived from strict constraints

during the convex sub-problem optimization is also reported in the tensor factorization

tasks [123, 124].

The difference between the model/solver of the proposed method and those of the some

existing methods are mentioned in the discussion in Section 4.3.3.

4.1.2 LDDMM

In this section, we introduce the Large Deformation Diffeormorphic Metric Mapping

(LDDMM) [114, 115]. The image registration techniques is one of the central research

topic applied for medical images [125, 126]. The LDDMM is the generalized method of

conventional image registration techniques such as B-spline based ones [127, 126].

The LDDMM between two images, I0 and I1 is calculated by

argmin
v

(∫ 1

0

||vs||2V ds+
1

σ2
||ϕ−1

1 ⊕ I0 − I1||2
)
, (4.3)

where ϕt(x) =
∫ t

0
vs(x)ds + ϕ0, and ⊕ is the pixel-wise deformation operator. In the

LDDMM, the nonrigid deformation from I0 to I1 is represented by the deformation field

ϕt, where the time parameter t ∈ [0, 1] continuously changes from t = 0 to t = 1. Note that

the data fidelity of the second term is evaluated based on image pixel values before/after

the registration in Problem (4.3). The data fidelity is regularized by the integral of the
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local smoothness metric of the deformation field. In this study, the V -norm of the first

term is set by the L2-norm of the image gradient space so as to impose the smoothness

of the deformation field.

The LDDMM is used in the proposed method to model the sub-slice images between

the high-resolutional adjacent slice images, as later mentioned in Section 4.2.

4.1.3 Problem Statement

In this study, we assume that the pathological images are composed of a series of thin

sections with a constant inter-gap. The pathological images are assumed to be captured

by the following procedure. An target organ sample is first removed from the body and

is separated into thin sections. Then each thin section is stained with some chemical

substances such as H&E and Ag. Finally, the stained slices are captured one by one using

a microscopic camera.

The respective raw images are deformed when the thin slice samples are sectioned and

mounted on glass slides by man-hand. These nonrigid deformations are caused slice-

independently, and the adjacent slice images have big gaps of the locations/shapes of the

anatomical structures. To tackle this issue, all the slice images are smoothly registered

towards the through-slice direction based on [113, 128]. The registration is processed based

on the smoothed structural landmarks and the resultant images have smooth structures

running across the slices as shown in Figure 4.1. The resultant images of the landmark-

based registration can be regarded as a 3D reconstructed pathological image. The detail

of the 3D reconstruction method is described in Appendix. After the 3D reconstruction,

there would be still small location-gaps between the adjacent slice images because the

registration procedure do not interpolate the inter-slice images.

Given the pathological images above, the objective of this study is to restore the blurred

parts of a slice image. Therefore in fact, we need to search the blurred parts from a slice

image before deblurring. There are several methods to detect or evaluate the blurred

parts of pathological images [112, 111]. Actually, however, the blurred parts of a slice

image can be also detected during the registration procedure. In [113, 128], blurred parts

are detected not to be referred as landmarks by using template matching. Thus in this

study, we assume that the blurred parts of a pathological image are already given.

In the followings of this chapter, a series of smoothly registered N pathological images

is denoted by J1,J2, · · ·JM . Some of the slice images have blurred parts, and the same

parts of the adjacent slice images is assumed to be not blurred as shown in Figure 4.2.



59

Figure 4.1 The pathological images before/after the landmark-based nonrigid registration
[113, 128]. The illustrations are cross sections of 3D pathological images that are composed
of piled up 2D slice images.

Figure 4.2 The observed blurred image assumed in this study. If the i-th slice image have
a blurred part, the same location parts of the adjacent slice images are not blurred.
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4.2 Proposed method

It is assumed that the target blurred image Ib and the adjacent high-resolutional images

I0 and I1 are given, and they appear in the through-slice order of I0, Ib and I1. I0, Ib
and I1 are the parts of continuous three slice images Ji−1,Ji,Ji+1. With these notations,

the objective of the proposed method is to deblur Ib. We leverage the adjacent images

I0 and I1 that have high-resolutional textures for the blind-deconvolution of Ib. Note

that I0 and I1 cannot directly used for the representation of high-resolutional textures

of Ib because there are location/shape gaps between them even after the smooth 3D

reconstruction described in Section 4.1.3. Therefore, we model the sub-slices description

between high-resolutional I0 and I1 that smoothly deform from I0 and I1, and vice versa,

by using the LDDMM.

In the proposed method, first of all, the LDDMM is calculated between I0 and I1 so

as to achieve high-resolutional sub-slice images Rt
0 and Rt

1. Thus R
t
0 = ϕ0→1(t)⊕ I0 and

Rt
1 = ϕ1→0(t)⊕ I1 are calculated, where ϕ0→1(t) is the vector field to deform from I0 to

I1 at the time t ∈ [0, 1]. Note that, ϕ1→0(t) can easily calculated by inversely tracing

the vector field ϕ0→1(t) from I1 to I0. In the resultant Rt
0, the pixel coordinates are

smoothly deformed from I0 to I1 in terms of t ∈ [0, 1]. Rt
j is the smoothly deforming

high-resolutional slice image, which would be a good representation of sub-slices between

I0 and I1. We leverage the data fidelity derived from the sub-slice description Rt
j for

the blind-deconvolution. Moreover, we introduce the L0 gradient prior derived from R0
j

because the proposed method can refer to the ideal number of image gradients from the

adjacent images.

In the followings, let the image and the blur to be restored are denoted by X and H ,

and the target blurred image by Y = Ib. In order to obtain an ideal deblurred image, the

following optimization problem is solved:

arg min
X,H,Rt

j

λO||H ∗X − Y ||2F + λR||H ∗Rt
j − Y ||2F + λH ||H||2F ,

s.t. ||∇X||0 ≤ ||∇R0
j ||0,

H ∈ Sp, (4.4)

which is a nonconvex blind-deconvolution problem. The first constraint imposes the

sparsity of the image gradient based on the adjacent high-resolutional image. The second

constraint imposes the sparsity of a kernel and the nonnegativety to H . Namely, Sp

denotes the convex subspace where at most d×d (d << W,H) nonzero components of H

reside in the very narrow space of W ×H domain, and the other components are entirely

zero. λ0, λR and λH are the parameters to be tuned by the input image. The data fidelity

is evaluated only in the image domains although many existing methods, which deal with

motion blur as well as the other smooth blurs, evaluate the data fidelity in the gradient
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domain.

In the proposed method, Problem (4.4) is solved by the Alternating Optimization

ADMM (AO-ADMM) [123, 124]. By using the AO-ADMM, we can efficiently solve

Problem (4.4) by separating a nonconvex matrices-factorization problem into convex sub-

problems. Problem (4.4) is separated into three convex sub-problems, each of which is

respectively dependent on one of the three variables X,H , and Rt
j. In each sub-problem,

there is a single variable of X, H , and Rt
j to be respected, and the other two variables

are fixed. The three sub-problems are alternatively optimized until the convergence.

In alternatively solving Prmblem (4.4), λR is reduced per alternating iteration because

the second term is not necessarily satisfied with the ideal H and should behave as the

weak regularization. The reduction of λR is performed by λR ← ηλR , where η ∈ (0, 1)

is the reduction parameter. We also empirically found that reducing the parameter η per

iterations exponentially makes both the performance and the stability better.

In the followings, let x = vec(X) and h = vec(H) to describe the optimization sub-

problems.

The optimization of the image, X

The convex sub-problem of Problem (4.4) with respect to X can be formulated as

argmin
x

λO||Hcnvx− y||2F ,

s.t. ||∇x||0 ≤ α, (4.5)

where Hcnv denotes the cyclic convolutional matrix of h, and α = ||∇R0
j ||0.

In order to solve Problem (4.5) with the ADMM, it is reformulated to hold proximity

as

argmin
x

λO||Hcnvx− y||2F + iG(u),

s.t. u = Dx, (4.6)

where iG(u) is the indicator function such as

iG(u) =

{
0 if ||u||0 ≤ α

∞ otherwise.
(4.7)

In [29], it is shown in the ADMM framework that the L0-norm constraint can be

approximately solved by choosing top α components in terms of their L2-norms, and

setting the remaining K − α components to zero. The procedure can be formulated in

the format of the proximal operator of iG(u) as

proxiG(u) = [ũT
1 , ũ

T
2 , · · · , ũT

WH ]
T, (4.8)
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where

ũk =

{
uk if k ∈ {(1), · · · , (α)}
0 if k ∈ {(α + 1), · · · , (WH)},

(4.9)

where (k) is the projected index of the pixel coordinate index k. The index (k) is obtained

by sorting subvectors u1,u2, · · · ,uWH in descending order in terms of their L2-norms as

u(1),u(2), · · · ,u(WH), where ||u(1)|| ≥ ||u(2)|| ≥ · · · ≥ ||u(WH)||. In fact, we should use

mixture L10-norm instead of L0-norm [29] in order to apply the proximal operator to color

images. The extension from L0-gradients to L10-gradients can be straightforwardly done

by summing up the pixel-wise gradients in terms of the color channel.

With the above formulations, Problem (4.5) is solved by the following updating rules

of the ADMM:

xk+1 = [λOH
T
cnvHcnv + ρDTD]−1(λOH

T
cnvy −DTβk + ρDTuk), (4.10)

uk+1 = proxiG(Dxk+1 + ρ−1βk), (4.11)

βk+1 = βk + ρ(Dxk+1 − uk+1), (4.12)

where u is the dual variable of the image gradients, and β is the Lagrange multiplier.

The optimization of the blur, H

The convex sub-problem of Problem (4.4) with respect to H can be formulated as

argmin
h

λO||Xcnvh− y||2F + λR||Rcnvh− y||2F + λH ||h||2F ,

s.t. h ∈ Sp, (4.13)

where Xcnv and Rcnv denote the cyclic convolutional matrices of x and rt
j.

In order to solve Problem (4.13) with the ADMM, it is reformulated to hold proximity

as

argmin
h

λO||Xcnvh− y||2F + λR||Rcnvh− y||2F + λH ||h||2F + iSp(v),

s.t. v = h, (4.14)

where iS(v) is the indicator function such as

iSp(v) =

{
0 if v ∈ Sp

∞ otherwise.
(4.15)

For reference, the proximal operator to impose nonnegativity on v is given by

proxi·≥0
(v) = max(v, 0), (4.16)



63

which is well-known. Similarly to this, the proximal operator of iS(v) can be defined as

proxiSp
(v) =

1

Z
[max(v, 0) ◦m], (4.17)

where m ∈ {0, 1}WH is the indicator vector which indicates the narrow domain of v

where the blur kernel should reside: only d × d components of m have the values 1 and

the others have 0.

With the above formulations, Problem (4.13) is solved by the following updating rules

of the ADMM:

hk+1 = [λOX
T
cnvXcnv + λRR

T
cnvRcnv + λH + ρ]−1(λOX

T
cnvy + λRR

T
cnvy − γk + ρvk), (4.18)

vk+1 = proxiSp
(hk+1 + ρ−1γk), (4.19)

γk+1 = γk + ρ(hk+1 − vk+1), (4.20)

where v is the dual variable of the blur domain, and γ is the Lagrange multiplier.

The optimization of the reference image, Rt
j

The sub-problem of Equation (4.4) with respect to Rt
j can be formulated as

argmin
Rt

j

||H ∗Rt
j − Y ||2F . (4.21)

In fact, Equation (4.21) would be not necessarily convex because the solution space of Rt
j

is restricted by the deformation while the global optimum can be obtained. Since Rt
j is

given by LDDMM in advance, the optimization can be calculated by searching Rt
j that

minimizes the data term, which costs at most O(2T ) times evaluations of the objective

function.

The initialization of H

Because of its strong nonconvexity, the solution of Problem (4.4) is heavily dependent

on the initial values. By the way, there are several methods proposed where the coarse-to-

fine estimation schemes are employed for the blur estimation [118, 119]. We also employ

the multi-resolutional scheme for the initialization of H , which is first proposed in [118].

The initialization procedure is described in Figure 4.3. The principal reason is that the

coarse-to-fine estimation of H would improve the performance as mentioned in the above

references. By the coarse-to-fine estimation, the large structures and the detail structures

in the image are separately and gradually respected during the estimation of the blur

[118, 119]. There is another reason that the optimization would get more independent

of the initial values H when the upsampling of the kernel starts from the Dirac’s delta

kernel at the appropriate coarse scale. From these reasons, the coarse-to-fine estimation

can be regarded as a good initialization for solving Problem (4.4).

Finally, the proposed method is summarized in Algorithm 4.
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Figure 4.3 The blur kernel initialization procedure employed in the proposed method.
First of all, the observed image and the referential sub-slice images are downsampled
(red arrows). The 1/2-downscaling is continued until the sufficiently small scale which is
enough for the blur to start the estimation from the delta function kernel. Then in the
minimum image scale, the blind-deconvolution is processed (green arrows). The estimated
blur kernel is upsampled so as to use it as the initial value in the next scale (blue arrows).
The procedure is continued until the blur kernel size get to that of the original scale.

4.3 Results and Discussion

In our experiments, the target series of pathological images was of the pancreas of

KPC-mouse [129], which were stained with H&E. There were 810 slice images and some

of them have blurred parts. The image size was roughly 70K × 100K and the spatial

resolution set by the imaging process was 0.22µm × 0.22µm. Those pathological images

were prepared and processed as mentioned in Section 4.1.3.

In Section 4.3.1, we first show the simulational experiments using synthetic blurs and

real pathological images. Next in Section 4.3.2, the experimental results using the real

blurred pathological images are shown. In the following experiments, the proposed model

is denoted by L0GP+SSM, and the proposed model with λH = 0 is denoted by L0GP.

The model of relaxed L0 gradient regularization [27] is denoted by L0GR. The proposed

model L0GP+SSM uses both the L0 gradient constraint and the high-resolutional sub-

slice images derived from adjacent slice images for the image priors. L0GP uses the L0

gradient constraint, and L0GR [27] uses the L0 gradient regularization. All the models

have the same blur priors mentioned in Section 4.2.

For each model, the optimization problems were optimized using the AO-ADMM and
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Algorithm 4 Proposed algorithm

1: input: The target blurred image Ib,

and the adjacent high-resolutional images I0 and I1.

2: Rt
0 = ϕ0→1(t)⊕ I0, R

t
1 = ϕ1→0(t)⊕ I1, and X = Ib;

3: repeat

4: Search Rt
j that minimizes (4.21);

5: repeat

6: Update x based on (4.10);

7: Update u based on (4.11);

8: Update β based on (4.12);

9: until The optimization cost of (4.5) converges

10: repeat

11: Update h based on (4.18);

12: Update v based on (4.19);

13: Update β based on (4.20);

14: until The optimization cost of (4.13) converges

15: λR ← ηλR;

16: η ← η2;

17: until The cost function converges and the constraints are satisfied

18: output: X = fold(x) and H = fold(h)

our initialization procedure. The minimum kernel size for the coarse-to-fine initialization

was 5 × 5, and was upsampled to 11 × 11 and 23 × 23, which was at the original scale.

The parameters were manually tuned to perform the best at PSNR scores. The image

domain sizes of I0, I1, and Ib were set to 200 × 200 before the LDDMM, and 180 × 180

before the blind-deconvolution so as to remove the irrelevant stretched boundaries caused

by LDDMM.

4.3.1 Simulational Experiments

In the simulational experiments, given I0, I1, and Ib which are high-resolutional and

not blurred, the synthetic blur kernels were convolved to Ib. The blurred image was

deblurred with several deconvolution models. The performance was evaluated both in

the image domain and in the blur kernel domain. In the image domain, PSNR and

SSIM [130] were employed for the evaluation. As for the blur kernel domain, the Blur

Kernel Similarity (BKS) [131] was employed, which is given by the maximum response of

the normalized cross-correlation calculated between the groundtruth and the estimated

kernel.

Figure 4.4 − 4.7 show the illustrations of restored images and blurs (Figure 4.4 and 4.6
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), and the corresponding evaluation results with respect to the AO iteration (Figure 4.5

and Figure 4.7). L0GR performed next to L0GP while not only did the cost functions

form zig-zag shapes but also they continued to increase and totally not stabled. Although

the objective function of L0GP converged both stably and quickly, the performance con-

tinued to improve and resulted in the slow convergence. This is because the constraint is

not satisfied even if the objective function converges, and the performance of L0GP model

is highly dependent on the constraints rather than the objective function. L0GP+SSM

outperformed the other models. It converged much faster than the others and the perfor-

mance also converged at almost the same time. In L0GP+SSM, the regularization data

term of sub-slice images drastically accelerated the convergence as well as improved the

accuracy performance. The result images of L0GR had distinct edges although quite a few

detail structures were over-smoothed. The result image of L0GP had relatively blurred

edges compared to those of L0GR while detail structures were retained. L0GP+SSM was

able to restore the several detail structures and relatively deblurred image. It is also in-

teresting that the performance was greatly improved with L0GP+SSM while the optimal

Rt
j looks similar to the groundtruth but has several structural differences.

Furthermore, the results of other combinations of simulated blurs and images are shown

in Figure 4.8, 4.9, and Table 4.1 − 4.3. Those results of L0GR were obtained by stopping

the AO iterations at 1000 times because the cost function of L0GR was not stabled by

the image as shown in Figure 4.4 − 4.7. L0GP and L0GR occasionally performed better

than L0GP+SSM in terms of SSIM. This is because the oversmoothed images based on

L0-gradient could be a good representation of exactly smooth pathological structures in

those cases. While the results of L0GP+SSM were sometimes contaminated with artifacts

in the case of the blur kernel is large, it outperformed the other models on the whole in

terms of PSNR and BKS.
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Figure 4.4 Resultant illustrations of images/blurs of the simulational experiments. The
groundtruth blur is the Gaussian with σ = 2.5. The results correspond to those of
Figure 4.5.

Figure 4.5 Performances of the deconvolution models with respect to AO iterations. The
results correspond to those of Figure 4.4.
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Figure 4.6 Resultant illustrations of images/blurs of the simulational experiments. The
groundtruth blur is the Gaussian with σ = 3.5. The results correspond to those of
Figure 4.7.

Figure 4.7 Performances of the deconvolution models with respect to AO iterations. The
results correspond to those of Figure 4.6.
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Table 4.1 PSNR results corresponding to images in Figure 4.8 and 4.9.

Data ID (a) (b) (c) (d) ( e) (f) (g) (h)

L0GP+SSM 37.91 35.60 29.28 25.22 36.07 29.29 28.52 24.97

L0GP 36.35 33.78 27.38 24.39 35.53 29.18 27.71 24.79

L0GR 33.36 30.68 27.91 24.82 30.38 26.69 28.20 24.52

Table 4.2 SSIM results corresponding to images in Figure 4.8 and 4.9.

Data ID (a) (b) (c) (d) ( e) (f) (g) (h)

L0GP+SSM 0.994 0.991 0.959 0.898 0.986 0.944 0.946 0.876

L0GP 0.992 0.986 0.943 0.896 0.988 0.939 0.939 0.885

L0GR 0.984 0.972 0.948 0.901 0.956 0.905 0.947 0.873

Table 4.3 BKS results corresponding to images in Figure 4.8 and 4.9.

Data ID (a) (b) (c) (d) ( e) (f) (g) (h)

L0GP+SSM 0.997 0.998 0.998 0.998 0.998 0.998 0.996 0.993

L0GP 0.995 0.995 0.992 0.983 0.998 0.998 0.935 0.983

L0GR 0.997 0.998 0.994 0.981 0.988 0.996 0.994 0.969

4.3.2 Real Data Experiments

Next, the results of the proposed method applied to the real blurred images are shown.

Figure 4.10 shows the illustrations of the restored images. We could also found that

the detailed image textures and blurs are appropriately restored with the real blurs of

clinical data. However, there were several artifacts, or outlayers newly found after the

deconvolution in the restored images. We consider that the artifacts were derived not

from the deconvolution procedure but from the imaging process because the uniform blur

kernel cannot represent those peaky artifacts. We also consider that the blur was caused

accompanied with those outlayes during the imaging process.

4.3.3 Discussion

Reviews on Priors

In the proposed method, the transformations of anatomical locations/shapes across the

through-slice direction are well represented by the LDDMM. In addition to the differ-

ences in the structural locations and shapes between continuous three slice images, there

actually exist slice-independent anatomical structures: Some of anatomical structures,

which appear in the image I0, disappear in the adjacent images I1, and vice versa. The

high-resolutional sub-slice description was able to be effectively leveraged by gradually
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Figure 4.8 Resultant illustrations of images/blurs of the simulational experiments. The
results correspond to those of (a) − (d) in Table 4.1 − 4.3.
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Figure 4.9 Resultant illustrations of images/blurs of the simulational experiments. The
results correspond to those of (e) − (h) in Table 4.1 − 4.3.
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Figure 4.10 Illustrations of restored images/blurs of the clinical data. From　 left to
right, each column denotes the observed image, the restored image, the restored blur, the
optimal reference image: Rt

j, and the blurred Rt
j: H ∗Rt

j.

reducing the regularization weight λR even if there are structural differences between the

target slice and the referred sub-slice image.

L0GP and L0GR would be essentially the same in their adopting L0-norm compo-

nents in terms of that the components with larger L2-norm is adopted after the pro-

jection/regularization. Thus they perform similarly together under the ideal condition

while L0GR needs highly complicated parameter-tuning for both of the stability and the

accuracy performance.

In [116], they successfully introduced the smoothness (TV) prior for the blind-deconvolution

of pathological images of muscles. In fact, however, the pathological images used in this

study have much more complicated textures compared to theirs. Therefore the smooth-

ness looks weak prior for the blind-deconvolution of our target pathological images. In

spite of those properties of the target images, L0GP and L0GR achieved non-negligible

deconvolution performances to some extent.
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In our case, it would be also challenging to apply some priors used for natural images to

the pathological images because there are many differences in image properties. There is

a different property that blurs of common pathological images tend to have spread shapes

such as the Gaussian and out-of-focus distributions while those of natural images tend

to be motion blurs [117, 27, 118, 111, 116]. It must be also noticed that learning-based

approaches should be carefully discussed on being employed especially for pathological

images [111]. The usability of learning-based image reconstruction methods is often re-

stricted because of the delicate clinical aspect. From these factors above, the appropriate

priors used for the blind-deconvolution of the pathological images should be cautiously

considered.

Sensitivity to initialization

Next, we discuss the initialization of H . We consider that the strict convergence at

the coarse resolution makes the blur kernel overfit at the coarse kernel size, and it fall

into a bad solution at the fine resolution. In order to achieve a good local optimum, we

also found that the small number of the alternating optimization iterations at the coarse

resolution leads to better results, as also mentioned in [118, 119]. The supplemental results

in Figure 4.11 show the differences of the performances in terms of the initial value of

H . The number of iterations for the blur estimation in the coarser scale was set to 20.

The initial value derived from coarse-to-fine procedure retained both of image and blur

accuracy performances and their stabilities compared to the other initial values.

Limitation of the proposed method

The proposed method has the following principal limitations. First of all, in order

to model the high-resolutional sub-slice images, a pair of the over/under adjacent slice

images of the target image is necessary in the proposed method. As mentioned in Sec-

tion 4.2, roughly the same anatomical structures across the slices must be captured in

those images while they can vary their shapes and locations by the slice. The landmark

based registration of the slice images must be pre-processed with enough high resolution

[113, 128] for the slice images to satisfy the above condition. There are also possible limi-

tations accompanied with the blind-deconvolution model. Those limitations are discussed

in the next paragraphs, comparing with the other existing methods.

Convergence stability

In many existing methods [117, 27, 118, 119], the resultant images are chosen by users

during the iterations: The convergence and the best performance could not be satisfied

at the same time. Compared to those existing methods, in the proposed method, the

convergence can be stabled at next to the best performance. We consider that the stability

is derived from the following framework for solving and the deconvolution model designed.
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Figure 4.11 PSNR and BKS performances of L0GP+SSM model with variational initial-
ization of H . ’delta’ is the delta function, and σ = 1 and σ = 3.67 are the Gaussian kernel
with the standard deviation. ’mean’ is the mean smoothing kernel, and ’coarse2fine’ is
the initialization described in Section 4.2.

• ADMM is employed for solving subproblems so that the variable can be exactly

constrained during the optimization

• The regularization weight parameter is smoothly reduced per AO iteration because

the regularization is unnecessary next to the groundtruth

• Independence of the initialization because of the coarse-to-fine estimation of H

starting from the Dirac’s delta kernel

Note that, however, the parameters still need to be tuned for the proposed method to

perform the best image accuracy. Also, the processing time of the proposed method would

be slower in exchange for the optimization stability.

Robustness against noise and artifact

In fact, the general blind-deconvolution model Prblem (4.2), that the most of all the

state-of-the-art method belong to, does not assume the existence of observation noise while
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the observation model Equation (4.1) includes the noise. Because both of H and X are

unknown in the first term of Problem (4.2), one of the pair could try to make the other

represent the noise, and vice versa. Not only the nonconvexity and the ill-posedness but

also this factor makes the blind-deconvolution problems more complicated. Fortunately,

pathological images are seldom contaminated with observation noise because they are

statically imaged with appropriate amount of light by microscopic camera. Therefore,

the affects of observation noise could be ignored in this study although the proposed

method also belongs to the model Prblem (4.2).

As mentioned in Section 4.3.1, the resultant images of L0GP+SSM were sometimes

contaminated with reconstruction artifacts in the case of the blur kernel is large. We

expect that the artifacts could also be removed by simply enhance the threshold of the L0

gradient constraint, i. e., by replacing the first constraint of Problem (4.4) with ||∇X||0 ≤
τ ||∇R0

j ||0, where τ is a parameter to enhance the threshold. In that case, L0GP would

behave similarly to L0GR because the extent of the regularization is controlled through

τ .

The computational complexity

In the followings, the total number of image pixel is denoted by N = WH. The single

evaluation of the objective function of Problem (4.21) costs O(N) and the optimization

of Problem (4.21) costs 2T iterations at most, which would be less or equal to those of

Problem (4.5) and (4.13). Therefore we consider Problem (4.5) and (4.13) to describe

the computational complexity of the proposed method. The update equations (4.12),

(4.19), and (4.20) cost O(N) obviously. When Equation (4.10) and (4.10) are evaluated

in the Fourier space, the convolutions and their inversions in the image domain can be

substituted by the element-wise multiplications and divisions, which cost onlyO(N). Thus

Equation (4.10) and (4.10) cost O(N log
√
N) for FFT and IFFT. The update equation

Equation (4.11) costs O(N logN) for the quick sort of L2-norm of the image gradients,

which is the highest computational cost in the proposed algorithm.
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Chapter 5

　　Conclusions

In this paper, we dealt with the image reconstructions and super-resolutions referred

to some medical image modalities. These tasks can be formulated as solving the ill-posed

inverse problems while the nature/extent of the ill-posedness is varied depending on the

tasks and the modalities. In order to solve an ill-posed problem, additional prior models

to constrain the solution space are necessary. For the respective tasks dealt with in this

study, the appropriate and effective priors are introduced/modeled in the form of the

optimization problems to be solved. We also introduced the more appropriate solver

for each task especially in terms of the stability. In the followings of this chapter, first,

the medical image inverse problems dealt with in this paper is reviewed and concluded.

Then the possibility of application of other state-of-the-art priors to medical images, and

possible futureworks are discussed.

Chapter 2

In this study, we dealt with the super-resolution of MR images. The objective of the

super-resolution is to extrapolate the high-frequency components so as to improve the

spatial resolution. The super-resolution of MR images is necessary to obtain both high-

resolutional and high SNR profiles of MR images. In order to solve the super-resolution

problem of MR images, the following priors were introduced:

1. The outside the object boundary of MR images have exactly zero values

2. The smoothness and the low-rankness of MR images

The Gerchberg algorithm was employed to introduce the prior (1), which is known as a

strong constraint for the super-resolution. The Gerchberg algorithm, however, does not

assume the existences of observation noise and ringing artifacts. Therefore in the pro-

posed model, the Gerchberg algorithm was regularized by rank and TV in order to hold

the robustness to noise/artifacts. There was a fundamental question how to introduce the

regularization techniques to the Gerchberg algorithm, that is one of the POCS approaches.
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In order to impose the regularization to Gerchberg algorithm, we first re-interpreted and

reformulated the Gerchberg algorithm as a convex optimization problem. The proposed

method was represented by the form of the convex optimization problem where the Ger-

chberg algorithm, TV and rank regularization terms are comprehensively described. The

convex optimization problem was solved by ADMM, which is the relatively stable frame-

work for the convex optimization. The proximal operators were also introduced to exactly

minimize the TV and the nuclear norm. The proposed method was applied to MR images

in order to obtain high resolution with a high SNR by using anisotropic measurements

from the axial, coronal, or sagittal directions. The experimental results showed that our

super-resolution technique dramatically reduced noise and ringing caused by the Gerch-

berg method and it also performed better than LRTV super-resolution and the other

methods considered.

Chapter 3

In this study, we proposed a new PET reconstruction model where the spatial and tem-

poral priors that PET images should obey are introduced. The PET images often suffer

from terrible observation-noises and the accurate reconstruction techniques are desired.

The PET image reconstruction is an ill-posed problem to reconstruct the PET image from

an observed noisy sinogram. In the proposed method, following priors were introduced

for the accurate PET image reconstruction:

1. The nonnegativity and the boundary constraints

2. The temporal changes of PET images obey the compartmental model

The prior (1) was explicitly introduced through the basis functions representations. The

compartmental model of prior (2) is a temporal model of dynamics of medical ligand

reactions, and the PET image should theoretically obey the compartmental model. In

order to introduce the prior (2), first, the partial derivatives of the parameters of the

compartmental model were derived. Further, the projection of an image to the nonconvex

manifold covered by the parametric compartmental models was defined. The optimization

problem was configured by introducing these prior models, where the data fidelity is

evaluated based on KL-divergence. The nonconvex optimization problem was solved by

iterative projections of spatial and temporal spaces. The experimental results showed

that the effectiveness of each prior, and clinical data experiments also showed the usable

performance of the proposed method.

Chapter 4

In this study, we dealt with the blind-deconvolution of a series of pathological images.

The series of pathological images were captured from the continuous slice samples of a
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pancreas of KPC mouse. Some of slice images included blurred parts that we do not

know the blur profiles, and the objective is to deblur the blurred parts. Hence, the

problem is a blind-deconvolution, which is not only highly ill-posed but also strongly

nonconvex because both an image and a blur is unknown and we lack the constraint

equations of both the image and the blur at the observation. The priors used for the

pathological images should be carefully discussed while the blind-deconvolution itself is

the severely complicated ill-posed problem. In our case, the adjacent slice images of a

target blurred image can be referred to for the blind-deconvolution, which is assumed to

be high-resolutional, and to be not blurred. The following prior models were introduced

for both the image and the blur domain in the proposed method.

1. The smoothness of images described by the L0-norm of the image gradients

2. The high-resolutional textures derived from the adjacent slice images

3. The smoothness and the general constraints of blurs

In introducing the prior (1), the L0 gradient projection model was leveraged because

the model can explicitly constraint the solution space by referring to the L0 gradient

norm of adjacent images. As for the prior (2), the LDDMM between the upper/lower

adjacent images were first calculated in order to describe the high-resolutional sub-slice

images between them. This procedure is necessary because there are location/shape gaps

of anatomical structures between continuous three slice images. The sub-slice images

were leveraged to evaluate the fidelity between the latent blur and the observed image in

the form of a weak regularization. The prior (3) included the smoothness based on L2-

norm, and the convex constraints of the sparsity, the nonnegativity, and the normalized

property. In solving the proposed blind-deconvolution model, the AO-ADMM framework,

which alternatively solving the subproblems of respective variables using the ADMM,

was employed to notably stable the optimization. We also employed the close-to-fine

estimation procedure so as to avoid the dependence on the initial values for the nonconvex

optimization. The proposed method outperformed drastically the existing methods in

terms of both the stability and the accuracy while the usability of the sub-slice model is

restricted to the continuous series of slice images.

Futureworks

For the futureworks of medical image inverse problems, we cannot ignore the deep

learning. As mentioned in Chapter 1, the bias derived from the learned manifold should

be under the consideration in order to apply the deep learning for several medical im-

age modalities and processing tasks. Although the most of existing deep learning based

methods do not argue the bias caused by learning, there are several possible approaches

considered to correct or avoid the affects of the bias.
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The deep image prior [76], which does not use learning, performed as good as the

state-of-the art learning-based approaches such as SRResNet and LapSRN. It could be

applied as the bias-free regularization to medical images if the appropriate architecture

and optimizer that can well represent the modality is found. In applying it to medical

images, some of modalities such as PET and f-MRI may have a trouble because they may

have complicated and textures at the groundtruth. Because the deep image prior optimize

the data fidelity starting from the noise representation, the fidelity distance would be

much more faraway than those of smooth images. More architectural constraints would

be necessary in that case.

The content loss, which is a data term used in several networks to make images more

photorealistic [40], could be employed without learning if backpropagation and ADAM,

or numerical differentiation are available. For instance, it could behave as the balanced

regularization between the MSE-based data term and the photorealistic term. Note that,

however, the tuning of the VGG network for the medical images would be necessary

because it is tuned for natural images. It should be also discussed if the photorealisticness

is desired in the medical images because the contents loss itself does not retain image

colors, textures, and structural locations after the reconstruction.

The trained network can also be used as long as it behaves as just the regularization.

The usage of SRCNN as the regularization term is reported for medical images [75]. As

for the regularization usage of the trained network, one could apply the method with the

technique to reduce the regularization weight per iteration, which is mentioned in Chapter

4, although the iterations are stopped by users in [75],

To the contrary, we could add explicit or obvious priors to deep neural networks. For

example, we can indicate exactly that the backgrounds of MR images and, doctors can

also get more detailed information such that the image object is lesion or not. These

priors could communicate with and improve the deep neural networks by using conditional

normalization techniques [132, 133]. Using the conditional layer normalization, it could

be possible to keep the solution space close to the ideal manifold that is still not well

represented by the training data.

These theoretical improvements would extend the flexibility of the model design. The

model design that is supported by appropriate priors of the ideal image is still an important

factor for the image inverse problems.



80

Appendices

ADMM optimization for solving Problem (2.12)

In this appendix, we explain the procedure to derive the update rules (2.14)–(2.17)

for (2.12). Each update rule can be obtained by minimizing (2.12) with respect to each

variable one by one.

First, (2.14) can be obtained by the following partial derivative:

∂L
∂f

= RT
ΩRΩf −RΩf

′

0 −GTα+ ρGTGf − ρGTx

= RΩf − f
′

0 −GTα+ ρIf − ρGTx→ 0. (5.1)

Thus, by solving (5.1) with respect to f , we obtain

(RΩ + ρI)f = f
′

0 −GTα+ ρGTx,

f = (RΩ + ρI)−1[RΩf
′

0 +GT (α+ ρx)]. (5.2)

Similar to the case with f , the update rule (2.15) for x can be obtained from

∂L
∂x

= ϵ
N∑
i=1

(x−mi + vi)−LTz + α +RT
Γ̄γ

+ ρ(LTLx−LTy) + ρ(x−Gf) + ρRΓ̄x

→ 0. (5.3)

For (2.16), the following problem with respect to Y = mat(y) is solved:

argmin
Y

λTV||Y ||1,2 +
ρ

2
||Y −Lx+

1

ρ
mat(z)||2F . (5.4)

The update rules of y and z for solving (5.4) are given by ADMM as

yk+1 = proxρ−1λTV||·||1,2(Lxk+1 − ρ−1zk)

zk+1 = zk + ρ(yk+1 −Lxk+1). (5.5)



81

The proximal function for the l1,2-norm is defined as

[proxν||·||1,2(a)]ι = aι ◦max

(
1− ν

||aι||2
, 0

)
, (5.6)

where a = [a1,a2, · · · ,aI ]
T. By applying wk = Lxk+1 − ρ−1zk to the notations above,

the update rule(2.16) can be obtained by

[yk+1]s = proxρ−1λTV||·||1,2(w
k
s )

= max(1− λTV(ρ||wk
s ||2)−1, 0)wk

s , (5.7)

where wk
s = [wk

s1, w
k
s2, w

k
s3]

T.

Finally, the sub-problem with respect to mi = vec(Mi) denoted by

argmin
mi

λLR

N
||Mi(i)||∗ +

ϵ

2
||x−mi + vi||22, (5.8)

is solved to obtain (2.17). The optimal solution is given by singular value thresholding

[31, 30]:

Mk+1
i = foldi[SVTλLR

Nϵ

(unfoldj(X
k+1 + V k

i ))]. (5.9)
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Optimization for solving Problem (3.5)

In this Appendix, we explain an optimization algorithm to solve Problem (3.5) using a

set of spatial bases Ψ. Problem (3.5) can be transformed as:

Ẑ = argmin
Z

F (Z) = DKL(Ỹ ||PΨZ) +
λ

2
||ΨZL||2F , (5.10)

where L is a given matrix to differentiate matrix ΨZ along columns. The derivative of

Problem (5.10) is:

∂F

∂Z
= ΨTP T1−ΨTP T(Ỹ ⊘ [PΨZ]) + λΨTΨZLLT. (5.11)

Then, the multiplicative update rule to solve Problem (5.10) is given by:

Z(k+1) ← Z(k)◦(ΨTP T{Ỹ ⊘[PΨZ(k)]}+[λΨTΨZ(k)LLT]−)⊘(ΨTP T1+[λΨTΨZ(k)LLT]+),

(5.12)

where [·]− and [·]+ are projection operators, such that [[A]−]vw = |min(Avw, 0)| and
[[A]+]vw = max(Avw, 0) for an arbitrary matrix A.
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3D reconstruction of pathological images

In this appendix, we describe the 3D reconstruction method of a series of 2D patholog-

ical images [113, 128], which is mentioned in Section 4.1.3.

First of all, a series of M pathological images, {I1, I2, · · · , IM}, is assumed to be

obtained and given by the following procedure. A series of thin sections with a constant

inter-gap is first obtained from a chemically fixed tissue, and their microscopic images are

captured after the chemical staining. One can reconstruct a 3D image from the series of

the pathological images by piling up the images that are nonrigidly registered together.

The nonrigid registration is necessary because of the independent translation, rotation,

and deformation of the histological sections caused by the sectioning from the tissue and

by the mounting of the sections on glass slides. Before the nonrigid registration of the

slice images, respective images are rigidly registered towards through-slice direction to

obtain roughly registered pathological images {I1, I2, · · · , IM}.
Given a series of the pathological images described above, the reconstruction method

[113, 128] performs the following procedure. The method [113, 128] first detects landmarks

corresponded among several slice images. The corresponding landmarks across the slice

images is assumed to be derived from a part of the same anatomical structures. There

are many sets of the corresponding landmarks that describe different parts of different

anatomical structures by the set of points. These sets of points would form zig-zag shaped

trajectory across the slices because the pathological images are not sufficiently registered

yet. Next, each zig-zag trajectory of the corresponding landmarks across the slices is

smoothed. The trajectory smoothing is performed by minimizing the total variation of

pixel coordinates across the slice images. Finally, the nonrigid registration towards the

through-slice direction is processed with the clue of the smoothed sets of the landmarks.

The details of respective three processes are described in the next paragraphs.

Landmark Detection and Tracking

The method first iteratively samples a set of keypoints, P j
i (j = 1, 2, . . . ) from Ii(·).

P j
i , which is the j-th keypoints in i-th slice image Ii(·), is sampled with a probability, pji ,

which is given by

pji (x) =

{
∥∇Ii(x)∥/Z, if (∥∇Ii(x)∥ > T ) ∧

(
x ∈ Πj

i

)
0, otherwise,

(5.13)

where Z is a normalization term and T is a threshold. The region from which the j-th

keypoint is sampled is restricted to a region, Πj
i , in order to make the spatial distribution

of the keypoints uniform and to avoid an over-sampling.

Once keypoints are detected from a slice image, the respective sets of corresponding

points across the slice images are traced by using the template matching. One can employ
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conventional techniques, e. g. the normalized cross-correlation (NCC) based method or

the SIFT based method, for the detection of the corresponding landmarks. In this study,

the NCC-based template matching is employed. In order to suppress false matching,

the method at first detects landmarks P j
i+1(j = 1, 2, . . . ) in Ii+1 that correspond to the

landmarks P j
i detected in Ii and then applies backward template matching: Landmarks

that correspond to P j
i+1 are detected in Ii and the locations of these detected landmarks

are compared with the locations of P j
i . If the locations are largely different, then the

method rejects the landmarks found in P j
i+1.

Trajectory Smoothing

The method smooths the trajectories and obtains the destination points, Qj
i , to which

P j
i should be transported. The coordinates of the destination points, yj

i , are calculated

by minimizing the square of the total variation of each trajectory and the square errors

with a trade-off parameter λ as follows:

{yj
sj
, . . . ,yj

tj
} = arg min

ỹj

sj
,...,ỹj

tj

(
ti−1∑
i=si

∥ỹj
i − ỹj

i+1∥2 + λ∥ỹj
i − xj

i∥2
)
. (5.14)

The cost function shown in Equation (5.14) is convex and has a unique optimum.

Image Deformation

Once the destination points, yj
i , is obtained for each landmark coordinate, xj

i , then the

diffeomorphic mapping, ϕi, is computed. Here, one can employ any nonrigid registration

technique whose data fidelity term is based on the landmark positions. In [113], a classical

B-spline-based deformation method [134] is employed for the computation of the mapping.

On the other hand, the LDDMM is employed in [128]. Both of the methods are represented

as solving the following optimization problem:

argmin
ϕi+1

g(ϕi+1) +
∑
j

||ϕi+1 ⊕ yj
i+1 − yj

i ||2, (5.15)

where g(·) is the appropriate smoothness regularizer for the deformation field.
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