
Acceleration of Edge-Preserving
Filtering on CPU Microarchitecture

CPUマイクロアーキテクチャに応じた
エッジ保存平滑化フィルタの高速化

2019

Yoshihiro Maeda

Contents

1 Introduction 1
1.1 Research Background . 1
1.2 Edge-Preserving Filtering . 2

1.2.1 FIR Filtering . 2
1.2.2 Bilateral Filtering . 3
1.2.3 Non-Local Means Filtering 3
1.2.4 Guided Filtering . 4

1.3 Overview of CPU Microarchitectures 5
1.4 Organization of This Dissertation 6

2 Taxonomy of Vectorization Patterns of Programming for FIR
Image Filters Using Kernel Subsampling and New One 9
2.1 Introduction . 9
2.2 2D FIR Image Filtering and Its Acceleration 12

2.2.1 Definition of 2D FIR Image Filtering 12
2.2.2 General Acceleration of FIR Image Filtering 12

2.3 Design Patterns of Vectorized Programming for FIR Image
Filtering . 13
2.3.1 Data Loading and Storing in Vectorized Programming 13
2.3.2 Image Data Structure 14
2.3.3 Vectorization of FIR Filtering 15
2.3.4 Color Loop Unrolling 16
2.3.5 Kernel Loop Unrolling 17
2.3.6 Pixel Loop Unrolling 18

2.4 Proposed Design Pattern of Vectorization 19
2.5 Material and Methods . 22

2.5.1 Gaussian Range Filter 22
2.5.2 Bilateral Filter . 23
2.5.3 Adaptive Gaussian Filter 24
2.5.4 Randomly-Kernel-Subsampled Filter 24

2.6 Experimental Results . 25

i

CONTENTS ii

2.7 Conclusions . 27

3 Effective Implementation of Edge-Preserving Filtering on CPU
Microarchitectures 37
3.1 Introduction . 37
3.2 Edge-Preserving Filters . 40
3.3 Floating Point Numbers and Denormalized Numbers in IEEE

Standard 754 . 41
3.4 CPU Microarchitectures and SIMD Instruction Sets 43
3.5 Proposed Methods for the Prevention of Denormalized Numbers 44
3.6 Effective Implementation of

Edge-Preserving Filtering . 47
3.7 Experimental Results . 51

3.7.1 Influence of Denormalized Numbers 51
3.7.2 Effective Implementation on CPU Microarchitectures . 53

3.8 Conclusions . 55

4 Directional Cubic Convolution Interpolation with Edge Pre-
serving Detail Enhancement 71
4.1 Introduction . 71
4.2 Proposed Framework . 72
4.3 Experimental Results and Discussion 73
4.4 Conclusions . 74

5 Conclusion 79

A Pixel Subsampling vs. Kernel Subsampling 99

B Implementation of Bilateral Filter in OpenCV 101

ii

Chapter 1

Introduction

1.1 Research Background

Image processing is essential to realize various applications. Edge-preserving
filters [1–5] are the basic tools used for image processing. Representative fil-
tering include bilateral filtering [1,2], non-local means filtering [3], and guided
image filtering [4–6]. These filters are used in various applications, such
as image denoising [3, 7], high dynamic range imaging [8], detail enhance-
ment [9–11], free viewpoint image rendering [12], flash/no-flash photogra-
phy [13,14], up-sampling/super resolution [15,16], alpha matting [17,18], haze
removal [19], optical flow and stereo matching [20], refinement processing in
optical flow and stereo matching [21,22], and coding noise removal [23,24].

These filters have high computational cost because they compute adap-
tively for each pixel. Several acceleration algorithms have been proposed for
the bilateral filtering [8, 25–33] and non-local means filtering [25, 31, 34, 35].
These algorithms reduce the computational order of these filtering. The order
of a näıve algorithm is O(r2), where r is the kernel radius. The order of sepa-
rable approximation algorithms [25,26] is O(r) and that of constant-time al-
gorithms [28–37] is O(1). In multi-channel image filtering with intermediate-
sized kernels, the constant-time algorithms tend to be slower than the näıve
algorithms owing to the curse of dimensionality [28], which indicates that
the computational cost increases exponentially with increasing dimensions.
Furthermore, when the kernel radius is small, a näıve algorithm can be faster
than algorithms of the order O(r) or O(1) owing to the offset times of the
latter algorithms. Therefore, we should also consider another acceleration
approach by hardware, such as central processing units.

Moore’s law [38] indicates that the number of transistors on an integrated
circuit will double every two years. Early in the development of integrated

1

1.2. EDGE-PRESERVING FILTERING 2

circuits, the increased numbers of transistors were largely devoted to increase
clock speeds of CPUs. However, the CPU frequency is limited by power and
thermal constraints; therefore, the utilization of the increased numbers of
transistors has become complex [39]. Nowadays, most CPUs have multi-core
architectures, complicated cache memories, and short vector processing units.
Hence, In the early stage, due to growing CPU frequency, the performance of
software improved without software optimization. However, nowadays, the
performance cannot be improved without the optimization, such as cache-
efficient parallelized and vectorized programming. This fact is called ”The
Free Lunch Is Over.” [40]

Flynn’s taxonomy [41] categorizes multi-core parallel programming as
multiple-instruction, multiple data (MIMD) type and vectorized program-
ming as single-instruction, multiple data (SIMD) type. Single-instruction,
multiple threads (SIMT) is the same concept as SIMD in GPUs. Vector-
ization and parallelization can be simultaneously used in image processing
applications. Vectorized programming, however, requires harder constraints
than parallel programming in data structures. Vendor’s short SIMD architec-
tures, such as MMX, Streaming SIMD Extensions (SSE), Advanced Vector
Extensions (AVX)/AVX2, AVX-512, AltiVec, and NEON, are expected to
develop rapidly, and vector lengths will become longer [42]. SIMD instruc-
tion sets are changed by the microarchitecture of the CPU. This implies that
vectorization is critical for effective programming.

To accelerate the edge-preserving filtering, we should be considering im-
plementation of them for CPU microarchitectures. In this dissertation, we
aim acceleration of the edge-preserving filtering and organize cyclopaedically
effective implementation on CPU microarchitectures. Also, we focus on accel-
eration of upsampling and detail enhancement, which are one of application
in the edge-preserving filtering.

1.2 Edge-Preserving Filtering

1.2.1 FIR Filtering

General edge-preserving filtering in finite impulse response (FIR) filtering is
represented as follows:

Ī(p) =
1

η

∑
q∈N (p)

f(p, q)I(q), (1.1)

where I and Ī are the input and output images, respectively. p and q are
the present and reference positions of pixels, respectively. A kernel-shaped

2

1.2. EDGE-PRESERVING FILTERING 3

function N (p) comprises a set of reference pixel positions, and it varies for
every pixel p. The function f(p, q) denotes the weight of position p with
respect to the position q of the reference pixel. η is a normalizing function.
If the gain of the FIR filter is one, we set the normalizing function as follows:

η =
∑

q∈N (p)

f(p, q). (1.2)

The edge-preserving filtering smooths an image while edges are kept. Var-
ious types of weight functions are employed in edge-preserving filtering. The
edge-preserving filter can typically be decomposed into range and/or spatial
kernels, which depend on the value and position of each pixel, respectively.
The spatial kernel is invariant across all pixels. By contrast, the range kernel
is variant. Thus, the range kernel is computed adaptively for each pixel,
which means the process of edge-preserving filtering is computationally ex-
pensive.

1.2.2 Bilateral Filtering

The weight of the bilateral filter is expressed as follows:

f(p, q) := exp(
‖p− q‖2

2

−2σ2
s

) exp(
‖I(p)− I(q)‖2

2

−2σ2
r

), (1.3)

where ‖ · ‖2 is the L2 norm and σs and σr are the standard deviations of the
spatial and the range kernels, respectively. The weight of the bilateral filter
is determined by considering the similarity between the color and spatial
distance between a target pixel and that of the reference pixel.

1.2.3 Non-Local Means Filtering

The weight of the non-local means filter is as follows:

f(p, q) := exp(
‖v(p)− v(q)‖2

2

−h2
), (1.4)

where v(p) represents a vector, which includes a square neighborhood of the
center pixel p. h is a smoothing parameter. The weight of the non-local
means filter is defined by computing the similarity between the patch on the
target pixel and that on the reference pixel. It is similar to the range weight
of the bilateral filter for a multi-channel image.

3

1.2. EDGE-PRESERVING FILTERING 4

1.2.4 Guided Filtering

The guided filtering converts local patches in an input image by a linear
transformation of a guide image. Let the guide signal be I. The output q is
assumed as follows;

qi = akIi + bk, ∀i ∈ ωk (1.5)

where k indicates a center position of a rectangular patch ωk, and i indicates
a position of a pixel in the patch. ak and bk are coefficients for the linear
transformation. The equation represents that guide signals in a patch are
linearly converted by the coefficients.

The coefficients are calculated by a linear regression of the input signal p
and (1.5).

arg min
ak,bk

=
∑
i∈ωk

((akIi + bk − pi)2 + εa2
k) (1.6)

The coefficients are estimated as follows;

ak =
covk(I, p)

vark(I) + ε
, bk = p̄k − akĪk, (1.7)

where ε indicates a parameter of smoothing degree. ·̄k, covk and vark indicate
mean, variance, and covariance values of the patch k. The coefficients are
over overlapping in the output signals; thus, these coefficient are averaged.

āi =
1

|ω|
∑
k∈ωi

ak, b̄i =
1

|ω|
∑
k∈ωi

bk, (1.8)

| · | indicates the number of elements in the set. Finally, the output is calcu-
lated as follows;

qi = āiIi + b̄i, (1.9)

For color filtering, let input, output and guidance signals be p = {p1, p2, p3},
qn (n = 1, 2, 3), and I, respectively. The per channel filtering output is de-
fined as follows;

qni = āni
T
Ii + b̄ni , (1.10)

āni =
1

|ω|
∑
k∈ωi

ank, b̄ni =
1

|ω|
∑
k∈ωi

bnk, (1.11)

4

1.3. OVERVIEW OF CPU MICROARCHITECTURES 5

Table 1.1: CPU microarchitectures of Intel Core series Extreme Editions. In
each CPU generation, the Extreme Edition versions offer the highest perfor-
mance on the consumer level.

Generation 1st 2nd 3rd 4th 5th 6th

codename Gulftown Sandy Bridge Ivy Bridge Haswell Broadwell Skylake
model 990X 3970X 4960X 5960X 6950X 7980XE
launch date Q1’11 Q4’12 Q3’13 Q3’14 Q2’16 Q3’17
lithography 32 nm 32 nm 22 nm 22 nm 14 nm 14 nm
base frequency [GHz] 3.46 3.50 3.60 3.00 3.00 2.60
max turbo frequency [GHz] 3.73 4.00 4.00 3.50 3.50 4.20
number of cores 6 6 6 8 10 18
L1 cache (×number of cores) 64 KB (data cache 32 KB, instruction cache 32 KB)
L2 cache (×number of cores) 256 KB 256 KB 25 6KB 256 KB 256 KB 1 MB
L3 cache 12 MB 15 MB 15 MB 20 MB 25 MB 24.75 MB
memory types DDR3-1066 DDR3-1600 DDR3-1866 DDR4-2133 DDR4-2133 DDR4-2666
max number of memory channels 3 4 4 4 4 4

SIMD instruction sets SSE4.2
SSE4.2
AVX

SSE4.2
AVX

SSE4.2
AVX/AVX2
FMA3

SSE4.2
AVX/AVX2
FMA3

SSE4.2
AVX/AVX2
AVX512
FMA3

The coefficients ank, bnk for the linear transformation is obtained as follows;

ank =
covk(I, pn)

vark(I) + εE
, bnk = p̄nk − a

n
k

T
Īk, (1.12)

where E is an identity matrix. When the output signal is color image, covk
is the covariance matrix of the patch in p and I. Also, vark is the variance of
the R, G, and B components, which will be covariance matrix, in the patch of
I. The division of the matrix is calculated by multiplying the inverse matrix
of the denominator from the left. The calculation results of per pixel mean,
variance, and covariance are obtained from the box filter. The filter can be
implemented with a recursive filter [43], which can work in a constant time
per pixel.

1.3 Overview of CPU Microarchitectures

The latest microarchitectures used in Intel CPUs are presented in Table 1.1.
The table indicates that CPU frequencies are hardly growing. However, the
number of cores is increasing, cache memory size is expanding and the SIMD
instruction sets are growing. Therefore, we need to use parallelization and
SIMD instruction sets for effective implementation.

SIMD instructions simultaneously calculate multiple data. Hence, high-
performance computing utilizes SIMD. The SIMD instructions are classi-
fied data-level parallelization. Typical SIMD instructions include stream-
ing SIMD extensions (SSE), advanced vector extensions (AVX)/AVX2 and

5

1.4. ORGANIZATION OF THIS DISSERTATION 6

AVX512 in order of the oldest to newest [44]. Moreover, fused multiply-
add 3 (FMA3) [44] is a special instruction. FMA3 computes A × B + C
by one instruction. There are three notable changes in SIMD. First, the
vector length is growing. For example, the lengths of SSE, AVX/AVX2
and AVX512 are 128 bits (4 float elements), 256 bits (8 float elements)
and 512 bits (16 float elements), respectively. Second, several instructions
have been added, notably, gather and scatter instructions [42]. These in-
structions load/store data of discontinuous positions in memory. gather has
been implemented in the AVX2, and scatter has been implemented in the
AVX512.

1.4 Organization of This Dissertation

This dissertation mainly discusses the acceleration of the edge-preserving
filtering and organize effective implementation on CPU microarchitectures.
Furthermore, we focus on acceleration and high accuracy of upsampling and
detail enhancement, which are one of application in the edge-preserving fil-
tering.

Chapter 2 examines vectorized programming for finite impulse response
image filtering. Finite impulse response image filtering occupies a funda-
mental place in image processing, and has several approximated acceleration
algorithms. However, no sophisticated method of acceleration exists for pa-
rameter adaptive filters or any other complex filter. For this case, simple
subsampling with code optimization is a unique solution. Under the current
Moore’s law, increases in central processing unit frequency have stopped.
Moreover, the usage of more and more transistors is becoming insupera-
bly complex due to power and thermal constraints. Most central process-
ing units have multi-core architectures, complicated cache memories, and
short vector processing units. This change has complicated vectorized pro-
gramming. Therefore, we first organize vectorization patterns of vectorized
programming to highlight the computing performance of central processing
units by revisiting the general finite impulse response filtering. Further-
more, we propose a new vectorization pattern of vectorized programming
and term it as loop vectorization. Moreover, these vectorization patterns
mesh well with the acceleration method of subsampling of kernels for general
finite impulse response filters. Experimental results reveal that the vector-
ization patterns are appropriate for general finite impulse response filtering.
A new vectorization pattern with kernel subsampling is found to be effective
for various filters. These include Gaussian range filtering, bilateral filtering,
adaptive Gaussian filtering, randomly-kernel-subsampled Gaussian range fil-

6

1.4. ORGANIZATION OF THIS DISSERTATION 7

tering, randomly-kernel-subsampled bilateral filtering, and randomly-kernel-
subsampled adaptive Gaussian filtering.

In Chapter 3, we propose acceleration methods for edge-preserving fil-
tering. The filters natively include denormal numbers, which are defined in
IEEE standard 754. The processing of denormal numbers has a higher com-
putational; thus, the computational performance of edge-preserving filtering
is diminished severely. We propose approaches to prevent the occurrence of
denormal numbers. Moreover, we verify an effective vectorized implementa-
tion of the edge-preserving filtering based on changes in central processing
unit microarchitectures by carefully treating kernel weights. The experi-
mental results show that the proposed methods are up to five times faster
than the straightforward implementation of bilateral filtering and non-local
means filtering while maintaining high accuracy. In addition, we achieved
effective vectorized implementation for each central processing unit microar-
chitecture. The effective vectorized implementation of the bilateral filter is
up to 14 times faster than OpenCV implementation. The proposed methods
and the effective vectorized implementation are practical for real-time tasks
such as image editing.

In Chapter 4, we propose a framework can handle simultaneous processing
of directional cubic convolution interpolation and detail enhancement. As
a result of the experiment, the proposed method achieves upsampling with
higher precision than the conventional method and at the same time achieves
its approximate speedup as a detailed enhancement.

Finally, we conclude our work, in Chapter 5.

7

Chapter 2

Taxonomy of Vectorization
Patterns of Programming for
FIR Image Filters Using Kernel
Subsampling and New One

2.1 Introduction

Image processing is known as high-load processing. Accordingly, vendors of
central processing units (CPUs) and graphics processing units (GPUs) pro-
vide tuned libraries, such as the Intel Integrated Performance Primitives (In-
tel IPP) and NVIDIA Performance Primitives (NPP). Open-source commu-
nities also provide optimized image processing libraries, such as OpenCV,
OpenVX, boost Generic Image Library (GIL), and scikit-image.

Moore’s law [38] indicates that the number of transistors on an integrated
circuit will double every two years. Early in the development of integrated
circuits, the increased numbers of transistors were largely devoted to increase
clock speeds of CPUs. Power and thermal constraints limit increases in CPU
frequency, and the utilization of the increased numbers of transistors has
become complex [39]. Nowadays, most CPUs have multi-core architectures,
complicated cache memories, and short vector processing units. To maximize
code performance, cache-efficient parallelized and vectorized programming is
essential.

Flynn’s taxonomy [41] categorizes multi-core parallel programming as
multiple-instruction, multiple data (MIMD) type and vectorized program-
ming as single-instruction, multiple data (SIMD) type. Single-instruction,
multiple threads (SIMT) is the same concept as SIMD in GPUs. Vector-

9

2.1. INTRODUCTION 10

ization and parallelization can be simultaneously used in image processing
applications. Vectorized programming, however, requires harder constraints
than parallel programming in data structures. Vendor’s short SIMD architec-
tures, such as MMX, Streaming SIMD Extensions (SSE), Advanced Vector
Extensions (AVX)/AVX2, AVX-512, AltiVec, and NEON, are expected to
develop rapidly, and vector lengths will become longer [42]. SIMD instruc-
tion sets are changed by the microarchitecture of the CPU. This implies that
vectorization is critical for effective programming.

Effective vectorization requires the consideration of three critical issues:
memory alignment, valid vectorization ratio, and cache efficiency. Memory
alignment is critical for data loading because SIMD operations load excessive
data from non-aligned data in memory. This loading involves significant
penalties. In valid vectorization ratio issues, padding operations remain a
major topic of discussion. Padding data are inevitable in exception handling
of extra data for vectorized loading. Moreover, rearranging data with padding
resolves alignment issues [45]. However, padding decreases ratios of valid
vectorized computing. For cache efficiency, there is a tremendous penalty
for cache-missing because the cost of loading data from main memory is
approximately 100 times higher than the cost of adding data. These issues
can be moderated in various ways. Among such means are data padding
for memory alignment, loop fusion/jamming, loop fission, tiling, selecting
a loop number in multiple loops for parallelization and vectorization, data
transformation [46], and so on.

We should completely utilize the functionality of the CPU/GPU for accel-
erating image processing using hardware [47, 48]. Vectorized programming
matches image processing; thus, typical simple algorithms can be acceler-
ated [49]. Even in cases where algorithms have more efficient computing
orders, the parallelized and vectorized implementation of another higher-
order algorithm would still be faster than the optimal algorithm in many
cases. In parallel computers, for example, a bitonic sort [50] is faster than
a quick sort [51]. In image processing, the brute-force implementation of
box filtering proceeds more rapidly than the integral image [52] for small
kernel-size cases. In both cases, optimal algorithms, i.e., the quick sort and
integral image, do not have the appropriate data structure for parallelized
and vectorized programming.

In image processing, various algorithmic acceleration have been proposed
other than hardware acceleration. In particular, these include general and
specific acceleration algorithms in finite impulse response (FIR) filtering.
General FIR filtering allows the acceleration of filters by separable filter-
ing [53, 54], image subsampling [55], and kernel subsampling [56]. Separable
filters reduce the computational order from O(r2) to O(r), where r denotes

10

2.1. INTRODUCTION 11

the kernel radius. Separable filter requires the filtering kernel to be separable.
Image subsampling and kernel subsampling are approximated acceleration.
Image subsampling is faster than kernel subsampling; however, the accuracy
of image subsampling is lower than that of kernel subsampling. For specific
filters, such as Gaussian filters [57–64], bilateral filters [8, 25–31], box fil-
ters [43,52], and non-local means filters [31], various acceleration algorithms
exist.

In parameter-adaptive filters and other complex filters, however, there
is no sophisticated way for acceleration. In such filters, there is no choice
but to apply separable filtering, image subsampling, and kernel subsampling,
with / without SIMD vectorization and MIMD parallelization. Separable fil-
tering requires the filtering kernel to be separable, and such filters are not
usually separable. Furthermore, image subsampling has low accuracy. There-
fore, kernel subsampling with code optimization is the only solution. How-
ever, discontinuous access occurs in kernel subsampling; hence, the efficiency
of vectorized programming greatly decreases.

Therefore, we summarize the vectorized patterns of programming for sub-
sampled filtering to verify the effective programming. Moreover, we propose
an effective preprocessing of data structure transformation and vectorized
filtering with the data structure for this case. Note that the transforma-
tion becomes overhead; thus, we focus on the situation that can ignore the
pre-processing time. The situation is interactive filtering, such as photo edit-
ing. Once the data structure is transformed, then we can filter an image to
seek optimal parameters without preprocessing, because the filtering image
already has been converted.

In this chapter, we contribute the following: We summarize a taxonomy
of vectorized programming of FIR image filtering as vectorization patterns.
We propose a new vectorizing pattern. Moreover, the proposed pattern is
oriented to kernel subsampling. These patterns with kernel subsampling
accelerate FIR filters, which do not have sophisticated algorithms. Moreover,
the proposed pattern is practical for interactive filters.

The remainder of this chapter is organized as follows. Section 2.2 reviews
general FIR filters. Section 2.3 systematizes vectorized programming for FIR
image filters as vectorization patterns. Section 2.4 proposes a new vector-
ization pattern for FIR filtering. Section 2.5 introduces target algorithms of
filtering for vectorization. Section 2.6 shows experimental results. Finally,
Section 2.7 concludes this chapter.

11

2.2. 2D FIR IMAGE FILTERING AND ITS ACCELERATION 12

2.2 2D FIR Image Filtering and Its Acceler-

ation

2.2.1 Definition of 2D FIR Image Filtering

2D FIR filtering is typical image processing. It is defined as follows:

Ī(p) =
1

η

∑
q∈N (p)

f(p, q)I(q), (2.1)

where I and Ī are the input and output images, respectively. p and q are
the current and reference positions, respectively. A kernel-shape function
N (p) comprises a set of reference pixel positions, and varies at every pixel
p. The weight function f(p, q) is the weight of the position p with regard to
the position q of the reference pixel. The function f could change at pixel
position p. η is a normalizing function. If the FIR filter’s gain is 1, we set
the normalizing function to be the following:

η =
∑

q∈N (p)

f(p, q). (2.2)

2.2.2 General Acceleration of FIR Image Filtering

Several approaches have been taken with regard to the acceleration of general
FIR filters. These include separable filtering [53], image subsampling [55],
and kernel subsampling [56]. In the separable filtering, the filtering kernel
is separated into vertical and horizontal kernels as a 1D filter chain using
the separability of the filtering kernel. The general 2D FIR filter has the
computational order of O(r2) for each pixel, where r denotes the kernel radius
of the filter. The computational order of a separable filter is O(r). If the
filtering kernel is not separable, either singular value decomposition (SVD)
or truncated SVD can be used to create separable kernels. When truncated
SVD is used, the image is forcefully smoothed with a few sets of separable
kernels for acceleration. However, when kernel weight changes for each pixel,
we need SVD computation for every pixel. Here, the separable approach is
inefficient.

Image subsampling resizes an input image and then filters it. Finally, the
filtered image is upsampled. This subsampling greatly accelerates filtering,
but the accuracy of approximation is not high. Further, the method has the
significant drawback of losing high-frequency signals.

12

2.3. DESIGN PATTERNS OF VECTORIZED PROGRAMMING FOR FIR

IMAGE FILTERING 13

2r+1

2r+1

Input Image

Filtering Kernel

: Current Pixel

: Reference Pixel

Figure 2.1: Example of kernel subsampling. Only samples of current (red)
and reference (yellow) pixels are computed.

Kernel subsampling reduces the number of reference pixels in the filtering
kernel as a similar approach to image subsampling. Figure 2.1 represents ker-
nel subsampling. The reduction of computational time in kernel subsampling
is not as extensive as that of image subsampling, while kernel subsampling
could keep a higher approximation accuracy than image subsampling. Thus,
we focus on kernel subsampling. In the Appendix, we examine the process-
ing time and accuracy of image subsampling and kernel subsampling more
closely. The approximation accuracy of these types of subsampling depends
on the ratio and pattern of subsampling. Image and kernel subsampling gen-
erate aliasing, but a randomized algorithm [65, 66] moderates this negative
effect. Random sampling reduces defective results from aliasing for human
vision [67]. Random-sampling algorithms were first introduced in accelerat-
ing ray tracing and were utilized for FIR filtering in [55,56].

The main subject of this chapter is the general acceleration of FIR filtering
by using SIMD vectorization. We adopt kernel subsampling for acceleration
because kernel subsampling has a high accuracy of approximation and is not
limited by the type of kernel.

2.3 Design Patterns of Vectorized Program-

ming for FIR Image Filtering

2.3.1 Data Loading and Storing in Vectorized Program-
ming

The SIMD operations calculate multiple data at once; hence, the SIMD op-
erations are high performance. Such operations constrain all vector elements
to follow the same control flow. That is, only one element in a vector cannot
be processed with a different operation as a conditional branch. Therefore,

13

2.3. DESIGN PATTERNS OF VECTORIZED PROGRAMMING FOR FIR

IMAGE FILTERING 14

we require data structures, wherein processing data are continuously in mem-
ory, for the load and store instructions. Such instructions move continuous
data from the memory/register to the register/memory. For this case, spatial
locality in memory is high. On the other hand, we can relieve the restriction
by performing discontinuous loading and storing. The operations are realized
with set instruction or scalar operations. These methods use scalar registers;
thus, these methods are slower than the load and store instructions. Recent
SIMD instruction sets have the gather and scatter instructions, which load
and store for discontinuous positions in memory. However, such instructions
also have higher latency than the sequential load and store instructions. Dis-
continuous load and store operations also decrease spatial locality in memory
access; hence, cache-missing occurs. Cache-missing decreases performance.
Moreover, memory alignment is important for the load and store instructions.
Most CPUs are word-oriented. Data are aligned in word-length chunks, with
32 bits and 64 bits. In aligned data loading and storing, CPUs access mem-
ory only once. In non-aligned data loading and storing, CPUs access memory
twice. Therefore, the performance of the load and store instructions decreases
if non-aligned data loading or storing occurs. Furthermore, vectorized pro-
gramming requires padding if the data size is smaller than the SIMD register
size. This is because SIMD operations require the number of register-size
elements to be at least even if the data length is shorter than the SIMD
register size. In this case, the data are padded with a value such as zero,
which reduces the valid vectorization ratio.

2.3.2 Image Data Structure

An image data structure is a 1D array of pixels in memory. Such pixels have
color channel information, such as R, G, B, or the transparent channel A.
The usual image structure is interleaved with color channel information. In
the image data structure, data are not continuously arranged in spatial sam-
pling because the other channel pixels intercept sequential access. There-
fore, the image data structure should be transformed into SIMD-friendly
structures. Some frequently used transformations are split, which converts a
multi-channel image into a plurality of images for each channel, and merge,
which converts a few images of each channel into one multi-channel image.

The transformed data structures correspond to structure of array (SoA)
and array of structures (AoS) [68]. Figure 2.2 shows data arrangements in
memory for each data structure. AoS is a default data structure for images.
SoA is a data structure used in the split transformation for the AoS structure.
When pixels are accessed at different positions in the same channel, the
accessing cost in AoS is higher than that in SoA. However, for the access of

14

2.3. DESIGN PATTERNS OF VECTORIZED PROGRAMMING FOR FIR

IMAGE FILTERING 15

R G B R G B R G B R G B … B
R G B R G B R G B R G B … B

R G B R G B R G B R G B … B

…

R G B R G B R G B R G B … B

R G B R G B R G B R G B … B
R G B R G B R G B R G B … B

R R R …

R R R…
…

G G G …

G G G…
…

B B B …

B B B…
…

(a) Array of structure (AoS). (b) Structure of Array (SoA).

Figure 2.2: Image data structure.

B
G

R

Color Loop:

Pixel Loop:

Kernel Loop:

Processing Pixel

Reference Pixels

Figure 2.3: Loops in 2D finite impulse response filtering.

pixels at the same positions with different channels, the cost in AoS is lower
than that in SoA. SoA is primarily used in vectorization programming. The
size of a pixel including RGB is smaller than the size of the SIMD register.
Thus, in vectorized programming, pixels are vectorized horizontally so that
the size of the vectorized pixels is the same as the size of the SIMD register.

2.3.3 Vectorization of FIR Filtering

FIR image filtering contains five nested loops. There are three types of loops:
loops for scanning image pixels, a kernel, and color channels. The loops for
the image pixels and the kernel have four nested loops, which comprise loops
for both pixel and kernel loops in the vertical and horizontal directions.
Furthermore, when the filtering image has color channels, the processing for
each channel is also regarded as a loop. Note that the length of the color loop
is obviously shorter than the other loops. Figure 2.3 depicts the loops of the
FIR filter, and Figure 2.4a indicates the code for general FIR filtering. To
vectorize the code, loop unrolling to group pixels is necessary. Three types
of loop unrolling are possible: pixel loop unrolling, kernel loop unrolling,
and color loop unrolling. Here, we summarize each pattern as vectorization
patterns of basic vectorized programming for 2D FIR filtering.

15

2.3. DESIGN PATTERNS OF VECTORIZED PROGRAMMING FOR FIR

IMAGE FILTERING 16

1 for(int y=0; y<img_height; y++){ //pixel loop

2 for(int x=0; x<img_width; x++){

3 sum[channels] = {0};

4 weight_sum = 0;

5 for(int j=0; j<kernel_height; j++){ //kernel loop

6 for(int i=0; i<kernel_width; i++){

7 temp_weight = calcWeight(j, i, y, x);

8 for(int c=0; i<channels; c++){ //color loop

9 sum[c] += temp_weight * I[y+j][x+i][c];

10 }

11 weight_sum += temp_weight;

12 }

13 }

14 for(int c=0;i<channels;c++){

15 D[y][x][c] = sum[c]/weight_sum;

16 }

17 }

18 }

(a) Brute-force implementation.

1 zeroPadding();

2 for(int y=0; y<img_height; y++){

3 for(int x=0; x<img_width; x++){

4 sum[4] = {0};

5 weight_sum = 0;

6 for(int j=0; j<kernel_height; j++){

7 for(int i=0; i<kernel_width; i++){

8 temp_weight = calcWeight(j, i, y, x);

9 sum[0] += temp_weight * I[y+j][x+i][0];

10 sum[1] += temp_weight * I[y+j][x+i][1];

11 sum[2] += temp_weight * I[y+j][x+i][2];

12 sum[3] += temp_weight * I[y+i][x+i][3];// always 0

13 weight_sum += temp_weight;

14 }

15 }

16 for(int c=0;i<channels;c++){

17 D[y][x][c] = sum[c]/weight_sum;

18 }

19 }

20 }

(b) Color loop unrolling.

1 convertSoA();

2 for(int y=0; y<img_height; y++){

3 for(int x=0; x<img_width; x++){

4 sum[channels] = {0};

5 weight_sum = 0;

6 temp_weight_sum[4] = {0;}

7 for(int j=0; j<kernel_height; j++){

8 for(int i=0; i<kernel_width; i+=4){

9 temp_weight[4] = {0};

10 temp_weight[0] = calcWeight(j, i+0, y, x);

11 temp_weight[1] = calcWeight(j, i+1, y, x);

12 temp_weight[2] = calcWeight(j, i+2, y, x);

13 temp_weight[3] = calcWeight(j, i+3, y, x);

14 for(int c=0; i<channels; c++){

15 sum[c] += temp_weight[0] * I[c][y+j][x+i+0];

16 sum[c] += temp_weight[1] * I[c][y+j][x+i+1];

17 sum[c] += temp_weight[2] * I[c][y+j][x+i+2];

18 sum[c] += temp_weight[3] * I[c][y+j][x+i+3];

19 }

20 temp_weight_sum[0] += temp_weight[0];

21 temp_weight_sum[1] += temp_weight[1];

22 temp_weight_sum[2] += temp_weight[2];

23 temp_weight_sum[3] += temp_weight[3];

24 }

25 residual_processing();

26 }

27 weight_sum += temp_weight_sum[0];

28 weight_sum += temp_weight_sum[1];

29 weight_sum += temp_weight_sum[2];

30 weight_sum += temp_weight_sum[3];

31 for(int c=0;i<channels;c++){

32 D[y][x][c] = sum[c]/weight_sum;

33 }

34 }

35 }

(c) Kernel loop unrolling.

1 convertSoA();

2 for(int y=0; y<img_height; y++){

3 for(int x=0; x<img_width; x+=4){

4 sum[channels][4] = {0};

5 weight_sum[4] = {0};

6 for(int j=0; j<kernel_height; j++){

7 for(int i=0; i<kernel_width; i++){

8 temp_weight[4] = {0};

9 temp_weight[0] = calcWeight(j, i, y, x+0);

10 temp_weight[1] = calcWeight(j, i, y, x+1);

11 temp_weight[2] = calcWeight(j, i, y, x+2);

12 temp_weight[3] = calcWeight(j, i, y, x+3);

13 for(int c=0; i<channels; c++){

14 sum[c][0] += temp_weight * I[c][y+j][x+i+0];

15 sum[c][1] += temp_weight * I[c][y+j][x+i+1];

16 sum[c][2] += temp_weight * I[c][y+j][x+i+2];

17 sum[c][3] += temp_weight * I[c][y+j][x+i+3];

18 }

19 weight_sum[0] += temp_weight[0];

20 weight_sum[1] += temp_weight[1];

21 weight_sum[2] += temp_weight[2];

22 weight_sum[3] += temp_weight[3];

23 }

24 }

25 residual_processing();

26 for(int c=0;i<channels;c++){

27 D[c][y][x+0] = sum[c][0]/weight_sum[0];

28 D[c][y][x+1] = sum[c][1]/weight_sum[1];

29 D[c][y][x+2] = sum[c][2]/weight_sum[2];

30 D[c][y][x+3] = sum[c][3]/weight_sum[3];

31 }

32 }

33 }

34 convertAoS();

(d) Pixel loop unrolling.

Figure 2.4: Code of vectorization patterns. The size of the SIMD register is
4. Usually, the data structure I[y][x][c] represents RGB interleaving, where
x and y are the horizontal and vertical positions, respectively, and c is the
color channel. Splitting and merging the data by each channel are defined as
follows: I[y][x][c]⇔ I[c][y][x]. For these data structures, the data in the final
operator [·] can be sequential access.

2.3.4 Color Loop Unrolling

In color loop unrolling, color channels in a pixel are vectorized to compute
each color channel in parallel. Figures 2.4b and 2.5a depict the code and
vectorization approach to color loop unrolling. In this pattern, a pixel that
includes all color channels requires a length of SIMD register size. Typi-

16

2.3. DESIGN PATTERNS OF VECTORIZED PROGRAMMING FOR FIR

IMAGE FILTERING 17

Difference weight for reference pixels

using set/gather instruction

∗

B
G

R

Pixels of interest

Reference pixels

Residual pixels

Same weight for reference pixels

∗

B
G

R

B
G

R

∗

Difference weight for reference pixels

using set/gather instruction

B

G

R

∗
Same weight for reference pixels

0

Pixel of interest

Reference pixels

(a) Color loop unrolling.

(d) Pixel loop unrolling

using the same weight.

Difference weight for reference pixels

using load instruction

∗

B
G

R

B
G

R

Pixel of interest

Residual pixels

Reference pixels

Difference weight for reference pixels

using load instruction

∗
(b) Kernel loop unrolling.

Non-processing pixels

(e) Pixel loop unrolling

using different weights.

(f) Arbitrary pixel loop

unrolling.

(c) Arbitrary kernel loop

unrolling.

Figure 2.5: Vectorization pattern of vectorized programming.

cally, the color represents three color channels, namely, R, B, and G. As
it is known today, the SIMD register has 4 elements in SSE, 8 elements in
AVX/AVX2, and 16 elements in AVX512 for the case of single-precision float-
ing point numbers. Therefore, the size of a pixel, including all color channels,
remains smaller than the size of SIMD register, and we require zero padding.
Using zero padding, aligned data loading is always possible because every
loading data address is aligned. However, this pattern decreases valid vec-
torization efficiency by the amount of zero padding. Kernel weight is scalar;
thus, this pattern has no constraint in vector operations for weight handling.
Since vectorization is performed for color channels in all pixels, the pattern
has no constraints in image size and kernel shape.

2.3.5 Kernel Loop Unrolling

In kernel loop unrolling, reference pixels in a kernel are vectorized to calcu-
late kernel convolution processing for a pixel of interest in parallel. Figures
2.4c and 2.5b indicate the code and vectorization approach to kernel loop
unrolling. If the kernel width, which depends on parameters, is a multiple

17

2.3. DESIGN PATTERNS OF VECTORIZED PROGRAMMING FOR FIR

IMAGE FILTERING 18

of the size of the SIMD register, reference pixels are able to be efficiently
loaded into the SIMD register. However, in most cases, kernel width is not a
multiple of the SIMD register size. In such a case, residual processing is nec-
essary for residual reference pixels, which generally occur at the lateral edge
of the kernel. The set/gather instruction or scalar operations, which do not
assume sequential access, are used for residual processing. The kernel loop
steps incrementally; thus, the loading memory address must cross unaligned
addresses. In this pattern, weights are vectorially calculated by reference
pixels. If the kernel weight depends only on the position relative to the pixel
of interest, it is possible to efficiently load the weight into the SIMD register.
Because only reference pixels are vectorized, no restriction exists on image
size. In this pattern, reference pixels are required to have continuous loading;
thus, kernel shape is constrained. Kernel subsampling, where reference pixels
are discontinuous, cannot use the pattern (see Figure 2.5c). The set/gather
instruction is used for kernel subsampling. We call kernel loop unrolling with
the set/gather instruction arbitrary kernel loop unrolling. Arbitrary kernel
loop unrolling is slower than kernel loop unrolling because the set/gather
instruction is inefficient.

This pattern can be achieved on SoA, but the image data structure is
usually AoS. Therefore, color channel splitting must be performed before
processing. Output data structure should be AoS, and this pattern outputs
scalar data; thus, the data are stored with scalar instructions. The pattern
has more constraints than color loop unrolling, but the vectorization effi-
ciency of the pattern is significantly better than that of color loop unrolling.

2.3.6 Pixel Loop Unrolling

In pixel loop unrolling, pixels of interest and reference pixels are vectorized
to calculate in parallel the multiplicity of kernel convolutions for multiple
pixels of interest. We realize the processing by extending the kernel convolu-
tion processing as vector operations between pixels of interest and reference
pixels. Figures 2.4d and 2.5d depict the code and vectorization approach to
pixel loop unrolling. If image width is a multiple of the SIMD register size,
the pixels of interest and reference pixels are efficiency loaded. If image width
is not a multiple of SIMD register size, residual processing is required at the
lateral edge of the image. For residual processing, the image is padded so that
its width is a multiple of the SIMD register size, or the set/gather instruction
or the scalar operation is executed similarly to kernel loop unrolling. Access
to the reference pixels is incrementally stepping, as is kernel loop unrolling;
thus, loading memory address must cross unaligned addresses. Kernel weight
must be calculated for each reference pixel among vectorized elements. How-

18

2.4. PROPOSED DESIGN PATTERN OF VECTORIZATION 19

ever, if the calculated weight depends only on relative position, it must be
the same for each reference pixel in a vector. This is because the relative
positions of the pixel of interest and the reference pixel are the same in the
vector (see Figure 2.5d). There are no restrictions for the pattern in kernel
width because the calculation for the pixel of interest and the reference pixel
is vectorized. If the kernel shapes remain identical in all pixels of interest,
the pattern can be used. However, if the kernel shapes are variant for each
pixel of interest in a vector, the pattern cannot be used. Such condition is
filtering with random kernel subsampling and adaptive spatial kernel filter-
ing (see Figure 2.5f). In these filters, the relative positions of the pixel of
interest and the reference pixel are not the same in a vector; thus, the access
for the reference pixels is not continuous. The set/gather instruction resolves
this discontinuous issues. We call this pattern arbitrary pixel loop unrolling.
This pattern can accommodate different kernel shapes. The kernel size of
this pattern must be adjusted to the largest number of reference pixels. Ar-
bitrary pixel loop unrolling is slower than pixel loop unrolling as with the
case of arbitrary kernel loop unrolling. If the weights are not the same for
all reference pixels in a vector, the result is more expensive than using the
same weight for all (see Figure 2.5e).

Before filtering in this pattern, we perform color channel splitting to ad-
just the data layout to acquire horizontally sequential data. The output of
this pattern is SoA, and a usual image should be AoS; thus, postprocessing is
needed for AoS conversion. In this pattern, parallel computing is used in the
outermost loop; the vectorization of that loop is highly efficient. However,
this pattern has greater constraints than kernel loop unrolling.

2.4 Proposed Design Pattern of Vectorization

In this section, we propose a new vectorization pattern in FIR image filtering
with kernel subsampling, which we call loop vectorization. We summarize
characteristics of the previous vectorization patterns and our new one in
Table 2.1. The proposed pattern encounters none of the constraints that
exist in the previous patterns.

In this proposed pattern, reference pixels are extracted in the kernel and
the pixels are grouped as a 1D vector. This vector must be multiple times
as long as the SIMD register size. To adjust the length of the vector, extra
data are padded with zero. We collect the vector for all pixels and construct
volume data using the vectors. This rearrangement scheme is called loop
vectorization. Figure 2.6 indicates an example of loop vectorization for kernel
loop, which is called kernel loop vectorization. As a prepossessing for filtering,

19

2.4. PROPOSED DESIGN PATTERN OF VECTORIZATION 20

Table 2.1: Characteristics of the vectorization patterns of vectorization in
finite impulse response image filtering.

Vectorization Pattern Arbitrary Parameter/Non-Limitation Restriction Parameter/Limitation

loop vectorization image width, kernel width, kernel shape, aligned load long preprocessing time, huge memory usage
color loop unrolling image width, kernel width, kernel shape, aligned load requiring color image with padding
kernel loop unrolling image width kernel width, kernel shape, non-aligned load
arbitrary kernel loop unrolling image width, kernel shape kernel width, inefficient load, non-aligned load
pixel loop unrolling kernel width image width, kernel shape, non-aligned load
arbitrary pixel loop unrolling kernel width, kernel shape image width, inefficient load, non-aligned load

Input image

・ ・ ・

・ ・ ・

・
・
・

Kernel

vectorization

Vectorized volume data

・
・
・

・・・

・・・

・
・
・

(a) Rearrange approach.

Kernel

vectorization

1 2 3

4 5 6
7 8 9

1 2 3 4 5 6 7 8 9

Vectorized data

Padding

(b) Data structure of a pixel in gray im-
age.

Kernel

vectorization

𝐑𝟏𝐆𝟏 𝐁𝟏 𝐑𝟐𝐆𝟐 𝐁𝟐 𝐑𝟑𝐆𝟑 𝐁𝟑
𝐑𝟒𝐆𝟒 𝐁𝟒 𝐑𝟓𝐆𝟓 𝐁𝟓 𝐑𝟔𝐆𝟔 𝐁𝟔
𝐑𝟕𝐆𝟕 𝐁𝟕 𝐑𝟖𝐆𝟖 𝐁𝟖 𝐑𝟗𝐆𝟗 𝐁𝟗

𝐑𝟏𝐑𝟐𝐑𝟑𝐑𝟒 𝐆𝟏 𝐆𝟐 𝐆𝟑 𝐆𝟒 𝐁𝟏 𝐁𝟐 𝐁𝟑 𝐁𝟒

𝐑𝟓𝐑𝟔𝐑𝟕𝐑𝟖 𝐆𝟓 𝐆𝟔 𝐆𝟕 𝐆𝟖 𝐁𝟓 𝐁𝟔 𝐁𝟕 𝐁𝟖

𝐑𝟗 0 0 0 𝐆𝟗 0 0 0 𝐁𝟗 0 0 0

(c) Data structure of a pixel in color im-
age.

Figure 2.6: Kernel vectorization. The size of the SIMD register is 4.

we transform an input image into volume data by loop vectorization. Let
the number of elements in the kernel be K and the size of the image be
S. The volume data size is KS. Figure 2.7 depicts the code of proposed
pattern. The pattern on color images is shown in Figure 2.6c. This pattern
interleaves individual R, G, and B vectors whose length is the size of an SIMD
register. Zero paddings in kernel loops are required for each color channel.
The proposed pattern has a data structure that is the array of structure of
array (AoSoA) [68]. AoSoA is preferable for contiguous memory access, and
its data structure has a high spatial locality in memory. Therefore, AoSoA
has the greater efficiency than SoA and AoS in memory prefetching.

The FIR filtering is related convolutional neural network (CNN) [69]
based deep learning. The proposed pattern is similar approach to convo-
lution lowering (im2col) [70–72], which is CNN acceleration method. In the
proposed pattern, we convert it to a data structure specialized for vector

20

2.4. PROPOSED DESIGN PATTERN OF VECTORIZATION 21

1 loop_vectorization_for_kernel_loop();

2 for(int y=0; y<img_height; y++){

3 for(int x=0; x<img_width; x++){

4 sum[channels] = {0};

5 weight_sum = 0;

6 temp_weight_sum[4] = {0;}

7 for(int j=0; j<kernel_height; j++){

8 for(int i=0; i<kernel_width; i+=4){

9 temp_weight[4] = {0};

10 temp_weight[0] = calcWeight(j, i+0, y, x);

11 temp_weight[1] = calcWeight(j, i+1, y, x);

12 temp_weight[2] = calcWeight(j, i+2, y, x);

13 temp_weight[3] = calcWeight(j, i+3, y, x);

14 for(int c=0; i<channels; c++){

15 sum[c] += temp_weight[0] * LV[y][x][j][c][i+0];

16 sum[c] += temp_weight[1] * LV[y][x][j][c][i+1];

17 sum[c] += temp_weight[2] * LV[y][x][j][c][i+2];

18 sum[c] += temp_weight[3] * LV[y][x][j][c][i+3];

19 }

20 temp_weight_sum[0] += temp_weight[0];

21 temp_weight_sum[1] += temp_weight[1];

22 temp_weight_sum[2] += temp_weight[2];

23 temp_weight_sum[3] += temp_weight[3];

24 }

25 }

26 weight_sum += temp_weight_sum[0];

27 weight_sum += temp_weight_sum[1];

28 weight_sum += temp_weight_sum[2];

29 weight_sum += temp_weight_sum[3];

30 for(int c=0;i<channels;c++){

31 D[y][x][c] = sum[c]/weight_sum;

32 }

33 }

34 }

(a) Loop vectorization for kernel loop.

1 loop_vectorization_for_pixel_loop();

2 for(int y=0; y<img_height; y++){

3 for(int x=0; x<img_width; x+=4){

4 sum[channels][4] = {0};

5 weight_sum[4] = {0};

6 for(int j=0; j<kernel_height; j++){

7 for(int i=0; i<kernel_width; i++){

8 temp_weight[4] = {0};

9 temp_weight[0] = calcWeight(j, i, y, x+0);

10 temp_weight[1] = calcWeight(j, i, y, x+1);

11 temp_weight[2] = calcWeight(j, i, y, x+2);

12 temp_weight[3] = calcWeight(j, i, y, x+3);

13 for(int c=0; i<channels; c++){

14 sum[c][0] += temp_weight * LV[y][j][i][c][x+0];

15 sum[c][1] += temp_weight * LV[y][j][i][c][x+1];

16 sum[c][2] += temp_weight * LV[y][j][i][c][x+2];

17 sum[c][3] += temp_weight * LV[y][j][i][c][x+3];

18 }

19 weight_sum[0] += temp_weight[0];

20 weight_sum[1] += temp_weight[1];

21 weight_sum[2] += temp_weight[2];

22 weight_sum[3] += temp_weight[3];

23 }

24 }

25 for(int c=0;i<channels;c++){

26 D[c][y][x+0] = sum[c][0]/weight_sum[0];

27 D[c][y][x+1] = sum[c][1]/weight_sum[1];

28 D[c][y][x+2] = sum[c][2]/weight_sum[2];

29 D[c][y][x+3] = sum[c][3]/weight_sum[3];

30 }

31 }

32 }

(b) Loop vectorization for pixel loop.

Figure 2.7: Code of loop vectorization. The size of the SIMD register is 4.
LV represents the data structure transformed by loop vectorization. For the
data structure, the data in the final operator [·] can be sequential access.
The data structure is always accessed sequentially.

operation in CPU by considering data alignment and data arrangement of
the color channel. In addition, parallelization efficiency is improved by the
proposed pattern for the pixel loop. Therefore, the proposed pattern can also
be effective for CNN-based deep learning in CPU.

The proposed pattern can also vectorize pixel loop. In the proposed
pattern of pixel loop vectorization, a vector is created with the accessed
pixels through pixel loop unrolling; thus, a vector is created in the units
of the pixels of interest to be unrolled. Pixel loop vectorization is highly
parallelization efficient because it parallelizes the outermost loop as well as
the case of pixel loop unrolling. However, if the filtering parameters are
different per each kernel, pixel loop vectorization requires the set instruction
for the different parameters for each pixel of interest. The limitations of this
pattern are the same as those of pixel loop unrolling.

The advantages of the proposed pattern include the fact that, unlike other
patterns, these patterns are not restricted by the image width, kernel width,
and kernel shape. In addition, data alignment will clearly be consistent
in any conditions. The disadvantage is that the proposed pattern requires
huge memory capacity. Kernel subsampling, however, moderates the memory

21

2.5. MATERIAL AND METHODS 22

footprint of loop vectorization. Furthermore, the proposed pattern is partic-
ularly effective in its use of kernel subsampling, because memory accesses
of the other patterns are not sequential in filtering with kernel subsampling
but those of the proposed pattern are sequential. In random subsampling,
performance will be more outstanding. The proposed pattern is also effec-
tive for cases where kernel radius or image size is large. In such conditions,
cache-missing frequently occurs in the other patterns.

A limitation of the proposed pattern is the rearrangement processing is
overhead. However, the proposed pattern is practical for certain applica-
tions, such as image editing, where the same image is processed multiple
times. In image editing, rearrangement is only performed when the process
begins. In this application, a user interactively changes parameters and re-
peats filtering several times to seek more desirable results. In interactive
filtering, the overhead caused by the rearrangement may be simply a waiting
time for interactive photo editing to begin. The characteristics of interactive
filtering can also be utilized in feature extraction of scale-space filtering, e.g.,
SIFT [73].

2.5 Material and Methods

We here vectorize six filtering algorithms, namely, the Gaussian range fil-
ter (GRF), the bilateral filter (BF) [1], the adaptive Gaussian filter (AGF) [74],
the randomly-kernel-subsampled Gaussian range filter (RKS-GRF), the randomly-
kernel-subsampled bilateral filter (RKS-BF) [56], and the randomly-kernel-
subsampled adaptive Gaussian filter (RKS-AGF). The main characteristics
of these filters are summarized in Table 2.2. Note that the BF has various
acceleration algorithms [8,27–30], but we select a näıve BF to cover types of
the general FIR filter. In this chapter, we deal with two types of implemen-
tation of these filters: the calculating weights with SIMD instructions and
calculated weights with lookup tables (LUTs). The kinds of implementation
differ in their characteristics. In calculating weights, it is possible to focus
on data loading, and in using LUTs, it focuses on the case of optimal imple-
mentation.

2.5.1 Gaussian Range Filter

The weight of the GRF is defined as follows:

f(p, q) := exp(
‖I(p)− I(q)‖2

2

−2σ2
r

), (2.3)

22

2.5. MATERIAL AND METHODS 23

Table 2.2: Characteristics of the Gaussian range filter (GRF), the bi-
lateral filter (BF), the adaptive Gaussian filter (AGF), the randomly-
kernel-subsampled Gaussian range filter (RKS-GRF), the randomly-kernel-
subsampled bilateral filter (RKS-BF), and the randomly-kernel-subsampled
adaptive Gaussian filter (RKS-AGF).

Filter Weight Depending LUT Kernel Shape

GRF pixel value range invariant
BF pixel value, pixel position space, range invariant

AGF parameter map, pixel position space variant
RKS-GRF pixel value range variant
RKS-BF pixel value, pixel position space, range variant

RKS-AGF parameter map, pixel position space variant

where ‖ · ‖2 is the L2 norm, and σr is a standard deviation.

The weight depends on the intensities of the nearest pixels. The values
of the nearest pixels are different; thus, the LUT of the Gaussian range
weight is discontinuously accessed for each pixel differential. In direct weight
computation, the vectorized exponential operation is not including in the
SIMD instruction set, although the Intel compiler extendedly provides the
vectorized exponential operation. Hence, we use the Intel compiler.

2.5.2 Bilateral Filter

The BF is a representative filter of edge-preserving filtering. The weight of
the BF is denoted in the following way:

f(p, q) := exp(
‖p− q‖2

2

−2σ2
s

) exp(
‖I(p)− I(q)‖2

2

−2σ2
r

), (2.4)

where σs and σr are the standard deviations for the space and range kernels,
respectively.

The weight can be decomposed into spatial and range weight. The spatial
weight, which is the first exponential function, matches the weight in Gaus-
sian filtering. The range weight, which is the second exponential function,
matches the weight in the GRF. The LUT of the space weights is continuously
accessed because relative positions of the reference pixels are continuous. On
the other hand, the LUT of the range weight is not continuous as with the
GRF.

23

2.5. MATERIAL AND METHODS 24

2.5.3 Adaptive Gaussian Filter

The AGF operates in a slightly different manner from Gaussian filtering.
The standard deviation dynamically changes, pixel by pixel. The weight of
the AGF is defined as follows:

f(p, q) := exp(
‖p− q‖2

2

−2σs(p)2
), (2.5)

where σs(p) is a pixel-dependent parameter found in a parameter map.
Here, we use this filter for refocusing. In this application, we change the

parameter of the Gaussian distribution using a depth map [75, 76] as the
parameter map. The detail of the AGF based on the depth map is defined
as follows:

f(p, q) := exp(
‖p− q‖2

2

−2(σs + α|d−D(p)|)2
), (2.6)

whereD is the depth map, d is the focusing depth value, and α is a parameter
of the range of the depth of field. The function of the kernel shape N (p) in
Equations (2.1) and (2.2) is different for each pixel of interest p.

Blurring is minimal at the focused pixel, and most of the kernel weights
may become zero. In this case, the region whose kernel weights are not zero
can be regarded as an arbitrary kernel depending on r′, which is less than the
actual r, due to the property of the Gaussian distribution. This means that,
if the processing pixel of interest is in focus, we can only process a small kernel
depending on r′. Pixel loop vectorization, pixel loop unrolling, and kernel
loop unrolling are restricted in terms of the kernel shape function. Therefore,
the largest kernels in a vector of the pixel of interest should be used to
maintain the restriction. Further, within kernel loop vectorization, arbitrary
kernel loop unrolling, and color loop unrolling, the amount of processing can
be reduced using small kernels.

In the AGF, multiple LUTs are prepared to compute kernel weights whose
size is D×(2r+1)×(2r+1). D is the number of elements in the depth range.
The utilized LUT is switched by the depth value. In kernel loop vectorization,
kernel loop, and color loop unrolling, the LUT is sequentially accessed within
a single LUT. In pixel loop vectorization and pixel loop unrolling, the LUT
is instead discontinuously accessed across multiple LUTs.

2.5.4 Randomly-Kernel-Subsampled Filter

The randomly-kernel-subsampled filter is an approximation of FIR filtering.
This filter uses a different kernel shape functionN (p) to randomly subsample

24

2.6. EXPERIMENTAL RESULTS 25

pixels in a kernel. The kernel shape functions N (p) of the GRF, BF, and
AGF return permanent positions. The kernel functions N (p) of the RKS-
GRF, RKS-BF, and RKS-AGF return variable positions for a pixel-by-pixel
p. The RKS-GRF, RKS-BF, and RKS-AGF are represented as follows:

Ī(p) ' Ī ′(p) =

∑n
j=1 f(p,Rj(p))I(Rj(p))∑n

j=1 f(p,Rj(p))
, (2.7)

where n = |N (p)| denotes the number of samples, and Rj(p) randomly
returns the positions of support pixels around p. R similarly works for
kernel subsampling. Note that N (p) can be decomposed into Rj(p) and the
partial summation operation

∑n
j=1 in the randomly-kernel-subsampled filter.

2.6 Experimental Results

We verified all the vectorization patterns and proposed vectorization pattern
using kernel subsampling for the GRF, BF, AGF, RKS-GRF, RKS-BF, and
RKS-AGF. Further, we compared the two types of proposed loop vectoriza-
tion, which were kernel loop vectorization and pixel loop vectorization, with
pixel loop, kernel loop, and color loop unrolling. Importantly, arbitrary ker-
nel loop unrolling was used instead of kernel loop unrolling in kernel subsam-
pling and randomly-kernel-subsampling conditions. Further, arbitrary pixel
loop unrolling was used in the place of pixel loop unrolling in randomly-
kernel-subsampled filters. This step was taken because kernel loop unrolling
cannot be used in (randomly) kernel subsampling, and pixel loop unrolling
cannot be used in randomly-kernel-subsampled filters. These filters were im-
plemented in C++ using AVX2 and FMA instructions as SIMD instruction
sets. Additionally, multi-core parallelization was used with concurrency. The
CPU used was an Intel Core-i7 6850X 3.0 GHz, and the memory used was
DDR4 16 GBytes. Windows 10 64 bits was used for the OS, and Intel Com-
piler 18.0 was employed as the compiler. The experimental code reached
around 100,000 lines.

Figures 2.8–2.20 indicate the processing time and speedup ratio for each
filter. The time for computation is judged to be the median value of 100
trials. In addition, the time for computation does not include rearrangement
time in all patterns because we focus on interactive filters. The speedup ra-
tio relates the kernel loop vectorization vs. another pattern. If the speedup
ratio exceeds 1, the other pattern is faster than kernel loop vectorization.
Figures 2.8 and 2.9 show the results of the GRF. The computational times
for the two types of the proposed pattern are almost the same as those for
pixel loop unrolling, and such patterns are faster than other patterns. In the

25

2.6. EXPERIMENTAL RESULTS 26

two types of proposed pattern, the non-aligned load does not occur, in con-
trast with other patterns; hence, the two types of the proposed pattern are
fast. Pixel loop unrolling has the most cache-efficiency because the locality
of the input image is high. Cache-missing errors, however, occur in the large
kernel radius and/or large images cases because of the gaps in the discontin-
uous access due to memory increase. Kernel loop unrolling is less rapid in
conditions of kernel subsampling because arbitrary kernel loop unrolling is
present in kernel-subsampling conditions. Color loop unrolling is the slowest
pattern.

Figures 2.10 and 2.11 indicate the results for the BF. The BF has a
Gaussian spatial kernel added to the GRF’s kernel. The accessing pattern to
the spatial kernel is sequential for all vectorization patterns; for this reason,
the spatial kernel does not dramatically change the efficiency of all patterns
in this filter. Therefore, the BF results follow almost the same trend as the
GRF results.

Figures 2.12 and 2.13 indicate the results of the AGF. In the case of weight
computation, the figures indicate that kernel loop vectorization is the fastest
pattern. If LUTs are used, kernel loop vectorization is the fastest when r is
large. When r is small, pixel loop unrolling is the fastest. Where LUTs are
used, the implementation of pixel loop unrolling is efficient. However, where
r is large, cache-missing occurs and the speed decreases.

Figures 2.14 and 2.15 present the results of the RKS-GRF. The two types
of the proposed pattern have the greatest speed of all the patterns. The
two types of the proposed pattern continuously access reference pixels. How-
ever, other vectorization patterns cannot continuously access reference pixels.
In particular, pixel loop unrolling is the most affected by this.

Figures 2.16 and 2.17 present the results of the RKS-BF. Kernel loop
vectorization is the fastest pattern. Pixel loop vectorization is slower than
kernel loop vectorization. Pixel loop vectorization and pixel loop unrolling
discontinuously access the spatial LUTs. Kernel loop vectorization and kernel
loop unrolling continuously access spatial LUT.

Figures 2.18 and 2.19 present the results of the RKS-AGF. These figures
indicate that the fastest pattern is kernel loop vectorization. The kernel loop
vectorization continuously accesses reference pixels and LUTs. Together,
these results indicate a special efficiency for proposed kernel loop vectoriza-
tion in the kernel-adaptive sampling technique.

Figure 2.20 depicts the accuracies of GRF, BF, AGF, RKS-GRF, RKS-
BF, and RKS-AGF. Here, we compare the results of a full sampling with the
results of a subsampling using peak signal noise ratio (PSNR). In this figure,
PSNR is found to be around 40 dB for all cases; thus, the filtered image has
sufficient accuracy of approximation for all filters.

26

2.7. CONCLUSIONS 27

Offset computing time for loop vectorization in data structure transfor-
mation is discussed. Figure 2.21 presents the processing time required for
loop vectorization. Processing time increases with increases in kernel radius
and image size. Computing time is linearly proportional to the number of
elements in the loop-vectorized data, namely, (2r+ 1)2× s, where the kernel
radius is r and the image size is s. However, for interactive filtering, this
drawback can be neglected. Rearranged processing time must occur before
filtering can be done at first in the proposed pattern, but it is not required for
subsequent filtering. Therefore, rearrangement of processing time does not
lead to significant problems in interactive filtering. If images show continuous
change, such as in video, the second-fastest pattern should be used instead
of the proposed one. The pattern that is proposed requires rearrangement
for every image.

2.7 Conclusions

In this chapter, we summarize a taxonomy of vectorized programming for
FIR image filtering. We also propose a new vectorization pattern of vec-
torized programming, which we call loop vectorization. These vectorization
patterns are combined with an acceleration method of kernel subsampling
for general FIR filters. The experimental results indicate that the patterns
are appropriate for FIR filtering, and a new pattern with kernel subsampling
can be profitably used for Gaussian range filtering (GRF), bilateral filter-
ing (BF), adaptive Gaussian filtering (AGF), randomly-kernel-subsampled
Gaussian range filtering (RKS-GRF), randomly-kernel-subsampled bilateral
filtering (RKS-BF), and randomly-kernel-subsampled adaptive Gaussian fil-
tering (RKS-AGF).

The results are summarized as follows:

1. The two types of the proposed pattern, which are kernel loop vectoriza-
tion and pixel loop vectorization, are both effective for adaptive kernel
shapes, that is, randomized filters and the AGF.

2. There remains, however, a trade-off in weight and data loading for
changing spatial LUTs in each filtering pixel. Kernel loop unrolling is
more suitable for weight loading, and loop vectorization is more suitable
for data loading. Kernel loop vectorization is effective for weight and
data loading; thus, the kernel loop vectorization is suitable for AGF,
RKS-AGF, and RKS-BF.

3. For the large-radius condition, the two types of the proposed pattern

27

2.7. CONCLUSIONS 28

have moderate effectivity for other filters in the above effective cases,
that is, the GRF and BF.

28

2.7. CONCLUSIONS 29

0

200

400

600

800

1000

1200

16 32 48 64 80 96 112 128 144 160 176 192

P
ro

ce
ss

in
g

 T
im

e
[m

s]

Radius of Kernel [pixel]

Proposed (Kernel Loop)
Proposed (Pixel Loop)
Pixel
Kernel
Color

(a) Full sample. Weight
computation.

0

200

400

600

800

1000

1200

16 32 48 64 80 96 112 128 144 160 176 192

P
ro

ce
ss

in
g

 T
im

e
[m

s]

Radius of Kernel [pixel]

Proposed (Kernel Loop)
Proposed (Pixel Loop)
Pixel
Kernel
Color

(b) 1/4 subsample. Weight
computation.

0

200

400

600

800

1000

1200

16 32 48 64 80 96 112 128 144 160 176 192

P
ro

ce
ss

in
g

 T
im

e
[m

s]

Radius of Kernel [pixel]

Proposed (Kernel Loop)
Proposed (Pixel Loop)
Pixel
Kernel
Color

(c) 1/16 subsample.
Weight computation.

0

200

400

600

800

1000

1200

16 32 48 64 80 96 112 128 144 160 176 192

P
ro

ce
ss

in
g
 T

im
e

[m
s]

Radius of Kernel [pixel]

Proposed (Kernel Loop)
Proposed (Pixel Loop)
Pixel
Kernel
Color

(d) Full sample. LUT.

0

200

400

600

800

1000

1200

16 32 48 64 80 96 112 128 144 160 176 192

P
ro

ce
ss

in
g
 T

im
e

[m
s]

Radius of Kernel [pixel]

Proposed (Kernel Loop)
Proposed (Pixel Loop)
Pixel
Kernel
Color

(e) 1/4 subsample. LUT.

0

200

400

600

800

1000

1200

16 32 48 64 80 96 112 128 144 160 176 192

P
ro

ce
ss

in
g
 T

im
e

[m
s]

Radius of Kernel [pixel]

Proposed (Kernel Loop)
Proposed (Pixel Loop)
Pixel
Kernel
Color

(f) 1/16 subsample. LUT.

Figure 2.8: Processing time for Gaussian range filtering (GRF) with respect
to the kernel radius of FIR filtering. Note that arbitrary kernel loop unrolling
is used instead of kernel loop unrolling under kernel-subsampling conditions.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

16 32 48 64 80 96 112 128 144 160 176 192

R
a

ti
o

Radius of Kernel [pixel]

Proposed (Kernel Loop)
Proposed (Pixel Loop)
Pixel
Kernel
Color

(a) Full sample. Weight
computation.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

16 32 48 64 80 96 112 128 144 160 176 192

R
a

ti
o

Radius of Kernel [pixel]

Proposed (Kernel Loop)
Proposed (Pixel Loop)
Pixel
Kernel
Color

(b) 1/4 subsample. Weight
computation.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

16 32 48 64 80 96 112 128 144 160 176 192

R
a

ti
o

Radius of Kernel [pixel]

Proposed (Kernel Loop)
Proposed (Pixel Loop)
Pixel
Kernel
Color

(c) 1/16 subsample.
Weight computation.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

16 32 48 64 80 96 112 128 144 160 176 192

R
a
ti

o

Radius of Kernel [pixel]

Proposed (Kernel Loop)
Proposed (Pixel Loop)
Pixel
Kernel
Color

(d) Full sample. LUT.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

16 32 48 64 80 96 112 128 144 160 176 192

R
a
ti

o

Radius of Kernel [pixel]

Proposed (Kernel Loop)
Proposed (Pixel Loop)
Pixel
Kernel
Color

(e) 1/4 subsample. LUT.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

16 32 48 64 80 96 112 128 144 160 176 192

R
a

ti
o

Radius of Kernel [pixel]

Proposed (Kernel Loop)
Proposed (Pixel Loop)
Pixel
Kernel
Color

(f) 1/16 subsample. LUT.

Figure 2.9: The speedup ratio for Gaussian range filtering (GRF) with re-
spect to the kernel radius of FIR filtering. If the ratio exceeds 1, the given
pattern is faster than the kernel loop vectorization.

29

2.7. CONCLUSIONS 30

0

200

400

600

800

1000

1200

16 32 48 64 80 96 112 128 144 160 176 192

P
ro

ce
ss

in
g

 T
im

e
[m

s]

Radius of Kernel [pixel]

Proposed (Kernel Loop)
Proposed (Pixel Loop)
Pixel
Kernel
Color

(a) Full sample. Weight
computation.

0

200

400

600

800

1000

1200

16 32 48 64 80 96 112 128 144 160 176 192

P
ro

ce
ss

in
g

 T
im

e
[m

s]

Radius of Kernel [pixel]

Proposed (Kernel Loop)
Proposed (Pixel Loop)
Pixel
Kernel
Color

(b) 1/4 subsample. Weight
computation.

0

200

400

600

800

1000

1200

16 32 48 64 80 96 112 128 144 160 176 192

P
ro

ce
ss

in
g

 T
im

e
[m

s]

Radius of Kernel [pixel]

Proposed (Kernel Loop)
Proposed (Pixel Loop)
Pixel
Kernel
Color

(c) 1/16 subsample.
Weight computation.

0

200

400

600

800

1000

1200

16 32 48 64 80 96 112 128 144 160 176 192

P
ro

ce
ss

in
g
 T

im
e

[m
s]

Radius of Kernel [pixel]

Proposed (Kernel Loop)
Proposed (Pixel Loop)
Pixel
Kernel
Color

(d) Full sample. LUT.

0

200

400

600

800

1000

1200

16 32 48 64 80 96 112 128 144 160 176 192

P
ro

ce
ss

in
g

 T
im

e
[m

s]

Radius of Kernel [pixel]

Proposed (Kernel Loop)
Proposed (Pixel Loop)
Pixel
Kernel
Color

(e) 1/4 subsample. LUT.

0

200

400

600

800

1000

1200

16 32 48 64 80 96 112 128 144 160 176 192

P
ro

ce
ss

in
g

 T
im

e
[m

s]

Radius of Kernel [pixel]

Proposed (Kernel Loop)
Proposed (Pixel Loop)
Pixel
Kernel
Color

(f) 1/16 subsample. LUT.

Figure 2.10: Processing time for bilateral filtering (BF) with respect to the
kernel radius of FIR filtering. Note that arbitrary kernel loop unrolling is
used instead of kernel loop unrolling in kernel-subsampling conditions.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

16 32 48 64 80 96 112 128 144 160 176 192

R
a

ti
o

Radius of Kernel [pixel]

Proposed (Kernel Loop)
Proposed (Pixel Loop)
Pixel
Kernel
Color

(a) Full sample. Weight
computation.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

16 32 48 64 80 96 112 128 144 160 176 192

R
a

ti
o

Radius of Kernel [pixel]

Proposed (Kernel Loop)
Proposed (Pixel Loop)
Pixel
Kernel
Color

(b) 1/4 subsample. Weight
computation.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

16 32 48 64 80 96 112 128 144 160 176 192

R
a
ti

o

Radius of Kernel [pixel]

Proposed (Kernel Loop)
Proposed (Pixel Loop)
Pixel
Kernel
Color

(c) 1/16 subsample.
Weight computation.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

16 32 48 64 80 96 112 128 144 160 176 192

R
a
ti

o

Radius of Kernel [pixel]

Proposed (Kernel Loop)
Proposed (Pixel Loop)
Pixel
Kernel
Color

(d) Full sample. LUT.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

16 32 48 64 80 96 112 128 144 160 176 192

R
a
ti

o

Radius of Kernel [pixel]

Proposed (Kernel Loop)
Proposed (Pixel Loop)
Pixel
Kernel
Color

(e) 1/4 subsample. LUT.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

16 32 48 64 80 96 112 128 144 160 176 192

R
a
ti

o

Radius of Kernel [pixel]

Proposed (Kernel Loop)
Proposed (Pixel Loop)
Pixel
Kernel
Color

(f) 1/16 subsample. LUT.

Figure 2.11: The speedup ratio of bilateral filtering (BF) with respect to the
kernel radius of FIR filtering. If the ratio exceeds 1, the given pattern is
faster than the kernel loop vectorization.

30

2.7. CONCLUSIONS 31

0

100

200

300

400

500

600

700

800

900

1000

16 32 48 64 80 96 112 128 144 160 176 192

P
ro

ce
ss

in
g

 T
im

e
[m

s]

Radius of Kernel [pixel]

Proposed (Kernel Loop)
Proposed (Pixel Loop)
Pixel
Kernel
Color

(a) Full sample. Weight
computation.

0

100

200

300

400

500

600

700

800

900

1000

16 32 48 64 80 96 112 128 144 160 176 192

P
ro

ce
ss

in
g

 T
im

e
[m

s]

Radius of Kernel [pixel]

Proposed (Kernel Loop)
Proposed (Pixel Loop)
Pixel
Kernel
Color

(b) 1/4 subsample. Weight
computation.

0

100

200

300

400

500

600

700

800

900

1000

16 32 48 64 80 96 112 128 144 160 176 192

P
ro

ce
ss

in
g

 T
im

e
[m

s]

Radius of Kernel [pixel]

Proposed (Kernel Loop)
Proposed (Pixel Loop)
Pixel
Kernel
Color

(c) 1/16 subsample.
Weight computation.

0

50

100

150

200

250

300

350

400

16 32 48 64 80 96 112 128 144 160 176 192

P
ro

ce
ss

in
g

 T
im

e
[m

s]

Radius of Kernel [pixel]

Proposed (Kernel Loop)
Proposed (Pixel Loop)
Pixel
Kernel
Color

(d) Full sample. LUT.

0

50

100

150

200

250

300

350

400

16 32 48 64 80 96 112 128 144 160 176 192

P
ro

ce
ss

in
g

 T
im

e
[m

s]

Radius of Kernel [pixel]

Proposed (Kernel Loop)
Proposed (Pixel Loop)
Pixel
Kernel
Color

(e) 1/4 subsample. LUT.

0

50

100

150

200

250

300

350

400

16 32 48 64 80 96 112 128 144 160 176 192

P
ro

ce
ss

in
g

 T
im

e
[m

s]

Radius of Kernel [pixel]

Proposed (Kernel Loop)
Proposed (Pixel Loop)
Pixel
Kernel
Color

(f) 1/16 subsample. LUT.

Figure 2.12: Processing time for adaptive Gaussian filtering (AGF) with
respect to the kernel radius of FIR filtering. Note that arbitrary kernel loop
unrolling is used instead of kernel loop unrolling in the kernel-subsampling
conditions.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

16 32 48 64 80 96 112 128 144 160 176 192

R
a
ti

o

Radius of Kernel [pixel]

Proposed (Kernel Loop)
Proposed (Pixel Loop)
Pixel
Kernel
Color

(a) Full sample. Weight
computation.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

16 32 48 64 80 96 112 128 144 160 176 192

R
a
ti

o

Radius of Kernel [pixel]

Proposed (Kernel Loop)
Proposed (Pixel Loop)
Pixel
Kernel
Color

(b) 1/4 subsample. Weight
computation.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

16 32 48 64 80 96 112 128 144 160 176 192

R
a
ti

o

Radius of Kernel [pixel]

Proposed (Kernel Loop)
Proposed (Pixel Loop)
Pixel
Kernel
Color

(c) 1/16 subsample.
Weight computation.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

16 32 48 64 80 96 112 128 144 160 176 192

R
a

ti
o

Radius of Kernel [pixel]

Proposed (Kernel Loop)
Proposed (Pixel Loop)
Pixel
Kernel
Color

(d) Full sample. LUT.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

16 32 48 64 80 96 112 128 144 160 176 192

R
a
ti

o

Radius of Kernel [pixel]

Proposed (Kernel Loop)
Proposed (Pixel Loop)
Pixel
Kernel
Color

(e) 1/4 subsample. LUT.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

16 32 48 64 80 96 112 128 144 160 176 192

R
a

ti
o

Radius of Kernel [pixel]

Proposed (Kernel Loop)
Proposed (Pixel Loop)
Pixel
Kernel
Color

(f) 1/16 subsample. LUT.

Figure 2.13: The speedup ratio for adaptive Gaussian filtering (AGF) with
respect to kernel radius of FIR filtering. If the ratio exceeds 1, this pattern
is faster than the kernel loop vectorization.

31

2.7. CONCLUSIONS 32

0

200

400

600

800

1000

1200

16 32 48 64 80 96 112 128 144 160 176 192

P
ro

ce
ss

in
g

 T
im

e
[m

s]

Radius of Kernel [pixel]

Proposed (Kernel Loop)
Proposed (Pixel Loop)
Pixel
Kernel
Color

(a) 1/4 subsample. Weight
computation.

0

200

400

600

800

1000

1200

16 32 48 64 80 96 112 128 144 160 176 192

P
ro

ce
ss

in
g

 T
im

e
[m

s]

Radius of Kernel [pixel]

Proposed (Kernel Loop)
Proposed (Pixel Loop)
Pixel
Kernel
Color

(b) 1/16 subsample. Weight
computation.

0

200

400

600

800

1000

1200

16 32 48 64 80 96 112 128 144 160 176 192

P
ro

ce
ss

in
g

 T
im

e
[m

s]

Radius of Kernel [pixel]

Proposed (Kernel Loop)
Proposed (Pixel Loop)
Pixel
Kernel
Color

(c) 1/4 subsample. LUT.

0

200

400

600

800

1000

1200

16 32 48 64 80 96 112 128 144 160 176 192

P
ro

ce
ss

in
g

 T
im

e
[m

s]

Radius of Kernel [pixel]

Proposed (Kernel Loop)
Proposed (Pixel Loop)
Pixel
Kernel
Color

(d) 1/16 subsample. LUT.

Figure 2.14: Processing time for randomly-kernel-subsampled Gaussian range
filtering (RKS-GRF) with respect to the kernel radius of FIR filtering. Ar-
bitrary pixel loop unrolling and arbitrary kernel loop unrolling are used in
the place of pixel loop unrolling and kernel loop unrolling, respectively.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

16 32 48 64 80 96 112 128 144 160 176 192

R
a

ti
o

Radius of Kernel [pixel]

Proposed (Kernel Loop)
Proposed (Pixel Loop)
Pixel
Kernel
Color

(a) 1/4 subsample. Weight
computation.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

16 32 48 64 80 96 112 128 144 160 176 192

R
a

ti
o

Radius of Kernel [pixel]

Proposed (Kernel Loop)
Proposed (Pixel Loop)
Pixel
Kernel
Color

(b) 1/16 subsample. Weight
computation.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

16 32 48 64 80 96 112 128 144 160 176 192

R
a

ti
o

Radius of Kernel [pixel]

Proposed (Kernel Loop)
Proposed (Pixel Loop)
Pixel
Kernel
Color

(c) 1/4 subsample. LUT.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

16 32 48 64 80 96 112 128 144 160 176 192

R
a

ti
o

Radius of Kernel [pixel]

Proposed (Kernel Loop)
Proposed (Pixel Loop)
Pixel
Kernel
Color

(d) 1/16 subsample. LUT.

Figure 2.15: The speedup ratio of randomly-kernel-subsampled Gaussian
range filtering (RKS-GRF) with respect to the kernel radius of FIR filtering.
If the ratio exceeds 1, the pattern is faster than kernel loop vectorization.

32

2.7. CONCLUSIONS 33

0

200

400

600

800

1000

1200

16 32 48 64 80 96 112 128 144 160 176 192

P
ro

ce
ss

in
g

 T
im

e
[m

s]

Radius of Kernel [pixel]

Proposed (Kernel Loop)
Proposed (Pixel Loop)
Pixel
Kernel
Color

(a) 1/4 subsample. Weight
computation.

0

200

400

600

800

1000

1200

16 32 48 64 80 96 112 128 144 160 176 192

P
ro

ce
ss

in
g

 T
im

e
[m

s]

Radius of Kernel [pixel]

Proposed (Kernel Loop)
Proposed (Pixel Loop)
Pixel
Kernel
Color

(b) 1/16 subsample. Weight
computation.

0

200

400

600

800

1000

1200

16 32 48 64 80 96 112 128 144 160 176 192

P
ro

ce
ss

in
g

 T
im

e
[m

s]

Radius of Kernel [pixel]

Proposed (Kernel Loop)
Proposed (Pixel Loop)
Pixel
Kernel
Color

(c) 1/4 subsample. LUT.

0

200

400

600

800

1000

1200

16 32 48 64 80 96 112 128 144 160 176 192

P
ro

ce
ss

in
g

 T
im

e
[m

s]

Radius of Kernel [pixel]

Proposed (Kernel Loop)
Proposed (Pixel Loop)
Pixel
Kernel
Color

(d) 1/16 subsample. LUT.

Figure 2.16: Processing time for randomly-kernel-subsampled bilateral filter-
ing (RKS-BF) with respect to the kernel radius of FIR filtering. Arbitrary
pixel loop unrolling and arbitrary kernel loop unrolling are used in place of
pixel loop unrolling and kernel loop unrolling, respectively.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

16 32 48 64 80 96 112 128 144 160 176 192

R
a

ti
o

Radius of Kernel [pixel]

Proposed (Kernel Loop)
Proposed (Pixel Loop)
Pixel
Kernel
Color

(a) 1/4 subsample. Weight
computation.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

16 32 48 64 80 96 112 128 144 160 176 192

R
a

ti
o

Radius of Kernel [pixel]

Proposed (Kernel Loop)
Proposed (Pixel Loop)
Pixel
Kernel
Color

(b) 1/16 subsample. Weight
computation.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

16 32 48 64 80 96 112 128 144 160 176 192

R
a

ti
o

Radius of Kernel [pixel]

Proposed (Kernel Loop)
Proposed (Pixel Loop)
Pixel
Kernel
Color

(c) 1/4 subsample. LUT.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

16 32 48 64 80 96 112 128 144 160 176 192

R
a

ti
o

Radius of Kernel [pixel]

Proposed (Kernel Loop)
Proposed (Pixel Loop)
Pixel
Kernel
Color

(d) 1/16 subsample. LUT.

Figure 2.17: The speedup ratio of randomly-kernel-subsampled bilateral fil-
tering (RKS-BF) with respect to the kernel radius of FIR filtering. If the
ratio exceeds 1, the given pattern is faster than kernel loop vectorization.

33

2.7. CONCLUSIONS 34

0

100

200

300

400

500

600

16 32 48 64 80 96 112 128 144 160 176 192

P
ro

ce
ss

in
g

 T
im

e
[m

s]

Radius of Kernel [pixel]

Proposed (Kernel Loop)
Proposed (Pixel Loop)
Pixel
Kernel
Color

(a) 1/4 subsample. Weight
computation.

0

100

200

300

400

500

600

16 32 48 64 80 96 112 128 144 160 176 192

P
ro

ce
ss

in
g

 T
im

e
[m

s]

Radius of Kernel [pixel]

Proposed (Kernel Loop)
Proposed (Pixel Loop)
Pixel
Kernel
Color

(b) 1/16 subsample. Weight
computation.

0

50

100

150

200

250

300

350

400

450

500

16 32 48 64 80 96 112 128 144 160 176 192

P
ro

ce
ss

in
g

 T
im

e
[m

s]

Radius of Kernel [pixel]

Proposed (Kernel Loop)
Proposed (Pixel Loop)
Pixel
Kernel
Color

R
a

ti
o

(c) 1/4 subsample. LUT.

Radius of Kernel [pixel]

0

50

100

150

200

250

300

350

400

450

500

16 32 48 64 80 96 112 128 144 160 176 192

P
ro

ce
ss

in
g

 T
im

e
[m

s]

Radius of Kernel [pixel]

Proposed (Kernel Loop)
Proposed (Pixel Loop)
Pixel
Kernel
Color

(d) 1/16 subsample. LUT.

Figure 2.18: Processing time for randomly-kernel-subsampled adaptive Gaus-
sian filtering (RKS-AGF) with respect to the kernel radius of FIR filtering.
Arbitrary pixel loop unrolling and arbitrary kernel loop unrolling are used in
place of pixel loop unrolling and kernel loop unrolling, respectively.

0.0

0.2

0.4

0.6

0.8

1.0

16 32 48 64 80 96 112 128 144 160 176 192

R
a

ti
o

Radius of Kernel [pixel]

Proposed (Kernel Loop)
Proposed (Pixel Loop)
Pixel
Kernel
Color

(a) 1/4 subsample. Weight
computation.

0.0

0.2

0.4

0.6

0.8

1.0

16 32 48 64 80 96 112 128 144 160 176 192

R
a

ti
o

Radius of Kernel [pixel]

Proposed (Kernel Loop)
Proposed (Pixel Loop)
Pixel
Kernel
Color

(b) 1/16 subsample. Weight
computation.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

16 32 48 64 80 96 112 128 144 160 176 192

R
a

ti
o

Radius of Kernel [pixel]

Proposed (Kernel Loop)
Proposed (Pixel Loop)
Pixel
Kernel
Color

(c) 1/4 subsample. LUT.

Radius of Kernel [pixel]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

16 32 48 64 80 96 112 128 144 160 176 192

R
a

ti
o

Radius of Kernel [pixel]

Proposed (Kernel Loop)
Proposed (Pixel Loop)
Pixel
Kernel
Color

R
a

ti
o

(d) 1/16 subsample. LUT.

Figure 2.19: The speedup ratio for randomly-kernel-subsample adaptive
Gaussian filtering (RKS-AGF) with respect to the kernel radius of FIR fil-
tering. If the ratio exceeds 1, the given pattern is faster than the kernel loop
vectorization.

34

2.7. CONCLUSIONS 35

0

10

20

30

40

50

60

70

16 32 48 64 80 96 112 128 144 160 176 192

P
S

N
R

 [
d

B
]

Radius of Kernel [pixel]

1/4 Sample
1/16 Sample

(a) Gaussian range filter.

0

10

20

30

40

50

60

70

16 32 48 64 80 96 112 128 144 160 176 192

P
S

N
R

 [
d

B
]

Radius of Kernel [pixel]

1/4 Sample
1/16 Sample

(b) Bilateral filter.

0

10

20

30

40

50

60

70

16 32 48 64 80 96 112 128 144 160 176 192

P
S

N
R

 [
d

B
]

Radius of Kernel [pixel]

1/4 Sample
1/16 Sample

(c) Adaptive Gaussian fil-
ter.

0

10

20

30

40

50

60

70

16 32 48 64 80 96 112 128 144 160 176 192

P
S

N
R

 [
d

B
]

Radius of Kernel [pixel]

1/4 Sample
1/16 Sample

(d) Randomly-kernel-
subsampled Gaussian
range filter.

0

10

20

30

40

50

60

70

16 32 48 64 80 96 112 128 144 160 176 192

P
S

N
R

 [
d

B
]

Radius of Kernel [pixel]

1/4 Sample
1/16 Sample

(e) Randomly-kernel-
subsampled bilateral
filter.

0

10

20

30

40

50

60

70

16 32 48 64 80 96 112 128 144 160 176 192

P
S

N
R

 [
d

B
]

Radius of Kernel [pixel]

1/4 Sample
1/16 Sample

(f) Randomly-kernel- sub-
sampled adaptive Gaussian
filter.

Figure 2.20: PSNR with respect to kernel radius of FIR filtering. Image size
is 512 × 512.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

16 46 76 106 136 166 196

P
ro

ce
ss

in
g

 T
im

e
[m

s]

Radius of Kernel [pixel]

512×512

900×750

Full Sample

1/4 Sample

1/16 Sample

1/64 Sample

Figure 2.21: Processing time for loop vectorization with respect to the kernel
radius of FIR filtering. There are 2 × 4 lines, and their combinations rep-
resent image resolution (512 × 512 and 900 × 750) and kernel subsampling
ratio (full, 1/4, and 1/16).

35

Chapter 3

Effective Implementation of
Edge-Preserving Filtering on
CPU Microarchitectures

3.1 Introduction

Edge-preserving filters [1–5] are the basic tools for image processing. The
representatives of the filters include bilateral filtering [1, 2], non-local means
filtering [3] and guided image filtering [4–6]. These filters are used in various
applications, such as image denoising [3,7], high dynamic range imaging [8],
detail enhancement [9–11], free viewpoint image rendering [12], flash/no-
flash photography [13,14], up-sampling/super resolution [15,16], alpha mat-
ting [5, 18], haze removal [19], optical flow and stereo matching [20], refine-
ment processing in optical flow and stereo matching [21,22] and coding noise
removal [23,24].

The kernel of the edge-preserving filter can typically be decomposed into
range and/or spatial kernels, which depend on the difference between the
value and position of reference pixels. Bilateral filtering has a range kernel
and a spatial kernel. Non-local means filtering has only a range kernel.
The shape of the spatial kernel is invariant across all pixels. By contrast, that
of the range kernel is variant; thus, the range kernel is computed adaptively
for each pixel. The adaptive computation is expensive.

Several acceleration algorithms have been proposed for the bilateral fil-
tering [8, 25–33] and non-local means filtering [25, 31, 34, 35]. These algo-
rithms reduce the computational order of these filters. The order of the
näıve algorithm is O(r2), where r is the kernel radius. The order of the
separable approximation algorithms [25, 26] is O(r), and that of constant-

37

3.1. INTRODUCTION 38

time algorithms [28–37] is O(1). The separable approach is faster than the
näıve; however, the approximation accuracy is low. The constant-time algo-
rithms are faster than the O(r2) and O(r) approaches in large kernel cases.
In the case of multi-channel image filtering with intermediate-sized kernels,
the method tends to be slower than the näıve algorithms owing to the curse
of dimensionality [28], which indicates that the computational cost increases
exponentially with increasing dimensions. Furthermore, when the kernel ra-
dius is small, the näıve algorithm can be faster than the algorithms of the
order O(r) or O(1) owing to the offset times, which refers to pre-processing
and post-processing such as creating intermediate images. In the present
study, we focus on accelerating the näıve algorithm of the edge-preserving
filtering based on the characteristics of computing hardware.

The edge-preserving filter usually involves denormalized numbers, which
are special floating-point numbers defined in IEEE Standard 754 [77]. The
definition of the denormalized numbers is discussed in Section 3.3. The
formats are supported by various computing devices, such as most central
processing units (CPUs) and graphics processing units (GPUs). The denor-
malized numbers represent rather small values that cannot be expressed by
normal numbers. Although the denormalized numbers can improve arith-
metic precision, their format is different from the normal numbers. There-
fore, the processing of the denormalized numbers incurs a high computational
cost [78–80]. The edge-preserving filters have small weight values, where a
pixel is across an edge. The values tend to be the denormalized numbers.
Figure 3.1 shows the occurrence of the denormalized numbers in various edge-
preserving filtering. The denormalized numbers do not influence the eventual
results, because these values are almost zero in the calculations. Hence, we
can compute edge-preserving filtering with high-precision even by omitting
the denormalized numbers. Moreover, the omission would be critical for
accelerating the edge-preserving filtering.

A fast implementation requires effective utilization of the functionali-
ties in CPUs and GPUs. In the present study, we focus on a CPU-centric
implementation. Existing CPU microarchitectures are becoming complex.
The architectures are based on multi-core architectures, complicated cache
memories and short vector processing units. Single-instruction, multiple-
data (SIMD) [41] instruction sets in vector processing units are especially
changed. The evolution of the SIMD instructions has taken the form of the
increased vector length [42], increased number of types of instructions and de-
creased latency of instructions. Therefore, it is essential to use SIMD instruc-
tions effectively for extracting CPU performance. In the edge-preserving fil-
tering, execution of the weight calculation is the main bottleneck. Thus, the
vectorization for weight calculation has a significant effect.

38

3.1. INTRODUCTION 39

(a) Original image.

 0

 20

 40

 60

 80

 100

N
um

be
r

of
 d

en
or

m
al

 n
um

be
rs

(b) Bilateral filter.

 0

 20

 40

 60

 80

 100

N
um

be
r

of
 d

en
or

m
al

 n
um

be
rs

(c) Non-local means filter.

 0

 20

 40

 60

 80

 100

N
um

be
r

of
 d

en
or

m
al

 n
um

be
rs

(d) Gaussian range filter.

 0

 20

 40

 60

 80

 100

N
um

be
r

of
 d

en
or

m
al

 n
um

be
rs

(e) Bilateral non-local means filter.

Figure 3.1: Occurrence status of denormalized numbers. (b–e) present heat
maps of the occurrence frequency of denormalized numbers in each kernel.
The filtering parameters are as follows: σr = 4, σs = 6, r = 3σs and
h =

√
2σr. The template window size is (3, 3), and the search window size

is (2r + 1, 2r + 1). The image size is 768 × 512. In (b–e), the ratios of de-
normalized numbers in all weight calculations are 2.11%, 3.26%, 1.97% and
3.32%, respectively.

In the present study, we focus on two topics: the influence of denormalized
numbers and effective vectorized implementation on CPU microarchitectures
in the edge-preserving filtering. For the first, we verify the influence of the
denormalized numbers on the edge-preserving filtering, and then, we propose
methods to accelerate the filter by removing the influence of the denormalized
numbers. For the second, we compare several types of vectorization of bilat-
eral filtering and non-local means filtering. We develop various implementa-
tions to clarify suitable representations of the latest CPU microarchitectures
for these filters.

39

3.2. EDGE-PRESERVING FILTERS 40

The remainder of this chapter is organized as follows. In Section 3.2,
we review bilateral filtering, non-local means filtering and their variants.
Section 3.3 describes IEEE standard 754 for floating point numbers and de-
normalized numbers. In Section 3.4, we present CPU microarchitectures
and SIMD instruction sets. We propose novel methods for preventing the
occurrence of the denormalized numbers in Section 3.5. In Section 3.6, we
introduce several types of vectorization. Section 3.7 presents our experimen-
tal results. Finally, in Section 3.8, we show a few concluding remarks.

3.2 Edge-Preserving Filters

General edge-preserving filtering in finite impulse response (FIR) filtering is
represented as follows:

Ī(p) =
1

η

∑
q∈N (p)

f(p, q)I(q), (3.1)

where I and Ī are the input and output images, respectively. p and q are
the present and reference positions of pixels, respectively. A kernel-shaped
function N (p) comprises a set of reference pixel positions, and it varies for
every pixel p. The function f(p, q) denotes the weight of position p with
respect to the position q of the reference pixel. η is a normalizing function.
If the gain of the FIR filter is one, we set the normalizing function as follows:

η =
∑

q∈N (p)

f(p, q). (3.2)

Various types of weight functions are employed in edge-preserving filter-
ing. These weights are composed of spatial and range kernels or only a range
kernel. The weight of the bilateral filter is expressed as follows:

f(p, q) := exp(
‖p− q‖2

2

−2σ2
s

) exp(
‖I(p)− I(q)‖2

2

−2σ2
r

), (3.3)

where ‖ · ‖2 is the L2 norm and σs and σr are the standard deviations of
the spatial and the range kernels, respectively. The weight of the non-local
means filter is as follows:

f(p, q) := exp(
‖v(p)− v(q)‖2

2

−h2
), (3.4)

where v(p) represents a vector, which includes a square neighborhood of the
center pixel p. h is a smoothing parameter. The weight of the bilateral filter

40

3.3. FLOATING POINT NUMBERS AND DENORMALIZED NUMBERS IN

IEEE STANDARD 754 41

is determined by considering the similarity between the color and spatial
distance between a target pixel and that of the reference pixel. The weight
of the non-local means filter is defined by computing the similarity between
the patch on the target pixel and that on the reference pixel. The weight of
the non-local means filter is similar to the range weight of the bilateral filter
for a multi-channel image.

To discuss the influence of the denormalized numbers, we introduce two
variants of the bilateral and non-local means filters, namely the Gaussian
range filter and the bilateral non-local means filter. The weight of the Gaus-
sian range filter is expressed as follows:

f(p, q) := exp(
‖I(p)− I(q)‖2

2

−2σ2
r

). (3.5)

The weight of the bilateral non-local means filter [81] is as follows:

f(p, q) := exp(
‖p− q‖2

2

−2σ2
s

) exp(
‖v(p)− v(q)‖2

2

−h2
). (3.6)

The Gaussian range filter is composed of the range kernel alone in the
bilateral filtering. The bilateral non-local means filter is composed of the
spatial kernel and the range kernel in the non-local means filtering.

3.3 Floating Point Numbers and Denormal-

ized Numbers in IEEE Standard 754

The formats of floating point numbers are defined in IEEE Standard 754 [77].
The floating point number is composed of a set of normal numbers and
four special numbers, which are not a number (NaN), infinities, zeroes and
denormalized (or subnormal) numbers. The normal numbers are represented
as follows:

(−1)sign × 2exponent−bias × 1.fraction. (3.7)

In a single-precision floating point number (float), parameters are as follows:
bit length of exponent is 8 bit; that of fraction is 23 bit; bias = 127. In
a single-precision floating point number (double), parameters are as follow:
bit length of exponent is 11 bit; that of fraction is 52 bit; bias = 1023.
In the normal number, exponent is neither zero nor the maximum value of
exponent. In the special numbers, exponent is zero or it has the maximum
value of exponent. When exponent and fraction are zero, the format repre-
sents zero. When exponent of a given number has the maximum value, the

41

3.3. FLOATING POINT NUMBERS AND DENORMALIZED NUMBERS IN

IEEE STANDARD 754 42

format represents infinity or NaN. In the case of the denormalized numbers,
exponent is zero, but fraction is not zero. The denormalized numbers are
represented as follows:

(−1)sign × 21−bias × 0.fraction. (3.8)

Note that exponent is set to zero for the special number flags, but exponent
can be forcefully regarded as one even if the settled value is zero. The range of
magnitudes of the denormalized numbers is smaller than that of the normal
numbers. In terms of float, the range of magnitudes of the normal numbers is
1.17549435×10−38 ≤ |x| ≤ 3.402823466×1038, while that of the denormalized
numbers is 1.40129846×10−45 ≤ |x| ≤ 1.17549421×10−38. Typical processing
units are optimized for the normal numbers. Thus, the normal numbers
are processed using specialized hardware. By contrast, the denormalized
numbers are processed using general hardware. Therefore, the computational
cost of handling the denormalized numbers is higher than that of the normal
numbers.

There are three built-in methods for suppressing the speed reduction
caused by the denormalized numbers. The first approach is computation
with high-precision numbers. A high-precision number format has a large
range of magnitudes in a normal number. In float, most denormalized num-
bers are represented by normal numbers in double. However, the bit length
of double is longer than that of float. Thus, computational performance de-
grades owing to the increased cost of memory write/read operations. The
second approach is computation with the flush to zero (FTZ) and denormals
are zero (DAZ) flags. These flags are implemented in most CPUs and GPUs.
If the FTZ flag is enabled, the invalid result of an operation is set to zero. The
invalid result is an underflow flag or a denormalized number. If the DAZ flag
is enabled, an operand in assembly language is set to zero when the operand
is already a denormalized number. When the computing results are denor-
malized numbers or operands are already denormalized numbers, the DAZ
flag ensures the denormalized numbers are set to zero. These flags suppress
the occurrence of denormalized numbers; thereby, computing is accelerated.
However, computation with these flags has events that convert denormalized
numbers to normal numbers. Hence, the calculation time with these flags is
not the same as that without denormalized numbers. In the third approach,
a denormalized number is converted into a normal number by a min or max
operation. This approach forcibly clips a calculated value to a normal num-
ber in the calculation, whether the calculated value is a denormalized number
or not. The approach suppresses the denormalized numbers after their oc-
currence. Thus, it is not optimal for accelerating computation. Therefore,
in this study, we propose a novel approach to prevent the occurrence of the

42

3.4. CPU MICROARCHITECTURES AND SIMD INSTRUCTION SETS 43

denormalized numbers themselves to eliminate the computational time for
handling the denormalized numbers.

3.4 CPU Microarchitectures and SIMD In-

struction Sets

Moore’s law [38] states that the number of transistors on an integrated cir-
cuit will double every two years. In the early stages, CPU frequencies were
increased by increasing the number of transistors. In recent years, owing to
heat and power constraints, the use of a larger number of transistors has
become difficult [39], such as chips with multiple cores, complicate cache
memory and short vector units. The latest microarchitectures used in Intel
CPUs are presented in Table. 1.1. The table indicates that the number of
cores is increasing, cache memory size is expanding and the SIMD instruction
sets are growing.

SIMD instructions simultaneously calculate multiple data. Hence, high-
performance computing utilizes SIMD. Typical SIMD instructions include
streaming SIMD extensions (SSE), advanced vector extensions (AVX)/AVX2
and AVX512 in order of the oldest to newest [44]. Moreover, fused multiply-
add 3 (FMA3) [44] is a special instruction. FMA3 computes A × B + C
by one instruction. There are three notable changes in SIMD. First, the
vector length is growing. For example, the lengths of SSE, AVX/AVX2
and AVX512 are 128 bits (4 float elements), 256 bits (8 float elements)
and 512 bits (16 float elements), respectively. Second, several instructions
have been added, notably, gather and scatter instructions [42]. These in-
structions load/store data of discontinuous positions in memory. gather has
been implemented in the AVX2, and scatter has been implemented in the
AVX512. Before gather was implemented, the set instruction was used. The
set instruction stores data in the SIMD register from scalar registers (see
Figure 3.2). Thus, the instruction incurs a high computational cost. Third,
even with the same instruction, instruction latency depends on CPU mi-
croarchitecture 1. Therefore, the effective vectorization is different for each
CPU microarchitecture.

The expansion of SIMD instructions influences vectorization for the edge-
preserving filtering. We can accelerate the filters by the increased number of
vectorizing elements. Furthermore, the gather instruction is useful for refer-
encing lookup tables (LUTs). Using LUTs is a typical acceleration technique

1for example, the latency of the add instruction indicated at https://software.

intel.com/sites/landingpage/IntrinsicsGuide/\#text=_mm256_add_ps

43

3.5. PROPOSED METHODS FOR THE PREVENTION OF

DENORMALIZED NUMBERS 44

LUT

…

Scalar registerSIMD register

(a) Set instruction.

LUT

…

SIMD register

(b) Gather instruction.

Figure 3.2: Set and gather instructions.

for arithmetic computation [82]. Weights are stored in the LUTs, and then,
the weights are used by loading them from the LUTs. The loading process is
accelerated by gather. Moreover, FMA3 is beneficial for FIR filtering. The
summation term of Equation 3.1 can be realized by using FMA3. Therefore,
we can accelerate the edge-preserving filtering with proper usage of SIMD.

3.5 Proposed Methods for the Prevention of

Denormalized Numbers

An edge-preserving filter has a range kernel and a spatial kernel or only a
range kernel. When the similarity of color intensity is low, and the spatial
distance is long, the weight of the kernel is exceedingly small. For example,
in the bilateral filter for a color image, when the parameters are σr = 32,
I(p) = (255, 255, 255) and I(q) = (0, 0, 0), the range weight is 4.29× 10−42,
which is the minimum value of the range kernel and is a denormalized number
in float. Note that the remaining spatial kernel does not multiply the weight.
Thus, the total value becomes smaller than the range weight. Moreover,
the non-local means filtering is more likely to involve denormalized numbers
from Equation 3.4. Notably, the occurrence frequency of denormalized num-
bers is low when the smoothing parameters are large. This parameter overly
smooths edge-parts; thus, the smoothing parameters should be small in most
cases.

We propose new methods to prevent the occurrence of denormalized num-
bers for the edge-preserving filtering. The proposed methods deal with the
two cases: a weight function contains only one term or multiple terms. For
the former cases, we consider two implementations: computing directly and
referring to only one LUT. For the latter cases, we also consider two imple-
mentations: computing directly and referring to each of multiple LUTs.

For the one-term case, the argument of the term is clipped using appro-
priate values so that the resulting value is not a denormalized number. If the
weight function is a Gaussian distribution, the argument value x satisfies the

44

3.5. PROPOSED METHODS FOR THE PREVENTION OF

DENORMALIZED NUMBERS 45

following equations:

exp(x) > δmax,

x > ln(δmax), (3.9)

where δmax is the maximum value of the denormalized number. In other
words, Equation 3.9 can be written as follows:

x ≥ ln(νmin), (3.10)

where νmin denotes the minimum value of the normal number. δmax and νmin
are set based on the precision of floating point numbers. In the proposed
method, an argument value is clipped by −87.3365478515625 = ln(νmin) in
float.

For the multiple terms, the clipping method is inadequate because denor-
malized numbers could occur owing to the multiplication of multiple terms.
Therefore, the weights are multiplied by an offset value in the proposed
method. The offset value satisfies the following equations:

o×
N∏
n

min
x∈Λn

wn(x) > δmax, (3.11)

νmax
255|N (p)|

≥ o×
N∏
n

max
x∈Λn

wn(x), (3.12)

νmax ≥ o > δmax, (3.13)

where o is an offset value and wk is the k -th weight function, which is a part
of the decomposed weight function. N is the number of terms in the weight
function. Λk is a set of possible arguments in the k -th weight function, and
νmax is the maximum value of normal numbers. Equation 3.12 limits the
summation in Equation 3.1 such that it does not exceed the normal number
when the image range is 0–255. Notably, minxwn(x) and its product are
occasionally zero owing to underflow, even if the mathematical results of
the weight function are non-zero. When the number of terms is large or
minxwn(x) is very small, o is very large. Therefore, Equations (3.12) and
(3.13) cannot be satisfied. In this condition, we must reduce the number
of significant figures of wn(·) to eliminate the occurrence of denormalized
numbers. Note that o should be large to ensure that the number of significant
figures of wn(·) is large. In the edge-preserving filtering, maxxwn(x) is one.
Therefore, Equation 3.12 is transformed as follows:

νmax
255|N (p)|

≥ o. (3.14)

45

3.5. PROPOSED METHODS FOR THE PREVENTION OF

DENORMALIZED NUMBERS 46

Accordingly, o should be νmax

255|N (p)| , if we achieve higher accuracy. Even when
the number of significant figures cannot be decreased sufficiently, the method
can decrease the rate of occurrence of denormalized numbers.

The proposed methods are implemented by using max and/or multipli-
cation operations. The weight function of the bilateral filter is considered to
be composed of only one term or multiple terms. The one-term case of the
bilateral filter is implemented as follows:

f(p, q) := exp(max(
‖p− q‖2

2

−2σ2
s

+
‖I(p)− I(q)‖2

2

−2σ2
r

, ln(νmin))). (3.15)

The multiple terms case is implemented as follows:

f(p, q) := o× exp(max(
‖p− q‖2

2

−2σ2
s

), ln(νmin))

exp(max(
‖I(p)− I(q)‖2

2

−2σ2
r

)), ln(νmin)), (3.16)

o =
νmax

255|N (p)|
, (3.17)

where the following equation must be satisfied:

o× exp(
2r2

−2σ2
s

) exp(
3× 2552

−2σ2
r

) > δmax. (3.18)

Note that o has no effect unless it is firstly multiplied by the term of the
decomposed weight function. If the equation is not satisfied because the
minimal values of the range and spatial kernels are very small, Equation 3.16
is transformed as follows:

f(p, q) := o× exp(max(
‖p− q‖2

2

−2σ2
s

, s))

exp(max(
‖I(p)− I(q)‖2

2

−2σ2
r

), s)), (3.19)

where s controls the number of significant figures and is obtained using the
same method as Equation 3.10. The other filters can be realized in the same
way. The computational costs of the proposed methods are significantly
lower than the cost of computing denormalized numbers. Moreover, when
using LUTs, the costs of the proposed methods can be neglected. In this
case, the proposed methods are applied in preprocessing for creating LUTs.
Therefore, the benefits of the proposed methods can be significant.

46

3.6. EFFECTIVE IMPLEMENTATION OF

EDGE-PRESERVING FILTERING 47

3.6 Effective Implementation of

Edge-Preserving Filtering

In the edge-preserving filtering, weight calculation accounts for the largest
share of processing time. Thus, we consider the implementation of the weight
calculation. There are three approaches for the arithmetic computation of the
weight function [82]: direct computation, by using LUTs and a combination
of both [82]. Computing of usual arithmetic functions has lower cost than
the transcendental functions, i.e., exp, log, sin and cos, or heavy algebraic
functions, e.g., sqrt. For the high-cost function, the LUT is effective when
arithmetic computing is a bottleneck. By contrast, computing is valid when
memory I/O is a bottleneck. We can control the trade-off by using the LUT
and computation.

In the bilateral filter, the possible types of implementation are as follows:

• RCSC: range computing spatial computing; range and spatial kernels
are directly and separately computed.

• MC: merged computing; range and spatial kernels are merged and di-
rectly computed.

• RCSL: range computing spatial LUT; the range kernel is directly com-
puted, and LUTs are used for the spatial kernel.

• RLSC: range LUT spatial computing; LUTs are used for the range
kernel, and the spatial kernel is directly computed.

• RLSL: range LUT spatial LUT; LUTs are used for both range and
spatial kernels.

• ML: merged LUT; LUTs are used for the merged range and spatial
kernels;

• RqLSL, RLSqL: range (quantized) LUT spatial (quantized) LUT; LUTs
are quantized for each range and spatial LUT in RLSL

• MqL: merged quantized LUT; range and spatial kernels are merged,
and then, the LUTs are quantized.

In the non-local means filtering process, the possible types of implemen-
tation are reduced, because the filter does not contain the spatial kernel. The
possible types of implementation are as follows:

• RC: range computing; the range kernel is directly computed.

47

3.6. EFFECTIVE IMPLEMENTATION OF

EDGE-PRESERVING FILTERING 48

• RL: range LUT; LUTs are used for the range kernel.

• RqL: range quantized LUT; quantized LUTs are used for the range
kernel.

We consider five types of implementation for bilateral filtering, namely,
MC, RCSL, RLSL, RqLSL and MqL. Notably, we did not implement the
RCSC, RLSC, RLSqL and ML, because the cost of computing the spatial
kernel is lower than that of computing the range kernel, and the size of the
range/merged LUT is larger than that of the spatial LUT. We also implement
three types for non-local means filtering, such as RC, RL and RqL. Note that
the pairs of MC/RC, RLSL/RL and RqLSL/RqL are similar without spatial
computation.

In the MC/RC implementation, weights are directly computed for each
iteration. In the bilateral and bilateral non-local means filtering, two expo-
nential terms are computed as one exponential term considering the nature
of the exponential function. The implementation is computationally expen-
sive because it involves weight calculation every time. However, this point is
not always a drawback. The calculation increases arithmetic intensity, which
is the ratio of the number of float-number operations per the amount of the
accessed memory data. When the arithmetic intensity is low, the computa-
tional time is limited by memory reading/writing [83]. In image processing,
arithmetic intensity tends to be low, but the MC/RC implementation im-
proves the arithmetic intensity. Therefore, the MC/RC implementation may
be practical in a few cases.

RCSL can be applied to filters, which contain a spatial kernel. These
filters include the bilateral and bilateral non-local means filters. The ex-
ponential term of the range kernel is computed every time, and LUTs are
used as the weights of the spatial kernel. The size of the spatial LUT is
the kernel size. In the bilateral filters, the weight function in the proposed
implementation can be expressed as follows:

f(p, q) := EXPs[p− q] exp(−‖I(p)− I(q)‖2
2

2σ2
r

), (3.20)

EXPs[x] := exp(
‖x‖2

2

−2σ2
s

), (3.21)

where EXPs[·] is the spatial LUT. The first term is calculated for all possi-
ble arguments; subsequently, the weight values are stored in a LUT before
filtering. Because the combinations of the relative distances of p and q are
identical in all kernels, it is not required to calculate the relative distances
for each kernel.

48

3.6. EFFECTIVE IMPLEMENTATION OF

EDGE-PRESERVING FILTERING 49

In RLSL/RL, LUTs are used as the weights of the range and the spatial
kernels. The LUTs are created for the range or spatial kernel. For Gaussian
range and non-local means filtering, the spatial kernel is omitted or always
considered to be one. Only one LUT is used for the kernel, but the LUT is
referenced for each channel using the separate representation of an exponen-
tial function. Notably, we can save the LUT size, which is 256. If we use an
LUT for merged representation of an exponential function, its size becomes
2552 × 3 + 1 = 195,075. In the bilateral filter for a color image, the weight
function of the implementation is expressed as follows:

f(p, q) := EXPs[p− q]

EXPr[b‖I(p)r − I(q)r‖1c]
EXPr[b‖I(p)g − I(q)g‖1c]
EXPr[b‖I(p)b − I(q)b‖1c] (3.22)

EXPr[x] := exp(
x2

−2σ2
r

), (3.23)

where b·c is the floor function, ‖ · ‖1 is the L1 norm and I(·)r, I(·)g and
I(·)b are the red, green and blue channels in I(·), respectively. EXPr[·] is
the range LUT, and EXPs[·] is identical to Equation 3.21. These LUTs are
accessed frequently. Hence, the arithmetic intensity is low.

In RqLSL/RqL, the range LUT for the merged representation of an ex-
ponential function is quantized to reduce the LUT size. Therefore, the LUT
is approximated. This implementation is faster than using a large LUT and
accessing the LUT multiple times, such as RLSL/RL. In the bilateral filter,
the weight function of the implementation is expressed as follows:

f(p, q) := EXPs[p− q]EXPrq[bφ(‖I(p)− I(q)‖2
2)c], (3.24)

EXPrq[x] := exp(
ψ(x)

−2σ2
r

), (3.25)

where φ(·) and ψ(·) denote a quantization function and an inverse quantiza-
tion function, respectively. By converting the range of the argument through
the quantization function, the size of the LUT can be reduced. The LUT size
is bφ(3× 2552)c+ 1. We use the square root function (sqrt) and division for
the quantization function. In sqrt, the quantization function and the inverse
quantization function are expressed as follows:

φ(x) := n
√
x, (3.26)

ψ(x) :=
x2

n2
, (3.27)

49

3.6. EFFECTIVE IMPLEMENTATION OF

EDGE-PRESERVING FILTERING 50

where n controls the LUT size. In div, they are expressed as follows:

φ(x) :=
x

n
, (3.28)

ψ(x) := x× n. (3.29)

In sqrt, the size of the quantization range LUT is 442 = b
√

3× 2552c+ 1. In
div, it is 195,076 = 3× 2552 + 1, where n = 1.

In MqL, the range and spatial LUTs are merged, and then, the LUT is
quantized. This implementation uses only one LUT. Thus, we do not require
to multiply the range and spatial kernels. In the MqL, the weight function
of the bilateral filter is expressed as follows:

f(p, q) := EXPrq[bφ(
σ2
r

σ2
s

‖p− q‖2
2 + ‖I(p)− I(q)‖2

2)c], (3.30)

where EXPrq[·] is identical to Equation 3.25. The other filters are imple-
mented in the same way. The size of the quantization merged LUT is larger
than that of the quantization range LUT. The quantization merged LUT can
be accessed only once in the weight calculation. The accuracy decreases, as
does the quantization range LUT.

Furthermore, we consider the data type of an input image. The typical
data type of input images is unsigned char, although floating point numbers
are used in filter processing. Therefore, unsigned char values of the input
image are converted to float/double before the filtering or during the filtering.
Note that float is typically used. The bit length of the double is longer than
that of float. Hence, the computational time when using double is slower
than that when using float. When the input type is unsigned char, we must
convert pixel values redundantly to floating point numbers for every loaded
pixel. The converting time is SK, where S and K are the image and kernel
size, respectively. By contrast, if the input type is a floating point number,
which is pre-converted before filtering, the conversion process can be omitted
in filtering. The converting times is S. However, in the case of inputting
unsigned char, the arithmetic intensity is higher than that of float. This is
because the bit length of unsigned char is shorter than that of float. We
should consider the tradeoff between the number of converting times and
arithmetic intensity owing to the size of the image and kernel.

In the use of LUTs, these implementation approaches can be applied to
arbitrary weight functions, which are not limited to the weighting functions
consisting of exponential functions in the present study. Especially, if a
weight function is computationally expensive, the use of a LUT is more
practical.

50

3.7. EXPERIMENTAL RESULTS 51

Table 3.1: Computers used in the experiments.

CPU
Intel Core i7
3970X

Intel Core i7
4960X

Intel Core i7
5960X

Intel Core i7
6950X

Intel Core i9
7980XE

AMD Ryzen Threadripper
1920X

memory
DDR3-1600
16 GBytes

DDR3-1866
16 GBytes

DDR4-2133
32 GBytes

DDR4-2400
32 GBytes

DDR4-2400
16 GBytes

DDR4-2400
16 GBytes

SIMD instruction sets
SSE4.2
AVX

SSE4.2
AVX

SSE4.2
AVX/AVX2
FMA3

SSE4.2
AVX/AVX2
FMA3

SSE4.2
AVX/AVX2
AVX512F
FMA3

SSE4.2
AVX/AVX2
FMA3

Notably, in these types of implementations, the weight of the target pixels,
which is at the center of the kernel, need not be calculated. The weight of
the target pixels is always one. When r is small, this approach accelerates
the filtering process somewhat.

3.7 Experimental Results

We verified the occurrence of denormalized numbers in the bilateral filter-
ing, non-local means filtering, Gaussian range filtering and bilateral non-
local means filtering processes. Moreover, we discussed the effective vec-
torization of bilateral filtering and non-local means filtering on the latest
CPU microarchitectures. These filters were implemented in C++ by using
OpenCV [84]. Additionally, multi-core parallelization was executed using
Concurrency, which is a parallelization library provided by Microsoft, also
called the parallel patterns library (PPL). Table 3.1 shows the CPUs, SIMD
instruction sets and memory employed in our experiments. Windows 10 64-
bit was used as the OS, and Intel Compiler 18.0 was employed. For referring
LUTs, the set or gather SIMD instructions were employed. The outermost
loop was parallelized by multi-core threading, and we had pixel-loop vector-
ization [85]. This implementation was found to be the most effective [85]. No-
tably, a vectorized exponential operation is not implemented in these CPUs.
Hence, we employed a software implementation, which is available in Intel
Compiler. The experimental code2 spanned around 95,000 lines.

3.7.1 Influence of Denormalized Numbers

We compared the proposed methods with the straightforward approach (none)
and four counter-approaches for denormalized numbers. These approaches
involve converting denormalized numbers to normal numbers (convert) and
using FTZ and/or DAZ flags (FTZ, DAZ, and FTZ and DAZ). The con-
vert implementation clips a calculated value to a normal number value in

2https://github.com/yoshihiromaed/FastImplementation-BilateralFilter

51

3.7. EXPERIMENTAL RESULTS 52

the weight calculation by means of a min-operation with the minimal value
of the normal numbers, such as min(exp(a) × exp(b), v), where a and b are
variables and v is the minimal value of the normal numbers. Figures 3.3–3.10
show the results of computational time and speedup ratio of various types
of implementation on Intel Core i9 7980XE. The computational time was
taken as the median value of 100 trials. The parameters were identical for
all filters. Notably, in the RqLSL/RqL and MqL implementation, sqrt was
used as the quantization function, and n = 1. These figures indicate that the
proposed methods for handing denormalized number were the fastest among
the other approaches for each implementation. The proposed methods were
up to four-times faster than the straightforward approach. In many cases,
the none implementation using double was faster than that using float. The
range of magnitudes of double was larger than that of float. Hence, the occur-
rence frequency of denormalized numbers was lower. In the case of double,
however, there was no significant speedup in all approaches for managing
denormalized numbers. Because double had twice the byte length compared
to float, the corresponding computational time was approximately twice as
long, as well. Therefore, the implementation using double was slower than
that using float when the influence of denormalized numbers was eliminated.
In the RqL of the Gaussian range and the non-local means filters and the
MqL of the bilateral and bilateral non-local means filters, the speedup ra-
tio of the proposed methods was almost the same as that of the convert,
FTZ and FTZ and DAZ implementation. In these approaches, denormal-
ized numbers occurred only when LUTs were created, and the denormalized
numbers were eliminated during LUT creation. Thus, during the filtering
process, denormalized numbers did not occur. Therefore, the RqL and MqL
implementation could achieve the same effect as the proposed methods did.
In addition, DAZ had almost no effect because DAZ was executed only if an
operand was a denormalized number. As shown in Figure 3.1, denormalized
numbers occurred in edges. Therefore, if the weight of the range kernel was
small or the multiplication of the range kernel with the spatial kernel was
possible, denormalized numbers were likely to occur.

Tables 3.2–3.5 show the speedup ratio of the MC/RC implementation
between the proposed methods and the none implementation for each set of
smoothing parameters. Note that when σs, r, and the search window size
are larger, the amount of processing increases. The tables indicate that the
proposed methods are 2–5-times faster than the none implementation. When
the smoothing parameters are small and the amount of processing is large,
the speedup ratio is high. Therefore, the influence of denormalized numbers
is strong when the degree of smoothing is small and the amount of processing
is large.

52

3.7. EXPERIMENTAL RESULTS 53

To verify the accuracy of the proposed methods, we compared the scalar
implementation in double-precision with the proposed methods and other ap-
proaches regarding peak signal-to-noise ratio (PSNR). The results are shown
in Figure 3.11. The proposed methods hardly affect accuracy. Note that the
accuracies of the RqL and MqL implementation are slightly lower than those
of the other types of implementation because the LUTs are approximated.
In these types, the accuracy deterioration is not significant because human
vision does not sense differences higher than 50 dB [86,87].

3.7.2 Effective Implementation on CPU Microarchi-
tectures

In this subsection, we verify the effective vectorization of the bilateral filter
and the non-local means filter on the latest CPU microarchitectures. The
proposed methods for denormalized numbers have already been applied to
these filters. Figures 3.12 and 3.13 show the computational times of the bi-
lateral filter and the non-local means filter for each CPU microarchitecture.
These filters were implemented using float. Notably, in the RqLSL/RqL and
MqL implementation, sqrt was used as the quantization function and n = 1.
The RqLSL/RqL implementation is the fastest in these CPU microarchitec-
tures. This implementation has a lower computational cost than the MC/RC
implementation. Moreover, the number of LUT accesses is lower than that
in the case of the RLSL/RL implementation. The computational time of the
MC/RC implementation is almost the same as that of the RLSL/RL and
RqLSL/RqL implementation or faster than that of the RLSL/RL implemen-
tation. This tendency can be stronger in the latest CPU microarchitectures
because computational time is limited by the memory reading/writing la-
tency. Besides, the computation time of the RqLSL implementation is al-
most the same as that of the MqL implementation, but that of the RqLSL
implementation is slightly faster than that of the MqL implementation. The
size of the merged quantization LUT is larger than that of the range quan-
tization LUT. The effects of the size of the quantization LUT and the quan-
tization function are discussed in the following paragraph. The RLSL/RL,
RqLSL/RqL and MqL implementations in which the gather instruction is
employed are faster than the implementations in which the set instruction
is employed. However, on the Intel Core i7 5960X and AMD Ryzen Thread-
ripper 1920X CPUs, the implementations in which the gather instruction is
used are slower than the implementations in which the set instruction is used.
In the bilateral filter and the non-local means filter, when the SIMD’s vector
length increases, all types of implementations with longer SIMD instructions

53

3.7. EXPERIMENTAL RESULTS 54

are faster than that with shorter SIMD instructions. Furthermore, in a com-
parison of the implementations with/without FMA3, the FMA3 instruction
improved computational performance slightly. These results indicate that
effective vectorization of the bilateral filter and the non-local means filter are
different for each CPU microarchitecture. Figures 3.14 and 3.15 show the
speedup ratio of the bilateral filter and the non-local means filter for each
CPU microarchitecture. If the ratio exceeds one, the corresponding imple-
mentation is faster than the scalar implementation for each CPU microarchi-
tecture. Multi-core threading parallelized both the scalar and the vectorized
implementations for focusing on comparing vectorized performance. In the
case of the bilateral filter, the fastest implementation is 170-times faster
than the scalar one. Moreover, in the case of the non-local means filter, the
fastest implementation is 200-times faster than the scalar one. The speedup
was determined by the management of denormalized numbers and effective
vectorization. Thus, the effect of using a multi-core CPU is not evaluated in
the verification.

We discuss the relationship between accuracy and computational time for
various types of implementation involving the use of the quantization LUT.
Figure 3.16 shows the relationship between calculation time and accuracy of
the RqL and the MqL implementation. In this figure, we changed the quan-
tization functions and the size of the quantization range/merged LUTs. The
quantization functions were square root function (sqrt) and division (div).
Note that the maximal value in the case of the RqLSL/RqL implementation is
commensurate with that of the non-quantized cases. In the RqLSL/RqL and
MqL implementation, the accuracy and computational time have a trade-
off. These implementations accelerate these filters while maintaining high
accuracy, when the LUT size is practical. The characteristics of the per-
formance depend on the quantization functions. Therefore, we must choose
the functions and the LUT size by considering the required accuracy and
computational time.

Figure 3.17 shows the computational time of using unsigned char (8U)
and float (32F) in the MC/RC implementation. Note that the computa-
tional time is plotted on a logarithmic scale. The 8U implementation of
the bilateral filter is faster than the 32F implementation, when r is small.
By contrast, when r is large, the 8U implementation is slower than the 32F
implementation. If the cost of the conversion process in 8U is low, the arith-
metic intensity of the 8U implementation would be larger than that of the
32F implementation. However, in the 8U implementation, the conversion
cost increases owing to the redundant conversion of the pixels as the amount
of processing increases. In the non-local means filter, when the template
window size is (3, 3), the 8U implementation is always faster than the 32F

54

3.8. CONCLUSIONS 55

implementation. When the template window size is (5, 5), the 8U implemen-
tation is slower than the 32F implementation in the case of the large search
window. The arithmetic intensity of the non-local means filter is low because
many pixels are accessed. Therefore, we can improve the arithmetic inten-
sity by using the 8U implementation. However, if the amount of processing
is large, we should use 32F. As a result, the speeds of the 8U and 32F im-
plementation depend on the amount of processing, which are changed by the
filtering kernel size and arithmetic intensity.

Figure 3.18 shows the speedup ratio of each implementation of the pro-
posed methods for prevention of denormalized numbers. If the speedup ratio
exceeds one, the implementation is faster than the scalar implementation.
All types of implementation were parallelized by multi-core threading. The
figure shows that the fastest implementation of the bilateral filter and the
non-local means filter is 152- and 216-times faster than the scalar implemen-
tation, respectively. Therefore, we can achieve significant acceleration by ap-
plying the proposed methods for preventing the occurrence of denormalized
numbers and selecting the implementation approaches of weight calculation
and the appropriate data type.

Finally, we compared the fastest implementation with OpenCV, which is
the de facto standard image processing library [84]. Figure 3.19 shows the
computational times of our implementation and the OpenCV’s implementa-
tion with its speedup ratio. Notably, the computational time is plotted on
the logarithmic scale. Our method is 2–14-times faster than OpenCV. In the
OpenCV implementation, the distance function of the range kernel is not the
L2 norm, and the kernel shape is circular for acceleration (see Appendix B);
therefore, PSNR is low. By contrast, our implementation slightly approxi-
mates the kernel LUT, and the kernel shape is rectangular. Therefore, the
proposed methods are more practical.

3.8 Conclusions

In this chapter, we propose methods to accelerate bilateral filtering and non-
local means filtering. The proposed methods prevent the occurrence of de-
normalized numbers, which has a large computational cost for processing.
Moreover, we verify various types of vectorized implementations on the lat-
est CPU microarchitectures. The results are summarized as follows:

1. The proposed methods are up to five-times faster than the implemen-
tation without preventing the occurrence of denormalized numbers.

2. In modern CPU microarchitectures, the gather instruction in the SIMD

55

3.8. CONCLUSIONS 56

0

50

100

150

200

250
n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

MC RCSL RLSL Set RLSL Gather RqLSL Set RqLSL Gather MqL Set MqL Gather

T
im

e
[m

s]

32F 64F

(a) SSE.

0

50

100

150

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o
n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o
n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o
n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

MC RCSL RLSL Set RLSL Gather RqLSL Set RqLSL Gather MqL Set MqL Gather

T
im

e
[m

s]

32F 64F

(b) AVX/AVX2.

0

50

100

150

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o

se
d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o

se
d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o

se
d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o

se
d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

MC RCSL RLSL Set RLSL Gather RqLSL Set RqLSL Gather MqL Set MqL Gather

T
im

e
[m

s]

32F 64F

(c) AVX512.

Figure 3.3: Computational time of the bilateral filter on Intel Core i9 7980XE.
The computational times are shown in terms of single precision (32F) and
double precision (64F) floating point numbers. σr = 4, σs = 6, r = 3σr.
Image size is 768 × 512.

instruction set is effective for loading weights from the LUTs.

3. By reducing the LUT size through quantization, the filtering can be
accelerated while maintaining high accuracy. Moreover, the optimum
quantization function and the quantization LUT size depends on the
required accuracy and computational time.

4. When the kernel size is small, the 8U implementation is faster than the
32F implementation. By contrast, in the case of the large kernel, the
32F implementation is faster than the 8U implementation.

In the future, we will verify the influence of denormalized numbers on
GPUs. In particular, we are planning to implement edge-preserving filters
on GPUs and to verify the influence of the denormalized numbers on compu-
tation time in GPUs. Furthermore, we will design effective implementations
of the filters on GPUs.

56

3.8. CONCLUSIONS 57

0.0
0.5
1.0
1.5
2.0
2.5

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

MC RCSL RLSL Set RLSL Gather RqLSL Set RqLSL Gather MqL Set MqL Gather

R
at

io

32F 64F

(a) SSE.

0.0

1.0

2.0

3.0

4.0

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

MC RCSL RLSL Set RLSL Gather RqLSL Set RqLSL Gather MqL Set MqL Gather

R
at

io

32F 64F

(b) AVX/AVX2.

0.0
1.0
2.0
3.0
4.0
5.0

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

MC RCSL RLSL Set RLSL Gather RqLSL Set RqLSL Gather MqL Set MqL Gather

R
at

io

32F 64F

(c) AVX512.

Figure 3.4: Speedup ratio of bilateral filter on Intel Core i9 7980XE. The
speedup ratio is shown regarding single precision (32F) and double pre-
cision (64F) floating point numbers. If the ratio exceeds one, all imple-
mentation of the method are faster than the straightforward implementa-
tion (none). σr = 4, σs = 6, r = 3σr. Image size is 768 × 512.

Table 3.2: Computational time and speedup ratio of bilateral filtering in
the merged computing (MC) implementation using AVX512 for various pa-
rameters. These results were obtained on an Intel Core i9 7980XE. If the
ratio exceeds 1, the proposed methods are faster than the straightforward
implementation (none) for each parameter. r = 3σs, and image size is 768 ×
512.

(a) Computational time (proposed) [ms]. (b) Computational time (none) [ms]. (c) Speedup ratio.

σs

σr 4 8 16
σs

σr 4 8 16
σs

σr 4 8 16

4 17.48 17.57 17.63 4 66.48 51.36 50.24 4 3.80 2.92 2.85
8 43.96 43.86 43.73 8 217.55 194.94 192.96 8 4.95 4.45 4.41
16 147.76 147.58 147.50 16 763.87 755.56 719.00 16 5.17 5.12 4.87

57

3.8. CONCLUSIONS 58

0

50

100

150

200

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

RC RL Set RL Gather RqL Set RqL Gather

T
im

e
[m

s]

32F 64F

(a) SSE.

0

50

100

150

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

RC RL Set RL Gather RqL Set RqL Gather

T
im

e
[m

s]

32F 64F

(b) AVX/AVX2.

0

50

100

150

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

RC RL Set RL Gather RqL Set RqL Gather

T
im

e
[m

s]

32F 64F

(c) AVX512.

Figure 3.5: Computational time of Gaussian range filter on Intel Core
i9 7980XE. The computational times are shown in terms of single preci-
sion (32F) and double precision (64F) floating point numbers. σr = 4, and
r = 18. Image size is 768 × 512.

Table 3.3: Computational time and speedup ratio of Gaussian range filter
in the range computing (RC) implementation using AVX512 for various pa-
rameters. These results were obtained on an Intel Core i9 7980XE. If the
ratio exceeds 1, the proposed methods are faster than the straightforward
implementation (none) for each parameter. Image size is 768 × 512.

(a) Computational time (proposed) [ms]. (b) Computational time (none) [ms]. (c) Speedup ratio.

r
σr 4 8 16

r
σr 4 8 16

r
σr 4 8 16

12 16.76 16.83 16.85 12 63.95 48.69 48.09 12 3.82 2.89 2.85
24 42.53 42.40 42.39 24 207.54 185.16 181.40 24 4.88 4.37 4.28
48 143.24 143.01 142.58 48 741.42 717.41 685.18 48 5.18 5.02 4.81

58

3.8. CONCLUSIONS 59

0.0

0.5

1.0

1.5

2.0

2.5
n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

RC RL Set RL Gather RqL Set RqL Gather

R
at

io

32F 64F

(a) SSE.

0.0
0.5
1.0
1.5
2.0
2.5
3.0

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

RC RL Set RL Gather RqL Set RqL Gather

R
at

io

32F 64F

(b) AVX/AVX2.

0.0

1.0

2.0

3.0

4.0

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

RC RL Set RL Gather RqL Set RqL Gather

R
at

io

32F 64F

(c) AVX512.

Figure 3.6: Speedup ratio of Gaussian range filter on Intel Core i9 7980XE.
The speedup ratio is shown in single precision (32F) and double preci-
sion (64F) floating point numbers. If the ratio exceeds one, all imple-
mentation of the method are faster than the straightforward implementa-
tion (none). σr = 4, and r = 18. Image size is 768 × 512.

Table 3.4: Computational time and speedup ratio of non-local means filter in
the RC implementation using AVX512 for various parameters. These results
were obtained on an Intel Core i9 7980XE. If the ratio exceeds 1, the proposed
methods are faster than the straightforward implementation (none) for each
parameter. Template window size is (3, 3), and image size is 768 × 512.

(a) Computational time (proposed) [ms]. (b) Computational time (none) [ms]. (c) Speedup ratio.

Search
Window

h
4
√

2 8
√

2 16
√

2 Search
Window

h
4
√

2 8
√

2 16
√

2 Search
Window

h
4
√

2 8
√

2 16
√

2

(25, 25) 40.31 39.80 39.64 (25, 25) 98.91 82.84 80.66 (25, 25) 2.45 2.08 2.03
(49, 49) 128.90 128.90 128.90 (49, 49) 332.88 307.58 300.00 (49, 49) 2.58 2.39 2.33
(97, 97) 485.88 485.88 485.36 (97, 97) 1148.48 1158.53 1134.93 (97, 97) 2.36 2.38 2.34

59

3.8. CONCLUSIONS 60

0

1000

2000

3000

4000

n
o

n
e

p
ro

p
o

se
d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o

se
d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o

se
d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

RC RL Set RL Gather RqL Set RqL Gather

T
im

e
[m

s]

32F 64F

(a) SSE.

0

500

1000

1500

2000

2500

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

RC RL Set RL Gather RqL Set RqL Gather

T
im

e
[m

s]

32F 64F

(b) AVX/AVX2.

0

500

1000

1500

2000

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o

se
d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o

se
d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

RC RL Set RL Gather RqL Set RqL Gather

T
im

e
[m

s]

32F 64F

(c) AVX512.

Figure 3.7: Computational time of non-local means filter on Intel Core
i9 7980XE. The computational times are shown in terms of single preci-
sion (32F) and double precision (64F) floating point numbers. h = 4

√
2,

template window size is (3, 3), and search window size is (37, 37). Image size
is 768 × 512.

Table 3.5: Computational time and speedup ratio of the bilateral non-local
means filter in the MC implementation using AVX512 for various parame-
ters. These results were calculated using an Intel Core i9 7980XE. If the
ratio exceeds 1, the proposed methods are faster than the straightforward
implementation (none) for each parameter. Template window size is (3, 3);
search window size is (2× 3σs + 1, 2× 3σs + 1); and image size is 768 × 512.

(a) Computational time (proposed) [ms]. (b) Computational time (none) [ms]. (c) Speedup ratio.

σs

h
4
√

2 8
√

2 16
√

2
σs

h
4
√

2 8
√

2 16
√

2
σs

h
4
√

2 8
√

2 16
√

2

4 40.20 40.05 39.92 4 99.14 84.85 82.85 4 2.47 2.12 2.08
8 133.61 133.02 132.85 8 340.29 311.72 301.38 8 2.55 2.34 2.27
16 496.86 496.57 495.89 16 1166.17 1191.36 1163.34 16 2.35 2.40 2.35

60

3.8. CONCLUSIONS 61

0.0

0.5

1.0

1.5

2.0

2.5

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

RC RL Set RL Gather RqL Set RqL Gather

R
at

io

32F 64F

(a) SSE.

0.0

1.0

2.0

3.0

4.0

n
o
n
e

p
ro

p
o
se

d

co
n
v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o
n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o
n
e

p
ro

p
o
se

d

co
n
v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o
n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o
n
e

p
ro

p
o
se

d

co
n
v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

RC RL Set RL Gather RqL Set RqL Gather

R
at

io

32F 64F

(b) AVX/AVX2.

0.0

1.0

2.0

3.0

4.0

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z
RC RL Set RL Gather RqL Set RqL Gather

R
at

io

32F 64F

(c) AVX512.

Figure 3.8: Speedup ratio of non-local means filter on Intel Core i9 7980XE.
The speedup ratio is shown regarding single precision (32F) and double pre-
cision (64F) floating point numbers. If the ratio exceeds one, all imple-
mentation of the method are faster than the straightforward implementa-
tion (none). h = 4

√
2; template window size is (3, 3), and search window size

is (37, 37). Image size is 768 × 512.

61

3.8. CONCLUSIONS 62

0
500

1000
1500
2000
2500
3000
3500

n
o
n
e

p
ro

p
o
se

d

co
n
v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o
n
e

p
ro

p
o
se

d

co
n
v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o
n
e

p
ro

p
o
se

d

co
n
v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o
n
e

p
ro

p
o
se

d

co
n
v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o
n
e

p
ro

p
o
se

d

co
n
v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o
n
e

p
ro

p
o
se

d

co
n
v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o
n
e

p
ro

p
o
se

d

co
n
v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o
n
e

p
ro

p
o
se

d

co
n
v
er

t

F
T

Z

D
A

Z

MC RLSL RLSL Set RLSL Gather RqLSL Set RqLSL Gather MqL Set MqL Gather

T
im

e
[m

s]

32F 64F

(a) SSE.

0

500

1000

1500

2000

2500

n
o

n
e

p
ro

p
o
se

d

co
n
v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o
se

d

co
n
v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o
se

d

co
n
v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o
se

d

co
n
v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

MC RLSL RLSL Set RLSL Gather RqLSL Set RqLSL Gather MqL Set MqL Gather

T
im

e
[m

s]

32F 64F

(b) AVX/AVX2.

0

500

1000

1500

2000

n
o
n
e

p
ro

p
o
se

d

co
n
v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o
n
e

p
ro

p
o
se

d

co
n
v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o
n
e

p
ro

p
o
se

d

co
n
v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o
n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o
n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o
n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o
n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o
n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

MC RLSL RLSL Set RLSL Gather RqLSL Set RqLSL Gather MqL Set MqL Gather

T
im

e
[m

s]

32F 64F

(c) AVX512.

Figure 3.9: Computational time of bilateral non-local means filter on In-
tel Core i9 7980XE. The computational times are shown in terms of sin-
gle precision (32F) and double precision (64F) floating point numbers.
σs = 6, h = 4

√
2; template window size is (3, 3), and search window size

is (2× 3σs + 1, 2× 3σs + 1). Image size is 768 × 512.

62

3.8. CONCLUSIONS 63

0.0

0.5

1.0

1.5

2.0

2.5

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

MC RLSL RLSL Set RLSL Gather RqLSL Set RqLSL Gather MqL Set MqL Gather

R
at

io

32F 64F

(a) SSE.

0.0

1.0

2.0

3.0

4.0

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

MC RLSL RLSL Set RLSL Gather RqLSL Set RqLSL Gather MqL Set MqL Gather

R
at

io

32F 64F

(b) AVX/AVX2.

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z
MC RLSL RLSL Set RLSL Gather RqLSL Set RqLSL Gather MqL Set MqL Gather

R
at

io

32F 64F

(c) AVX512.

Figure 3.10: Speedup ratio of bilateral non-local means filter on Intel Core
i9 7980XE. The speedup ratio is shown regarding single precision (32F) and
double precision (64F) floating point numbers. If the ratio exceeds one, all
implementation of the method are faster than the straightforward implemen-
tation (none). σs = 6, h = 4

√
2, template window size is (3, 3), and search

window size is (2× 3σs + 1, 2× 3σs + 1). Image size is 768 × 512.

63

3.8. CONCLUSIONS 64

0

50

100

150

200

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

MC RCSL RLSL Set RLSL Gather RqLSL Set RqLSL Gather MqL Set MqL Gather

P
S

N
R

 [
d

B
]

inf

32F 64F

(a) Bilateral filter.

0

50

100

150

200

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

RC RL Set RL Gather RqL Set RqL Gather

P
S

N
R

 [
d

B
]

inf

32F 64F

(b) Gaussian range filter.

0

50

100

150

200

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z
RC RL Set RL Gather RqL Set RqL Gather

P
S

N
R

[d
B

]

inf

32F 64F

(c) Non-local means filter.

0

50

100

150

200

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

n
o

n
e

p
ro

p
o
se

d

co
n

v
er

t

F
T

Z

D
A

Z

F
T

Z
 &

 D
A

Z

MC RLSL RLSL Set RLSL Gather RqLSL Set RqLSL Gather MqL Set MqL Gather

P
S

N
R

 [
d
B

]

inf

32F 64F

(d) Bilateral non-local means filter.

Figure 3.11: PSNRs of the bilateral filter, Gaussian range filter, non-local
means filter and bilateral non-local means filter. Note that the maximal value
in (a–d) is infinity.

64

3.8. CONCLUSIONS 65

0

50

100

150

200

250

300

Intel Core i7 3970X Intel Core i7 4960X Intel Core i7 5960X Intel Core i7 6950X Intel Core i9 7980XE AMD Ryzen

Threadripper 1920X

T
im

e
[m

s]

MC RCSL RLSL Set RqLSL Set MqL Set

(a) SSE.

0

50

100

150

200

Intel Core i7 3970X Intel Core i7 4960X Intel Core i7 5960X Intel Core i7 6950X Intel Core i9 7980XE AMD Ryzen

Threadripper 1920X

T
im

e
[m

s]

MC RCSL RLSL Set RLSL Gather RqLSL Set RqLSL Gather MqL Set MqL Gather

(b) AVX/AVX2.

0

50

100

150

200

Intel Core i7 3970X Intel Core i7 4960X Intel Core i7 5960X Intel Core i7 6950X Intel Core i9 7980XE AMD Ryzen

Threadripper 1920X

T
im

e
[m

s]

MC RCSL RLSL Set RLSL Gather RqLSL Set RqLSL Gather MqL Set MqL Gather

(c) AVX/AVX2 with FMA3.

0

10

20

30

40

50

60

70

80

Intel Core i7 3970X Intel Core i7 4960X Intel Core i7 5960X Intel Core i7 6950X Intel Core i9 7980XE AMD Ryzen

Threadripper 1920X

T
im

e
[m

s]

MC RCSL RLSL Set RLSL Gather RqLSL Set RqLSL Gather MqL Set MqL Gather

(d) AVX512.

0

10

20

30

40

50

60

70

80

Intel Core i7 3970X Intel Core i7 4960X Intel Core i7 5960X Intel Core i7 6950X Intel Core i9 7980XE AMD Ryzen

Threadripper 1920X

T
im

e
[m

s]

MC RCSL RLSL Set RLSL Gather RqLSL Set RqLSL Gather MqL Set MqL Gather

(e) AVX512 with FMA3.

Figure 3.12: Computational time of the bilateral filter in various CPU mi-
croarchitectures. σr = 4, σs = 6 and r = 3σs. Image size is 768 × 512.

0

500

1000

1500

2000

Intel Core i7 3970X Intel Core i7 4960X Intel Core i7 5960X Intel Core i7 6950X Intel Core i9 7980XE AMD Ryzen

Threadripper 1920X

T
im

e
[m

s]

RC RL Set RqL Set

(a) SSE.

0

500

1000

1500

2000

Intel Core i7 3970X Intel Core i7 4960X Intel Core i7 5960X Intel Core i7 6950X Intel Core i9 7980XE AMD Ryzen

Threadripper 1920X

T
im

e
[m

s]

RC RL Set RL Gather RqL Set RqL Gather

(b) AVX/AVX2.

0

500

1000

1500

2000

Intel Core i7 3970X Intel Core i7 4960X Intel Core i7 5960X Intel Core i7 6950X Intel Core i9 7980XE AMD Ryzen

Threadripper 1920X

T
im

e
[m

s]

RC RL Set RL Gather RqL Set RqL Gather

(c) AVX/AVX2 with FMA3.

0

100

200

300

400

500

600

700

Intel Core i7 3970X Intel Core i7 4960X Intel Core i7 5960X Intel Core i7 6950X Intel Core i9 7980XE AMD Ryzen

Threadripper 1920X

T
im

e
[m

s]

RC RL Set RL Gather RqL Set RqL Gather

(d) AVX512.

0

100

200

300

400

500

600

700

Intel Core i7 3970X Intel Core i7 4960X Intel Core i7 5960X Intel Core i7 6950X Intel Core i9 7980XE AMD Ryzen

Threadripper 1920X

T
im

e
[m

s]

RC RL Set RL Gather RqL Set RqL Gather

(e) AVX512 with FMA3.

Figure 3.13: Computational time of non-local means filter in various CPU
microarchitectures. h = 4

√
2; template window size is (3, 3); and search

window size is (37, 37). Image size is 768 × 512.

65

3.8. CONCLUSIONS 66

0

50

100

150

Intel Core i7 3970X Intel Core i7 4960X Intel Core i7 5960X Intel Core i7 6950X Intel Core i9 7980XE AMD Ryzen

Threadripper 1920X

R
at

io

MC RCSL RLSL Set RqLSL Set MqL Set

(a) SSE.

0

50

100

150

200

Intel Core i7 3970X Intel Core i7 4960X Intel Core i7 5960X Intel Core i7 6950X Intel Core i9 7980XE AMD Ryzen

Threadripper 1920X

R
at

io

MC RCSL RLSL Set RLSL Gather RqLSL Set RqLSL Gather MqL Set MqL Gather

(b) AVX/AVX2.

0

50

100

150

200

Intel Core i7 3970X Intel Core i7 4960X Intel Core i7 5960X Intel Core i7 6950X Intel Core i9 7980XE AMD Ryzen

Threadripper 1920X

R
at

io

MC RCSL RLSL Set RLSL Gather RqLSL Set RqLSL Gather MqL Set MqL Gather

(c) AVX/AVX2 with FMA3.

0

50

100

150

200

Intel Core i7 3970X Intel Core i7 4960X Intel Core i7 5960X Intel Core i7 6950X Intel Core i9 7980XE AMD Ryzen

Threadripper 1920X

R
at

io

MC RCSL RLSL Set RLSL Gather RqLSL Set RqLSL Gather MqL Set MqL Gather

(d) AVX512.

0

50

100

150

200

Intel Core i7 3970X Intel Core i7 4960X Intel Core i7 5960X Intel Core i7 6950X Intel Core i9 7980XE AMD Ryzen

Threadripper 1920X

R
at

io

MC RCSL RLSL Set RLSL Gather RqLSL Set RqLSL Gather MqL Set MqL Gather

(e) AVX512 with FMA3.

Figure 3.14: Speedup ratio of bilateral filter in various CPU microarchitec-
tures. If the ratio exceeds one, the implementation is faster than a scalar
implementation for all CPU microarchitectures. Note that the scalar imple-
mentation is parallelized using multi-core. σr = 4, σs = 6 and r = 3σs.
Image size is 768 × 512.

66

3.8. CONCLUSIONS 67

0

20

40

60

80

100

Intel Core i7 3970X Intel Core i7 4960X Intel Core i7 5960X Intel Core i7 6950X Intel Core i9 7980XE AMD Ryzen

Threadripper 1920X

R
at

io

RC RL Set RqL Set

(a) SSE.

0

20

40

60

80

100

120

140

Intel Core i7 3970X Intel Core i7 4960X Intel Core i7 5960X Intel Core i7 6950X Intel Core i9 7980XE AMD Ryzen

Threadripper 1920X

R
at

io

RC RL Set RL Gather RqL Set RqL Gather

(b) AVX/AVX2.

0

20

40

60

80

100

120

140

Intel Core i7 3970X Intel Core i7 4960X Intel Core i7 5960X Intel Core i7 6950X Intel Core i9 7980XE AMD Ryzen

Threadripper 1920X

R
at

io

RC RL Set RL Gather RqL Set RqL Gather

(c) AVX/AVX2 with FMA3.

0

50

100

150

200

250

Intel Core i7 3970X Intel Core i7 4960X Intel Core i7 5960X Intel Core i7 6950X Intel Core i9 7980XE AMD Ryzen

Threadripper 1920X

R
at

io

RC RL Set RL Gather RqL Set RqL Gather

(d) AVX512.

0

50

100

150

200

250

Intel Core i7 3970X Intel Core i7 4960X Intel Core i7 5960X Intel Core i7 6950X Intel Core i9 7980XE AMD Ryzen

Threadripper 1920X

R
at

io

RC RL Set RL Gather RqL Set RqL Gather

(e) AVX512 with FMA3.

Figure 3.15: Speedup ratio of non-local means filter in various CPU microar-
chitectures. If the ratio exceeds one, the implementation is faster than a
scalar implementation for each CPU microarchitecture. Note that the scalar
implementation is parallelized using multi-core. h = 4

√
2; template window

size is (3, 3); and search window size is (37, 37). Image size is 768 × 512.

67

3.8. CONCLUSIONS 68

0

20

40

60

80

100

120

140

20 30 40 50 60

P
S

N
R

 [
d
B

]

Time [ms]

RqLSL sqrt

MqL sqrt

RqLSL div

MqL div

(a) Bilateral filter.

0

50

100

150

200

250

60 70 80 90 100 110 120

P
S

N
R

 [
d

B
]

Time [ms]

RqL sqrt

RqL div

(b) Non-local means filter
(template window= (3, 3)).

0

50

100

150

200

250

100 150 200 250 300 350

P
S

N
R

 [
d

B
]

Time [ms]

RqL sqrt

RqL div

(c) Non-local means filter
(template window= (5, 5)).

Figure 3.16: PSNR vs. computational time in quantization range/merged
LUT. In sqrt and div, the quantization function is square root and division,
respectively. These results were obtained on an Intel Core i9 7980XE. σr = 4,
σs = 6, h = 4

√
2; and search window size is (37, 37). Image size is 768 ×

512.

1

10

100

1000

10000

0 20 40 60 80 100

T
im

e
[m

s]

r

8U 32F

r : 1

8U : 3.1 ms

r : 97

8U : 1471.9 ms

32F: 1405.3 ms

r : 29

8U : 100.7 ms

32F: 99.1 ms

(a) Bilateral filter.

1

10

100

1000

0 20 40 60 80 100

T
im

e
[m

s]

search window radius

8U template window=(3, 3)

32F template window=(5, 5)

8U template window=(3, 3)

32F template window=(5, 5)

radius : 1

8U : 3.1 ms

32F: 7.7 ms

radius : 1

8U : 4.1 ms

32F: 8.3 ms
radius : 97

8U : 536.3 ms

32F: 581.1 ms

radius : 97

8U : 1271.6 ms

32F: 1207.2 ms

(b) Non-local means filter.

Figure 3.17: Computational time when using unsigned char (8U) and single
precision floating point number (32F) with respect to kernel radius. Note
that the computational time is plotted on the logarithmic scale. These results
were obtained on an Intel Core i9 7980XE. σr = 4, σs = 4; and image size is
768 × 512.

68

3.8. CONCLUSIONS 69

1.0

36.6

108.6 114.1 115.2

152.4

0

20

40

60

80

100

120

140

160

Scalar

32F

Vecorization

MC

32F

Vecorization

MC

Prevention Denormal

32F

Vecorization

RqLSL sqrt gather

Prevention Denormal

32F

Vecorization

RqLSL div gather

Prevention Denormal

32F

Vecorization

RqLSL div gather

Prevention Denormal

8U

R
at

io

(a) Bilateral filter.

1.0

64.8

161.3 164.2 167.7

216.0

0

50

100

150

200

250

Scalar

32F

Vecorization

RC

32F

Vecorization

RC

Prevention Denormal

32F

Vecorization

RqL sqrt gather

Prevention Denormal

32F

Vecorization

RqLSL div gather

Prevention Denormal

32F

Vecorization

RqLSL div gather

Prevention Denormal

8U

R
at

io

(b) Non-local means filter.

Figure 3.18: Speedup ratios of various proposed implementation approaches
and that of scalar implementation. The types of implementation considered
herein are parallelized using multi-cores. These results were obtained on an
Intel Core i9 7980XE. σr = 4, σs = 4, r = 3σs; and image size is 768 × 512.

1

10

100

1000

10000

4 8 16

T
im

e
[m

s]

Proposed OpenCV
𝜎𝑠

(a) Computational Time.

0

5

10

15

4 8 16

R
at
io

𝜎𝑠

(b) Speedup ratio.

Figure 3.19: Computational time and speedup ratio of fastest implementation
and OpenCV implementation in bilateral filter. These results were calculated
using an Intel Core i9 7980XE. Note that the computational time is plotted
on the logarithmic scale. If the speedup ratio exceeds one, the fastest im-
plementation is faster than the OpenCV implementation. σr = 16, r = 3σs;
and image size is 768 × 512. For σs = 4, the PSNRs of the proposed method
and OpenCV are 84.63 dB and 44.08 dB, respectively. For σs = 8, they are
85.45 dB and 43.55 dB, respectively. For σs = 16, they are 84.41 dB and
43.19 dB, respectively.

69

Chapter 4

Directional Cubic Convolution
Interpolation with Edge
Preserving Detail Enhancement

4.1 Introduction

Image upsampling is one of fundamental tools in image processing. Typ-
ical algorithms of the image upsampling are linear interpolation and bicu-
bic interpolation. In addition, edge-directed algorithms are proposed [88–
90]. The edge-directed algorithms interpolate pixels while considering the
edge direction. The representatives of the algorithms include new edge di-
rected interpolation (NEDI) [88] and directional cubic convolution interpo-
lation (DCCI) [90]. Especially, DCCI achieves both high accuracy and high
speed among these algorithms. These algorithms upsample an image in a
stepwise manner. A part of pixels are interpolated based on a low-resolution
image at first, and then other pixels are interpolated based on interpolated
pixel and low-resolution image. The algorithms have a high accuracy of up-
sampling and suppress ringing of diagonal edges. However, the algorithms
limit upsampling rate to exponent of 2.

In image upsampling, an input image often lack high-frequency signal;
thus, detail enhancement is used for supplementing high-frequency signal.
The detail enhancement emphasizes edges of the image for amplifying high-
frequency signals. In its processing, detail and base signals are separated by
using smoothing filtering and the detail signals are amplified. The output
image is obtained by adding amplified detail signals and base signals. If
4- or 8-neighbor average filtering is employed as the smoothing filtering,
it is classical unsharp mask filtering. The drawback of the unsharp mask

71

4.2. PROPOSED FRAMEWORK 72

filtering is that halo and gradient reversal artifacts occurs on the contour in
the enhanced image when the kernel radius of smoothing filtering is large.
By using edge-preserving filtering as the smoothing filtering, it avoids the
halo and gradient reversal artifacts [17,91].

The edge-directed upsampling has high quality for images, in which there
are large edges and not textures, e. g., cartoon images. Therefore, the upsam-
pling can accurately upsample the base signals of the detail enhancement. It
is suggested that we can achieve high accurate upsampling by separately up-
sampling these signals after the input image is separated the base and detail
signals by using the edge preserving filtering. Moreover, the approach can be
obtained the detail signals; thus, the detail enhancement can be performed.
In this section, we propose a framework that can handle simultaneous pro-
cessing of upsampling and detail enhancement.

4.2 Proposed Framework

Figure 4.1 shows the flowchart of the proposed framework. Firstly, the base
signal is filtered input image by using the guided image filtering [17] and then
the detail signal is a difference between an input image and the base signal.
Secondly, the signals are upsampling with the DCCI. Finally, the detail signal
is amplified and added it to the base signal. The proposed framework can
simultaneously achieve the detail enhancement and upsampling.

The advantages of the proposed framework are that we can achieve high
accuracy upsampling. The base signal is separated by the detail signal and
then only includes large edges by reducing the textures; hence, the DCCI can
high accurate upsampling. Therefore, the proposed framework can achieve
higher accuracy upsampling than classical and conventional upsampling when
the degree of amplification is 1. In addition, the detail enhancement can be
performed by controlling the degree of amplification.

In the detail enhancement, the edge-preserving filtering filters the original
size input image filters. In the proposed framework, the low-resolution image
is filtered; thus, the computational cost of filtering is reduced. Meanwhile, the
proposed framework twice employs DCCI on the base and detail signals. The
computational cost of the DCCI is larger than that of classical upsampling
algorithms, but that of DCCI is smaller than that of the edge-preserving
filtering. In other words, the proposed framework dare downsample the input
image so that the framework can accelerate the detail enhancement.

72

4.3. EXPERIMENTAL RESULTS AND DISCUSSION 73

GF

DCCI

DCCI

＋

Output

Base

Input

Detail

Boost

Figure 4.1: Flowchart. GF in this figure is guided filtering.

4.3 Experimental Results and Discussion

In the experiments, the input image is the downsampled original image. The
upsampling rate was 2, 4, and 8-power. In the upsampling experiment, we
measured PSNR between the upsampled image and the original image as
correct image. The upsampling paramters are follows: the kernel radius of
the guided filtering is 1 when the upsampling rate is 2 and 4. When the
upsampling rate is 8, the radius is 2. The smoothing parameter ε is 0.0099,
0.0115, and 0.0135 when upsampling rate is 2, 4, and 8, respectively. The
threshold T , which is edge detection parameter, was set to 1 when the rate
was 2, and set to 1.1 when it was 4 and 8. These parameters were used in all
images. T = 1.15 is appropriate for upsampling [90] but it was better to lower
than 1.15 when separating the base and detail signals in the experiments.

In the experiment of the detail enhancement, the correct image is detail
enhanced image, which is enhanced the original image. The parameters
were assumed known. The kernel radius of the guided filtering is 2 when
the upsampling rate is 2, and the radius is 1 when the rate is 4 and 8.
The smoothing parameter ε is 0.0025. T was set to 1.15, and the degree of
amplification, which is the parameter of amplifying the detail signal, was set
to 2.

Table 4.1-4.3 show results of the upsampling and detail enhancement.
The accuracy of the proposed framework is the highest of the cubic convo-
lution interpolation (CCI) and DCCI in all images and all upsampling rate.
The difference of PSNR between the proposed framework and conventional
methods are 0.006dB to 0.08dB. Also, in the results of detail enhancement,
the proposed framework can almost approximate the upsampling results as

73

4.4. CONCLUSIONS 74

CCI DCCI

Proposed upsample Proposed detail enhancement

Figure 4.2: Resulting images.

the same accuracy. The result image is shown in the Figure 4.2 and 4.3.
The red circle in Figure 4.3 is the part where the difference of each method
appears. The proposed methods can be restored high-frequency signal than
the DCCI. For example, we can see the effect at the roof part. The proposed
framework correctly reproduces diagonal edges than DCCI slightly.

We also verified the case of using bilateral filtering as the smoothing
filtering, but the guided filtering was more suitable for this purpose and the
results were also better than the bilateral filtering. Because the bilateral
filtering does not consider the gradient in images, it converges to one color
and stair effect like postalization tends to occur. On the other hand, the
guided filtering can be smoothed considering the gradient. Therefore, the
suitable separated signal can be obtained by using the guided filtering.

4.4 Conclusions

In this section, we propose a framework that can handle simultaneous pro-
cessing of directional cubic convolution interpolation and detail enhance-
ment. The proposed framework employs the guided filtering on to separate
the base and detail signals and these signals are upsampled by DCCI individ-

74

4.4. CONCLUSIONS 75

Figure 4.3: Resulting images (roof).

ually. The DCCI is appropriate for upsampling the separated signals. The
proposed framework can perform the detail enhancement simultaneously by
amplifying the detail signal. The results are summarized as follows:

1. In image upsampling, the proposed framework is the highest accuracy
of cubic convolution interpolation and directional cubic convolution
interpolation. The PSNR of the proposed framework is 0.006 dB to
0.008 dB higher than that of conventional algorithms.

2. In detail enhancement, the proposed framework obtains the same ac-
curacy of the image upsampling.

3. The proposed framework achieve high accuracy upsampling and detail
enhancement simultaneously.

75

4.4. CONCLUSIONS 76

Table 4.1: PSNR of upsampling and detail enhancement results. The up-
sample ratio is 2.

Enhance

No CCI DCCI Proposed Proposed

1 23.75 24.57 24.65 24.43

2 30.79 31.99 32.09 30.22

3 32.01 33.41 33.48 32.21

4 30.92 32.74 32.85 31.19

5 23.78 26.24 26.33 26.00

6 25.19 26.05 26.12 25.65

7 29.54 33.49 33.57 32.71

8 20.68 22.22 22.26 22.00

9 29.10 31.73 31.81 30.53

10 29.30 31.36 31.45 30.56

11 26.54 27.93 28.03 27.09

12 30.62 31.52 31.57 30.72

13 21.64 22.39 22.46 22.27

14 26.30 28.24 28.35 27.53

15 30.02 30.22 30.28 30.92

16 28.81 29.68 29.76 28.53

17 29.37 31.29 31.36 30.50

18 25.60 26.65 26.74 26.40

19 25.31 27.06 27.11 26.35

20 28.63 31.07 31.15 30.17

21 25.75 27.21 27.29 26.76

22 27.75 29.23 29.34 28.18

23 31.61 35.37 35.46 33.73

24 24.39 25.31 25.38 25.15

Average 27.39 29.04 29.12 28.33

Upsample

76

4.4. CONCLUSIONS 77

Table 4.2: PSNR of upsampling and detail enhancement results. The up-
sample ratio is 4.

Enhance

No CCI DCCI Proposed Proposed

1 19.04 20.43 20.49 20.03

2 26.15 27.89 27.95 26.24

3 26.98 29.12 29.20 27.90

4 25.84 28.03 28.13 26.69

5 18.78 20.90 20.97 20.44

6 21.02 22.32 22.41 21.70

7 23.31 26.94 26.96 26.19

8 16.21 17.97 18.01 17.62

9 23.57 26.16 26.19 25.22

10 24.29 26.64 26.71 25.66

11 22.21 23.85 23.91 22.94

12 25.27 27.82 27.87 26.73

13 17.76 18.97 19.05 18.57

14 21.44 23.48 23.57 22.65

15 24.13 26.21 26.27 26.72

16 24.90 26.25 26.37 24.98

17 24.38 26.73 26.76 25.95

18 21.00 22.63 22.72 22.14

19 20.40 21.98 22.02 21.39

20 22.78 25.99 26.05 25.50

21 21.08 22.96 23.04 22.37

22 23.26 24.99 25.08 23.86

23 25.97 28.59 28.64 27.54

24 20.13 21.55 21.62 21.18

Average 22.50 24.52 24.58 23.76

Upsample

77

4.4. CONCLUSIONS 78

Table 4.3: PSNR of upsampling and detail enhancement results. The up-
sample ratio is 8.

Enhance

No CCI DCCI Proposed Proposed

1 17.40 18.58 18.63 18.18

2 23.96 25.95 26.02 24.51

3 24.29 26.88 26.93 25.77

4 22.65 25.20 25.29 24.09

5 16.39 18.09 18.17 17.71

6 19.29 20.77 20.86 20.23

7 19.92 22.15 22.22 21.54

8 14.03 15.63 15.67 15.39

9 20.83 22.85 22.91 22.20

10 21.84 23.93 23.99 23.12

11 20.00 21.78 21.85 21.01

12 22.15 25.36 25.40 24.46

13 16.35 17.45 17.53 17.13

14 18.92 20.85 20.95 20.16

15 20.63 24.72 24.79 24.23

16 23.25 24.80 24.91 23.60

17 21.35 24.10 24.19 23.38

18 19.19 20.53 20.62 20.04

19 18.46 19.99 20.05 19.51

20 19.89 23.33 23.38 22.96

21 18.97 20.73 20.80 20.24

22 21.26 22.75 22.84 21.78

23 22.87 25.38 25.43 24.59

24 18.53 19.78 19.86 19.41

Average 20.10 22.15 22.22 21.47

Upsample

78

Chapter 5

Conclusion

In this dissertation, we aim acceleration of the edge-preserving filtering and
organize cyclopaedically effective implementation on CPU microarchitectures.
Also, we focus on acceleration and high accuracy of upsampling and detail
enhancement, which are one of application in the edge-preserving filtering.

In Chapter 2, we summarize a taxonomy of vectorized programming for
FIR image filtering. We also propose a new vectorization pattern of vec-
torized programming, which we call loop vectorization. These vectorization
patterns are combined with an acceleration method of kernel subsampling
for general FIR filters. The experimental results indicate that the patterns
are appropriate for FIR filtering, and a new pattern with kernel subsampling
can be profitably used for Gaussian range filtering (GRF), bilateral filter-
ing (BF), adaptive Gaussian filtering (AGF), randomly-kernel-subsampled
Gaussian range filtering (RKS-GRF), randomly-kernel-subsampled bilateral
filtering (RKS-BF), and randomly-kernel-subsampled adaptive Gaussian fil-
tering (RKS-AGF).

In Chapter 3, we propose methods to accelerate bilateral filtering and
non-local means filtering. The proposed methods prevent the occurrence
of denormal numbers. Denormal numbers are special floating point num-
bers defined in IEEE standard 754, and they are considerably smaller than
normal numbers. The processing of denormal numbers has a large computa-
tional cost. Moreover, we verify various types of vectorized implementation
on the latest CPU microarchitectures. Experimental results show that the
proposed methods are faster than implementation that does not prevent the
occurrence of denormal numbers. Also, the proposed implementation of the
edge-preserving filtering is efficient.

In Chapter 4, we proposed a framework that can process simultaneous
processing of directional cubic convolution interpolation and detail enhance-
ment. Experimental results show that the proposed framework achieves high

79

80

accuracy upsampling and detail enhancement simultaneously.
In the future work, the acceleration approaches should be extended to

other architectures, such as GPU and FPGA. Future work also includes ac-
celeration of various applications, which employ the edge-preserving filtering.

80

References

[1] C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color im-
ages,” in Proc. IEEE International Conference on Computer Vision
(ICCV), 1998, pp. 839–846.

[2] P. Kornprobst and J. Tumblin, Bilateral filtering: Theory and applica-
tions. Now Publishers Inc., 2009.

[3] A. Buades, B. Coll, and J. M. Morel, “A non-local algorithm for image
denoising,” in Proc. IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2005, pp. 60–65.

[4] K. He, J. Sun, and X. Tang, “Guided image filtering,” IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, vol. 35, no. 6, pp.
1397–1409, 2013.

[5] ——, “Guided image filtering,” in Proc. European Conference on Com-
puter Vision (ECCV), 2010.

[6] N. Fukushima, K. Sugimoto, and S. Kamata, “Guided image filtering
with arbitrary window function,” in IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), 2018.

[7] W. Kang, S. Yu, D. Seo, J. Jeong, and J. Paik, “Push-broom-
type very high-resolution satellite sensor data correction using
combined wavelet-fourier and multiscale non-local means filtering,”
Sensors, vol. 15, no. 9, pp. 22 826–22 853, 2015. [Online]. Available:
http://www.mdpi.com/1424-8220/15/9/22826

[8] F. Durand and J. Dorsey, “Fast bilateral filtering for the display of
high-dynamic-range images,” ACM Trans. on Graphics, vol. 21, no. 3,
pp. 257–266, 2002.

[9] S. Bae, S. Paris, and F. Durand, “Two-scale tone management for pho-
tographic look,” ACM Trans. on Graphics, vol. 25, no. 3, pp. 637–645,
2006.

81

REFERENCES 82

[10] R. Fattal, M. Agrawala, and S. Rusinkiewicz, “Multiscale shape and
detail enhancement from multi-light image collections,” ACM Trans. on
Graphics, vol. 26, no. 3, 2007.

[11] L. Li, Y. Si, and Z. Jia, “Remote sensing image enhancement based on
non-local means filter in nsct domain,” Algorithms, vol. 10, no. 4, 2017.
[Online]. Available: http://www.mdpi.com/1999-4893/10/4/116

[12] Y. Mori, N. Fukushima, T. Yendo, T. Fujii, and M. Tanimoto, “View
generation with 3d warping using depth information for ftv,” Signal
Processing: Image Communication, vol. 24, no. 1-2, pp. 65 – 72, 2009.

[13] G. Petschnigg, M. Agrawala, H. Hoppe, R. Szeliski, M. Cohen, and
K. Toyama, “Digital photography with flash and no-flash image pairs.”
ACM Trans. on Graphics, vol. 23, no. 3, pp. 664–672, 2004.

[14] E. Eisemann and F. Durand, “Flash photography enhancement via in-
trinsic relighting.” ACM Trans. on Graphics, vol. 23, no. 3, pp. 673–678,
2004.

[15] J. Kopf, M. F. Cohen, D. Lischinski, and M. Uyttendaele, “Joint bilat-
eral upsampling,” ACM Transactions on Graphics, vol. 26, no. 3, 2007.

[16] D. Zhou, R. Wang, J. Lu, and Q. Zhang, “Depth image super resolution
based on edge-guided method,” Applied Sciences, vol. 8, no. 2, 2018.
[Online]. Available: http://www.mdpi.com/2076-3417/8/2/298

[17] K. He, J. Shun, and X. Tang, “Guided image filtering,” in Proc. Euro-
pean Conference on Computer Vision (ECCV), 2010.

[18] N. Kodera, N. Fukushima, and Y. Ishibashi, “Filter based alpha matting
for depth image based rendering,” in Proc. Visual Communications and
Image Processing (VCIP), Nov. 2013.

[19] K. He, J. Sun, and X. Tang, “Single image haze removal using dark chan-
nel prior.” in Proc. Computer Vision and Pattern Recognition (CVPR),
2009, pp. 2341–2353.

[20] A. Hosni, C. Rhemann, M. Bleyer, C. Rother, and M. Gelautz, “Fast
cost-volume filtering for visual correspondence and beyond,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 35,
no. 2, pp. 504 – 511, 2013.

82

REFERENCES 83

[21] T. Matsuo, N. Fukushima, and Y. Ishibashi, “Weighted joint bilateral
filter with slope depth compensation filter for depth map refinement,”
in Proc. International Conference on Computer Vision Theory and Ap-
plications (VISAPP), 2013.

[22] A. V. Le, S.-W. Jung, and C. S. Won, “Directional joint bilateral filter
for depth images,” Sensors, vol. 14, no. 7, pp. 11 362–11 378, 2014.
[Online]. Available: http://www.mdpi.com/1424-8220/14/7/11362

[23] S. Liu, P. Lai, D. Tian, and C. W. Chen, “New depth coding techniques
with utilization of corresponding video,” IEEE Trans. on Broadcasting,
vol. 57, no. 2, pp. 551–561, June 2011.

[24] N. Fukushima, T. Inoue, and Y. Ishibashi, “Removing depth map coding
distortion by using post filter set,” in Proc. IEEE International Confer-
ence on Multimedia and Expo (ICME), 2013.

[25] N. Fukushima, S. Fujita, and Y. Ishibashi, “Switching dual kernels for
separable edge-preserving filtering,” in Proc. IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP), 2015.

[26] T. Q. Pham and L. J. V. Vliet, “Separable bilateral filtering for fast
video preprocessing.” in Proc. International Conference on Multimedia
and Expo (ICME), 2005.

[27] J. Chen, S. Paris, and F. Durand, “Real-time edge-aware image process-
ing with the bilateral grid,” ACM Trans. on Graphics, vol. 26, no. 3,
2007.

[28] K. Sugimoto, N. Fukushima, and S. Kamata, “Fast bilateral filter for
multichannel images via soft-assignment coding,” in Proc. APSIPA
ASC, 2016.

[29] K. Sugimoto and S. Kamata, “Compressive bilateral filtering,” IEEE
Trans. on Image Processing, vol. 24, no. 11, pp. 3357–3369, 2015.

[30] S. Paris and F. Durand, “A fast approximation of the bilateral filter
using a signal processing approach,” International Journal of Computer
Vision, vol. 81, no. 1, pp. 24–52, 2009.

[31] K. N. Chaudhury, “Acceleration of the shiftable o(1) algorithm for bi-
lateral filtering and nonlocal means,” IEEE Transactions on Image Pro-
cessing, vol. 22, no. 4, pp. 1291–1300, April 2013.

83

REFERENCES 84

[32] K. Chaudhury, “Constant-time filtering using shiftable kernels,” IEEE
Signal Processing Letters, vol. 18, no. 11, pp. 651–654, 2011.

[33] K. Chaudhury, D. Sage, and M. Unser, “Fast o(1) bilateral filtering
using trigonometric range kernels,” IEEE Trans. on Image Processing,
vol. 20, no. 12, pp. 3376–3382, 2011.

[34] A. Adams, N. Gelfand, J. Dolson, and M. Levoy, “Gaussian kd-trees
for fast high-dimensional filtering,” ACM Trans. on Graphics, vol. 28,
no. 3, 2009.

[35] A. Adams, J. Baek, and M. A. Davis, “Fast high-dimensional filtering
using the permutohedral lattice,” Computer Graphics Forum, vol. 29,
no. 2, pp. 753–762, 2010.

[36] F. Porikli, “Constant time o(1) bilateral filtering.” in Proc. Computer
Vision and Pattern Recognition (CVPR), 2008.

[37] Q. Yang, K. H. Tan, and N. Ahuja, “Real-time o(1) bilateral filtering.”
in Proc. Computer Vision and Pattern Recognition (CVPR), 2009, pp.
557–564.

[38] G. E. Moore, “Cramming more components onto integrated circuits,
reprinted from electronics, volume 38, number 8, april 19, 1965, pp.114
ff.” IEEE Solid-State Circuits Society Newsletter, vol. 11, no. 3, pp.
33–35, Sept 2006.

[39] E. Rotem, R. Ginosar, A. Mendelson, and U. C. Weiser, “Power and
thermal constraints of modern system-on-a-chip computer,” in 19th In-
ternational Workshop on Thermal Investigations of ICs and Systems
(THERMINIC), Sept 2013, pp. 141–146.

[40] H. Sutter, “The concurrency revolution,” in C/C++ Users Journal, 2
2005.

[41] M. Flynn, “Some computer organizations and their effectiveness,” IEEE
Trans. on Computers, vol. C-21, no. 9, pp. 948–960, 1972.

[42] C. J. Hughes, “Single-instruction multiple-data execution,” Synthesis
Lectures on Computer Architecture, vol. 10, no. 1, pp. 1–121, 2015.

[43] F. C. Crow, “Summed-area tables for texture mapping,” in Proc. SIG-
GRAPH, 1984, pp. 207–212.

84

REFERENCES 85

[44] “Intel architecture instruction set extensions and
future features programming reference,” https://
software.intel.com/sites/default/files/managed/c5/15/
architecture-instruction-set-extensions-programming-reference.pdf,
accessed: 2018-10-01.

[45] G. Rivera and C.-W. Tseng, “Data transformations for eliminating con-
flict misses,” SIGPLAN Not., vol. 33, no. 5, pp. 38–49, May 1998.

[46] T. Henretty, K. Stock, L.-N. Pouchet, F. Franchetti, J. Ramanujam, and
P. Sadayappan, “Data layout transformation for stencil computations
on short-vector simd architectures,” in Proc. International Conference
on Compiler Construction: Part of the Joint European Conferences on
Theory and Practice of Software (CC’11/ETAPS’11), 2011, pp. 225–
245. [Online]. Available: http://dl.acm.org/citation.cfm?id=1987237.
1987255

[47] T. Saegusa, T. Maruyama, and Y. Yamaguchi, “How fast is an fpga
in image processing?” in Proc. International Conference on Field Pro-
grammable Logic and Applications, Sept 2008, pp. 77–82.

[48] S. Asano, T. Maruyama, and Y. Yamaguchi, “Performance comparison
of fpga, gpu and cpu in image processing,” in Proc. International Con-
ference on Field Programmable Logic and Applications, Aug 2009, pp.
126–131.

[49] T. Kurafuji, M. Haraguchi, M. Nakajima, T. Nishijima, T. Tanizaki,
H. Yamasaki, T. Sugimura, Y. Imai, M. Ishizaki, T. Kumaki, K. Murata,
K. Yoshida, E. Shimomura, H. Noda, Y. Okuno, S. Kamijo, T. Koide,
H. J. Mattausch, and K. Arimoto, “A scalable massively parallel pro-
cessor for real-time image processing,” IEEE Journal of Solid-State Cir-
cuits, vol. 46, no. 10, pp. 2363–2373, Oct 2011.

[50] K. E. Batcher, “Sorting networks and their applications,” in Proc. spring
joint computer conference (SJCC). ACM, 1968, pp. 307–314.

[51] C. A. R. Hoare, “Quicksort,” The Computer Journal, vol. 5, no. 1, pp.
10–16, 1962.

[52] P. Viola and M. Jones, “Rapid object detection using a boosted cascade
of simple features,” in Proc. IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2001, pp. 511–518.

85

REFERENCES 86

[53] R. C. Gonzalez and R. E. Woods, Digital Image Processing. Prentice
Hall, 2008.

[54] S. Treitel and J. L. Shanks, “The design of multistage separable planar
filters,” IEEE Transactions on Geoscience Electronics, vol. 9, no. 1, pp.
10–27, Jan 1971.

[55] L. Lou, P. Nguyen, J. Lawrence, and C. Barnes, “Image perforation: Au-
tomatically accelerating image pipelines by intelligently skipping sam-
ples,” ACM Trans. Graph., vol. 35, no. 5, pp. 153:1–153:14, sep 2016.

[56] F. Banterle, M. Corsini, P. Cignoni, and R. Scopigno, “A low-memory,
straightforward and fast bilateral filter through subsampling in spatial
domain,” in Computer Graphics Forum, vol. 31, no. 1. Wiley Online
Library, 2012, pp. 19–32.

[57] R. Deriche, “Recursively implementating the gaussian and its deriva-
tives,” in Proc. IEEE International Conference on Image Processing
(ICIP), 1992, pp. 263–267.

[58] I. T. Young and L. J. Van Vliet, “Recursive implementation of the gaus-
sian filter,” Signal processing, vol. 44, no. 2, pp. 139–151, 1995.

[59] L. J. Van Vliet, I. T. Young, and P. W. Verbeek, “Recursive gaussian
derivative filters,” in Proc. IEEE International Conference on Pattern
Recognition, vol. 1, 1998, pp. 509–514.

[60] W. M. Wells, “Efficient synthesis of gaussian filters by cascaded uniform
filters,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, no. 2, pp. 234–239, 1986.

[61] E. Elboher and M. Werman, “Cosine integral images for fast spatial
and range filtering,” in Proc. IEEE International Conference on Image
Processing, 2011, pp. 89–92.

[62] K. Sugimoto and S. Kamata, “Fast gaussian filter with second-order
shift property of dct-5,” in Proc. International Conference on Image
Processing (ICIP), 2013, pp. 514–518.

[63] ——, “Efficient constant-time gaussian filtering with sliding dct/dst-
5 and dual-domain error minimization,” ITE Transactions on Media
Technology and Applications, vol. 3, no. 1, pp. 12–21, 2015.

[64] P. Getreuer, “A survey of gaussian convolution algorithms,” Image Pro-
cessing On Line, vol. 2013, pp. 286–310, 2013.

86

REFERENCES 87

[65] M. Mitzenmacher and E. Upfal, Probability and Computing: Randomized
Algorithms and Probabilistic Analysis. New York, NY, USA: Cambridge
University Press, 2005.

[66] R. Motwani and P. Raghavan, Randomized Algorithms. New York, NY,
USA: Cambridge University Press, 1995.

[67] R. L. Cook, “Stochastic sampling in computer graphics,” ACM Trans-
actions on Graphics (TOG), vol. 5, no. 1, pp. 51–72, 1986.

[68] Y. Asahi, G. Latu, T. Ina, Y. Idomura, V. Grandgirard, and X. Gar-
bet, “Optimization of fusion kernels on accelerators with indirect or
strided memory access patterns,” IEEE Transactions on Parallel and
Distributed Systems, vol. 28, no. 7, pp. 1974–1988, July 2017.

[69] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learn-
ing applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, Nov 1998.

[70] K. Chellapilla, S. Puri, and P. Simard, “High performance convolutional
neural networks for document processing,” in Prco. International Work-
shop on Frontiers in Handwriting Recognition, Oct 2006.

[71] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catan-
zaro, and E. Shelhamer, “cudnn: Efficient primitives for deep learning,”
CoRR, vol. abs/1410.0759, 2014.

[72] A. Vasudevan, A. Anderson, and D. Gregg, “Parallel multi channel
convolution using general matrix multiplication,” in Proc. IEEE Inter-
national Conference on Application-specific Systems, Architectures and
Processors (ASAP), July 2017, pp. 19–24.

[73] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”
International Journal of Computer Vision, vol. 60, no. 2, pp. 91–110,
nov 2004.

[74] G. Deng and L. Cahill, “An adaptive gaussian filter for noise reduction
and edge detection,” in Proc. IEEE Nuclear Science Symposium and
Medical Imaging Conference, 1993, pp. 1615–1619.

[75] S. Bae and F. Durand, “Defocus magnification,” in Computer Graphics
Forum, vol. 26, no. 3. Wiley Online Library, 2007, pp. 571–579.

87

REFERENCES 88

[76] W. Zhang and W.-K. Cham, “Single image focus editing,” in IEEE In-
ternational Conference on Computer Vision Workshops (ICCV Work-
shops), 2009, pp. 1947–1954.

[77] “Ieee standard for floating-point arithmetic,” IEEE Std 754-2008, pp.
1–70, Aug 2008.

[78] E. M. Schwarz, M. Schmookler, and S. D. Trong, “Fpu implementations
with denormalized numbers,” IEEE Transactions on Computers, vol. 54,
no. 7, pp. 825–836, July 2005.

[79] ——, “Hardware implementations of denormalized numbers,” in Pro-
ceedings 2003 16th IEEE Symposium on Computer Arithmetic, June
2003, pp. 70–78.

[80] L. Zheng, H. Hu, and S. Yihe, “Floating-point unit processing denormal-
ized numbers,” in 2005 6th International Conference on ASIC, vol. 1,
Oct 2005, pp. 6–9.

[81] Y. S. Kim, H. Lim, O. Choi, K. Lee, J. D. K. Kim, and J. Kim, “Sep-
arable bilateral nonlocal means,” in Proc. International Conference on
Image Processing (ICIP), Sep. 2011, pp. 1513–1516.

[82] M. D. Ercegovac and T. Lang, Digital Arithmetic, 1st ed. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 2003.

[83] S. Williams, A. Waterman, and D. Patterson, “Roofline: An insightful
visual performance model for multicore architectures,” Commun.
ACM, vol. 52, no. 4, pp. 65–76, Apr. 2009. [Online]. Available:
http://doi.acm.org/10.1145/1498765.1498785

[84] G. Bradski and A. Kaehler, Learning OpenCV: Computer vision with
the OpenCV library. ” O’Reilly Media, Inc.”, 2008.

[85] Y. Maeda, N. Fukushima, and H. Matsuo, “Taxonomy of vectorization
patterns of programming for fir image filters using kernel subsampling
and new one,” Applied Sciences, vol. 8, no. 8, 2018. [Online]. Available:
http://www.mdpi.com/2076-3417/8/8/1235

[86] I. Telegraph and T. C. Committee, CCITT Recommendation T.81: Ter-
minal Equipment and Protocols for Telematic Services : Information
Technology - Digital Compression and Coding of Continuous-tone Still
Images - Requirements and Guidelines. International Telecommunica-
tion Union, 1993.

88

[87] M. Domanski and K. Rakowski, “Near-lossless color image compression
with no error accumulation in multiple coding cycles,” in CAIP, ser.
Lecture Notes in Computer Science, vol. 2124. Springer, 2001, pp.
85–91.

[88] X. Li and M. T. Orchard, “New edge-directed interpolation,” IEEE
Transactions on Image Processing, vol. 10, no. 10, pp. 1521–1527, Oct
2001.

[89] A. Giachetti and N. Asuni, “Real-time artifact-free image upscaling,”
IEEE Transactions on Image Processing, vol. 20, no. 10, pp. 2760–2768,
Oct 2011.

[90] D. Zhou, X. Shen, and W. Dong, “Image zooming using directional
cubic convolution interpolation,” IET Image Processing, vol. 6, no. 6,
pp. 627–634, August 2012.

[91] Z. Farbman, R. Fattal, D. Lischinski, and R. Szeliski, “Edge-preserving
decompositions for multi-scale tone and detail manipulation,” ACM
Trans. on Graphics, vol. 27, no. 3, 2008.

89

Acknowledgement

I am deeply grateful to Prof. Hiroshi Matsuo of Nagoya Institute of Technol-
ogy for his support and advice. I would like to express my sincere gratitude to
Prof. Norishige Fukushima of Nagoya Institute of Technology for his valuable
guidance, support, and advice. Without his encouragement and guidance,
this dissertation would not have materialized. I also appreciate feedbacks of
this dissertation offered by Prof. Shoichi Saito and Prof. Hidekata Hontani
of Nagoya Institute of Technology.

I am deeply grateful to Prof. Isao Yamada at National Institute of Tech-
nology, Gifu College. He provided me overall encouragement. I have greatly
benefited from Prof. Takeshi Nakaya of Shinshu University.

I would like to express my sincere appreciation to President Yuuki Umem-
oto of Arc co. Ltd. for his support and encouragement. I also have greatly
benefited from the member of Arc co. Ltd.

Special thanks to the member of Fukushima laboratory.
Finally, I would sincerely like to thank my family and my friends for their

encouragement.

91

List of Publications

Journals

1. Y. Maeda, N. Fukushima, H. Matsuo, ”Effective Implementation of
Edge-Preserving Filtering on CPU Microarchitectures,” Applied Sci-
ences, vol. 8, no. 10, Oct. 2018.

2. Y. Maeda, N. Fukushima, H. Matsuo, ”Taxonomy of Vectorization Pat-
terns of Programming for FIR Image Filters Using Kernel Subsampling
and New One,” Applied Sciences, vol. 8, no. 8, July 2018.

3. Y. Maeda, T. Sasaki, M. Nakamura, N. Fukushima, H. Matsuo, ”Di-
rectional Cubic Convolution Interpolation with Edge Preserving Detail
Enhancement,” (in Japanese), IEICE Trans. Information and Systems
(Japanese Edition), vol. J100-D, no. 9, pp. 846–849, Sep. 2017.

4. T. Miyoshi, Y. Maeda, Y. Morita, Y. Ishibashi, K. Terashima, ”Devel-
opment of Haptic Network Game Based on Multi-lateral Tele-control
Theory And Influence of Network Delay on Hptic Feeling,” (in Japanese),
Transactions of the Virtual Reality Society of Japan, vol. 19, no. 4,
pp. 559-569, Dec. 2014.

5. I. Yamada, Y. Maeda, M. Onogi, T. Yoshida, Y. Ido, ”Evaluation of
signal detectability of a medical high resolution monitor and a multi-
purpose monitor using ROC analysis,” (in Japanese), Memoirs of Gifu
National College of Technology, vol. 47, pp. 11-15, Mar. 2012.

International Conference Proceedings

1. N. Fukushima, Y. Maeda, Y. Kawasaki, M. Nakamura, T. Tsumura,
K. Sugimoto, S. Kamata, ”Efficient Computational Scheduling of Box
and Gaussian FIR Filtering for CPU Microarchitecture,” Asia-Pacific

93

Signal and Information Processing Association Annual Summit and
Conference (APSIPA), Oct. 2018.

2. Y. Murooka, Y. Maeda, M. Nakamura, T. Sasaki, N. Fukushima, ”Prin-
cipal Component Analysis for Acceleration of Color Guided Image Fil-
tering,” International Workshop on Frontiers of Computer Vision (IW-
FCV), Feb. 2018.

3. K. Watanabe, Y. Maeda, N. Fukushima, ”Stability of Recursive Gaus-
sian Filtering for Piecewise Linear Bilateral Filtering,” International
Workshop on Frontiers of Computer Vision (IW-FCV), Feb. 2018.

4. Y. Kawasaki, Y. Maeda, N. Fukushima, ”Parallelized and Vectorized
Implementation of DCT denoising with FMA instructions,” Interna-
tional Workshop on Advanced Image Technology (IWAIT), Jan. 2018.

5. Y. Maeda, N. Fukushima, H. Matsuo, ”Basic Study on Recognition
of Seven-Segment LED Digits by Using Binary Template Matching,”
International Workshop on Advanced Image Technology (IWAIT), Jan.
2017.

6. K. Suzuki, Y. Maeda, Y. Ishibashi, N. Fukushima, ”Improvement of
operability in remote robot control with force feedback,” IEEE Global
Conference on Consumer Electronics (GCCE), Oct. 2015.

7. Y. Maeda, Y. Ishibashi, N. Fukushima, ”QoE assessment of sense of
presence in networked virtual environment with haptic and auditory
senses: Influence of network delay,” IEEE Global Conference on Con-
sumer Electronics (GCCE), pp. 679-683, Oct. 2014.

8. Y. Maeda, N. Fukushima, N. Fukushima, S. Sugawara, ”Contribution
of olfactory, haptic, and auditory senses to sense of presence in vir-
tual environments,” IEEE International Communications Quality and
Reliability (CQR) Workshop, May 2013.

Domestic Conferences Proceedings

1. Y. Murooka, Y. Maeda, N. Fukushima, ”PCA for Acceleration of Guided
Filtering,” (in Japanese), IEICE Society Conference, Sep. 2018.

2. Y. Kawasaki, Y. Maeda, N. Fukushima, ”Accelerate Frequency Filter
by Post Scaling Type DCT,” (in Japanese), IEICE Society Conference,
Sep. 2018.

94

3. Y. Murooka, Y. Maeda, N. Fukushima, ”Principal Component Analysis
for Approximation of Guided Filtering,” (in Japanese), Tokai-Section
Joint Conference on Electrical, Electronics, Information, and Related
Engineering, Sep. 2018.

4. Y. Kawasaki, Y. Maeda, N. Fukushima, ”Redundant Frequency Filter
by Post Scaling Type DCT,” (in Japanese), Tokai-Section Joint Confer-
ence on Electrical, Electronics, Information, and Related Engineering,
Sep. 2018.

5. A. Ishikawa, Y. Maeda, N. Fukushima, ”Optimization of computational
scheduling of Guided Filtering in Halide,” (in Japanese), Technical re-
port of IEICE. IE, June 2018.

6. T. Sasaki, Y. Maeda, M. Nakamura, N. Fukushima, ”Optimization of
Computational Scheduling for Acceleration of Directional Cubic Con-
volution Interpolation,” (in Japanese), Technical report of IEICE. SIP,
Mar. 2018.

7. T. Sasaki, Y. Maeda, M. Nakamura, N. Fukushima, ”Simultaneous Pro-
cessing of Image Upsampling and Detail Enhancement with Directional
Filter,” (in Japanese), Picture Coding Symposium of Japan and Image
Media Processing Symposium, Nov. 2017.

8. Y. Maeda, N. Fukushima, ”Acceleration of FIR Filtering According to
CPU Microarchitecture,” (in Japanese), Picture Coding Symposium of
Japan and Image Media Processing Symposium, Nov. 2017.

9. Y. Murooka, T. Sasaki, S. Yamashita, Y. Maeda, N. Fukushima, ”Ac-
celerated Local Linear Filtering with Chroma Subsampling,” (in Japanese),
Picture Coding Symposium of Japan and Image Media Processing Sym-
posium, Nov. 2017.

10. K. Watanabe, Y. Maeda, N. Fukushima, ”Improvement in Accuracy of
Constant Time Bilateral Filtering by Switching IIR Gaussian Filtering
Considering Stability,” (in Japanese), Picture Coding Symposium of
Japan and Image Media Processing Symposium, Nov. 2017.

11. Y. Kawasaki, Y. Maeda, N. Fukushima, ”Fast DCT Denoising Using
Post-scaling DCT of FMA Instrucitons,” (in Japanese), Picture Coding
Symposium of Japan and Image Media Processing Symposium, Nov.
2017.

95

12. Y. Murooka, T. Sasaki, M. Nakamura, Y. Maeda, N. Fukushima, ”TECH-
NICAL REPORT OF GUIDED FILTER WITH CHROMA SUBSAM-
PLING AND COVARIANCE,” (in Japanese), IEICE Society Confer-
ence, Sep. 2017.

13. K. Watanabe, Y. Maeda, N. Fukushima, ”Boundary Processing in
Double Precision for Stabilizing IIR Filter in Single Precision,” (in
Japanese), Forum on information technology (FIT), Sep. 2017.

14. Y. Murooka, T. Sasaki, M. Nakamura, Y. Maeda, N. Fukushima, ”Tech-
nical Report of Downsampling for Guided Filter by use of Color Con-
version,” (in Japanese), Tokai-Section Joint Conference on Electrical,
Electronics, Information, and Related Engineering, Sep. 2017.

15. K. Watanabe, Y. Maeda, N. Fukushima, ”Double Precision-Based Bound-
ary Processing for Stable IIR Filtering in Single Precision for Real-Time
O(1) Bilateral Filtering,” (in Japanese), Tokai-Section Joint Conference
on Electrical, Electronics, Information, and Related Engineering, Sep.
2017.

16. Y. Maeda, S. Yamashita, M. Nakamura, N. Fukushima, H. Matsuo,
”Image Rearrangement for Vectorized Operations in FIR Filtering,”
(in Japanese), Technical report of IEICE. IE, May 2017.

17. M. Nakamura, Y. Maeda, N. Fukushima, ”Acceleration of Guided Fil-
tering for Cache Efficiency,” (in Japanese), National Conventions of
IPSJ, Mar. 2017.

18. Y. Maeda, N. Fukushima, H. Matsuo, ”Basic Study on Seven-Segment
LED Digits Recognition by Using Binary Template Matching,” (in
Japanese), Picture Coding Symposium of Japan and Image Media Pro-
cessing Symposium, Nov. 2016.

19. Y. Maeda, Y. Ishibashi, N. Fukushima, K. Suzuki, ”Work Efficiency
Comparison of Haptic Control Schemes in Remote Robot Control,” (in
Japanese), Tokai-Section Joint Conference on Electrical, Electronics,
Information, and Related Engineering, Sep. 2015.

20. K. Suzuki, Y. Maeda, Y. Ishibashi, N. Fukushima, ”Influence of net-
work delay on pen strokes in bilateral remote robot control with haptic
sence ,” (in Japanese), Technical report of IEICE. CQ, Aug. 2015.

96

21. K. Suzuki, Y. Maeda, Y. Ishibashi, N. Fukushima, ”QoE Assessment
of Operability in Remote Robot Control with Force Feedback,” (in
Japanese), Technical report of IEICE. IN, May 2015.

22. Y. Maeda, K. Suzuki, Y. Ishibashi, N. Fukushima, ”Influence of Net-
work Delay on Work Efficiency in Remote Robot Control with Force
Feedback,” (in Japanese), Technical report of IEICE. CQ, Jan. 2015.

23. S. Nakano, Y. Maeda, Y. Ishibashi, N. Fukushima, P. Huang, K. E.
Psannis, ”Influence of Network Delay on Fairness Between Players in
Networked Game with Olfactory and Haptic Senses,” Technical report
of IEICE. CQ, Jan. 2015.

24. Y. Maeda, Y. Okada, Y. Ishibashi, N. Fukushima, ”Subjective Assess-
ment of Sense of Presence in Virtual Environment with Stereoscopic
Vision, Haptic Sense, and Auditory Sense,” (in Japanese), ITE Winter
Annual Convention, Dec. 2014.

25. Y. Maeda, Y. Ishibashi, N. Fukushima, ”Influence of Network Delay on
Sense of Presence in Networked Virtual Enviroment with Haptic and
Auditory Senses,” (in Japanese), Technical report of IEICE. CQ, July
2014.

26. Y. Maeda, Y. Ishibashi, N. Fukushima, ”Effects of Stereoscopic Vision,
Olfaction, and Haptic Sense on Sense of Presence in Virtual Environ-
ment,” (in Japanese), ITE Winter Annual Convention, Dec. 2013.

27. Y. Maeda, Y. Ishibashi, N. Fukushima, ”QoE Assessment of Sense of
Presence in Virtual Environment with Haptic and Auditory Senses,”
(in Japanese), Tokai-Section Joint Conference on Electrical and Related
Engineering, Sep. 2013.

28. Y. Maeda, P. Huang, Y. Ishibashi, N. Fukushima, S. Sugawara, ”As-
sessment of Sense of Presence in Virtual Environments Using Olfac-
tory, Haptic, and Auditory Senses by Pair Comparison Method,” (in
Japanese), IEICE General Conference, Mar. 2013.

29. M. Sithu, Y. Maeda, Y. Ishibashi, ”Influence of local lag on interactivity
in networked haptic drum performance,” IEICE General Conference,
Mar. 2013.

30. Y. Maeda, P. Huang, Y. Ishibashi, N. Fukushima, S. Sugawara, ”Ef-
fects of Olfactory, Haptic and Auditory Senses on Sense of Presence

97

in Virtual Environments,” (in Japanese), Technical report of IEICE.
Multimedia and virtual environment, Jan. 2013.

98

Appendix A

Pixel Subsampling vs. Kernel
Subsampling

In this section, we compare image subsampling to kernel subsampling in bi-
lateral filtering. Figure A.1 indicates the processing time, as well as the
accuracy of image and kernel subsampling. It is indicated in the figure that
processing time for image subsampling is reduced relative to that for ker-
nel subsampling. However, the PSNR for image subsampling remains lower
than that for kernel subsampling. In Figure A.1c, kernel subsampling is
greater than image subsampling. This indicates that kernel subsampling has
a greater accuracy for the same processing time.

0

200

400

600

800

1000

1200

16 32 48 64 80 96 112 128 144 160 176 192

P
ro

ce
ss

in
g

 T
im

e
[m

s]

Radius of Kernel [pixel]

1/4 Kernel subsample
1/16 Kernel subsample
1/4 Image subsample
1/16 Image subsample

(a) Processing time.

0

10

20

30

40

50

60

16 32 48 64 80 96 112 128 144 160 176 192

P
S

N
R

 [
d

B
]

Radius of Kernel [pixel]

1/4 Kernel subsample
1/16 Kernel subsample
1/4 Image subsample
1/16 Image subsample

(b) PSNR.

0

10

20

30

40

50

60

0 200 400 600 800 1000 1200

P
S

N
R

 [
d

B
]

Processing Time [ms]

1/4 Kernel subsample

1/16 Kernel subsample

1/4 Image subsample

1/16 Image subsample

(c) PSNR vs. processing
time.

Figure A.1: Processing time for and accuracy of image subsampling and ker-
nel subsampling with respect to kernel radius of FIR filtering. (a) Processing
time; (b) PSNR; (c) PSNR vs. processing time. Image size is 512 × 512.

99

Appendix B

Implementation of Bilateral
Filter in OpenCV

The weight function of the bilateral filter in OpenCV implementation is de-
fined as follows:

f(p, q) := EXPs[p− q]

EXPr[|I(p)r − I(q)r|+ |I(p)g − I(q)g|+ |I(p)b − I(q)b|]

EXPs[x] := exp(
‖x‖2

2

−2σ2
s

),

EXPr[x] := exp(
x2

−2σ2
r

).

The distance function of the range kernel is not the L2 norm; thus, the
range kernel is approximated. Moreover, the shape of the spatial kernel
is circular in this implementation. When the kernel shape is circular, the
number of referred pixels is smaller than when the kernel shape is rectangular;
therefore, this implementation deviates majorly from the näıve bilateral filter.
Moreover, we can incorporate this type of approximation in our approach.
After using the OpenCV’s approximation, our result is accelerated even
more, but the resulting images are overly approximated. Therefore, we do
not use the approximation.

101

