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CHAPTER 1

INTRODUCTION

Systems used in the production of goods and delivery o.f services constitute the
vast majority of most industry’s capital. These systems are subject to deterioration
with usage and age. System deterioration is often reflected in higher production costs
and lower production quality. To keep production costs down while maintaining good
quality, preventive maintenance is often performed on systems subject to det‘erioration.
The growing importance of maintenance has generated an increasing interest in the
development and implementation of preventive ma.iﬁtenance models for deterioration
systems. During the last decades, ggrea.t deal of studies have been made for preventive
maintenance model. At the present time, there is still a great need for investigating
such models as the growth in the compiexity of modern systems. |

Shock models with additive damage are an important class of preventive mainte-
nance models for deteriorating systems. A system is subject to a sequence of randomly
occurring shocks, and each shock causes'a random #mount of damage which accumu-
lates additively over time. The system might fail at times of shock arrival. Upon
failure, the system must be replaced by a new one having pfoperties that are statisti-
cally equivalent to the original, and a cost is incurred. The system may be maintained
or replaced before failure at a smaller cost. To give an op.fimal maintenancéf replace—
meht policy for such systems, shock models with additive damage have been bstudied
in quite a number. of recent articles. In these shock models presented by former re-
‘searc'hers, the influences of "randomly varying environment” on systems have not been

considered. Only Waldmann [66], we know, has given a shock model with additive



damage in which an ”environment process” was introduced, but that is for a lattice
damage process and discrete time case.

In ma,nyjca.ses of application, the behaviors of systems depend not only on shock.
processes, but also on ”environments” where systems are. The environments may be
external factors of an economical or technical nature as well as internal factors of a
statistical nature. For example,

(a) Consider a system that receives two types of shocks at random points of time.
The corresponding damage processes are related each other, and each type of shocks
may cause the system to fail. One of them can be regarded as the ”environment”
process.

(b) Consider a system with a mo&ulator whose states can be described by a Markov
jump process. The system is subject to shocks, and the probability characteristics of
shocks (for instance, the distributions of intershock times and shock magnitudes) are
dependent on the state of the modulaior. Hence, the Markov jump process of the
modulator can be taken as the environment” process.

(c) Consider a system subject to independent shocks. The distributions G,,(-) and
H,.(-) of the shock magnitudes #nd the intershock times are assumed to be incom-
pletely known, i.e., m € M is a unknown parameter. Just after every shock arrival,
the parameter m has to bebestima.ted by Bayesian statistical method. The estimation
process of parameter m can be referred as the "environment” process.

Therefore, it is necessary to consider influences of random factors in analyzing
optimal preventive maintenance problems for systems subject to deterio;ation.

In this thesis, we mainly investigate optimal preventive maintenance- replacement
problems of systéms existing in randomly varying environments which can be described
by Markov jump procesées. Systems are subject to a sequence of randomly occurring
shocks and to fziilure. Shock arrivals and shock magnitudes are influenced by changes
of environment state. The shock procesé and environment process are assume to

be continuous time processes. We construct a new damage process by these two



processes which generalizes the damage processes given by the former researchers.
Under nature conditions, we derive optimal maintenance—replacement policies for the
long-run average cost per unit time and the total expected discounted cost criterions
respectively. These policies are different from tra.d_itional optimal policies because the

shock process is influenced by the second process—the environment process.



1.1 The description of the problem

First we describe in detail the shock model analyzed in this thesis.

Cohsjder a system existing in a randomly varying environment. The environment
changes can be described by a Markov jump process called Markov environment pro-
cess (MEP). The system is subject to a sequence of randomly occurring shocks, and
each shock causes a random amount of damage which accumulates additively. The
shock arrivals and shock magnitudes are influenced by changes of the environment
state. The damage process is assumed to be a piecewise semi-Markov process (PSMP)
which is constructed by the shock process and the environment process. Any of the
shocks or the changes of the environment state might cause the system- to fail. The
survival probability at a shock time point or a change time point of the environment
state is determined by a known survival function of the accumulated damage level, the
environment state and the realized shock magnitude. Upon failure, the system must
be replaced by identical one and a cost is incurred. The system can be maintained or
replaced before failure at a smaller cost. The replacement time and maintenance time
are assumed to be negligible, and the replacement cycles are repeated indefinitely.

The mathematical descriptions of the above shock model and definitions about

some concepts to be used are given as follows.

(I) The enviroment prbcess of the system

Let {¢(#)};50 be a stochastic process specifying the environment changes of the
system. ‘The process {{()}5 is assumed to be a stationary‘regular Markov jump
process with the state space I' and the initial state {(0). Let R be a o-field of I such
that one point set {{} € R, and {wn}n30 (wo = 0) the jump points of {{(1)};5o. The
Q(&, A) is a Markov kernel on (T, R) with Q(§, {¢}) =0, i.e.,, Q(§,+) is a probability
measure for every £ € T, and Q(-, A) is a2 R-measurable function for every A € R. For

any A € R and 1 € Ry, let”



P(E(@nt1) € A, nt1 — wn < HE(S), 8 < wa) = Q(E(wn), A)(1 — €@ (1.1.1)

where 7 : ' — Ry is a finite function. We call {£(1)},5, Markov environment process

(MEP).

(II) The damage process of the system

Let Ry = [0,00) and S Borel-field of R4. Forany (¢, z0) € I'x Ry, let {Z(¢ .0)(?)}ex0
be a semi-Markov process with the state space R and the initial state Z(¢ ,,)(0) = zo.
The semi-Markov kernel of the process {Z(; ,,)(f)}:>0 is defined as follows.

For any z,z € Ry,and t € Ry,

P(Z(g,00)(To41) = Z(e,20)(T8) S 8,704y — T U Zg0y() = 2)  (1.1.2)
= J§ Gi(z|s)HE(ds)

- where {7{}n>0 ( 7§ = 0) are the jump points of the process {Z¢,2)(1)}e0, H(-) is the
conditional probability distribution of the intershock time 7¢ +1— 7%, and G&(-]t) is the
conditional probability distribution of Z(f,,o)(‘r,f +1) = Z(e,20)(78) given Z(g ) (18) = z
and 7., — 7} = 1. We suppose that {Z,,,)(t)}:>0 be a 1ight-continuous regular
process with left;hand limits. .‘
Now, by appealing the process { Z(¢ .y}:>0, we define the stochastic process {Z(#)}e>0
which specifies the cumulative damage of the system in one replacement cycle such

that Z(0) = 0 and Z(t) = Z(¢ z(uw,—))(t —w) on {wn <1< wpy1;€(wn) = ¢}. That is,

Z(0)=0 (1.1.3)
Z2(1) = Z(g(0),0) M jo<t<in} T Tzt Z(¢(wn) 2(wn=)(t = Wn)fun<tcwns1}-

The process {Z(#)}e>o is also a right-continuous regular process with left-hand limits .

At the points wy,n > 1, Z(wy,) = Z(wp—), and on the interval [wy,, w,41), the process



{Z(1)}e>0 is a semi-Markov process dependent on the environment state ¢(w,). We

call {Z(t)}s>0 piecewise semi-Markov process(PSMP).

(III) The survival function of the system

In our models, a failure of the system can occur only at the time points of shocks
or changes of the MEP state. Let T be such a time point, suppose §(T—) =>£ and
Z(T-) = z. At-time T, .ii' a shock of magnitude z occurs, then the system fails
with known probability 1—+(z,¢,z), and if a change of the MEP state into the state
¢ occurs, then the system fails with known probability 1 — 7(z,¢ ,0.). The function
v: Ry XT x Ry — [0,1] is teferred to as the survival function of the system. Let A be
" the failure state of the system and § the first failure time of the system. Throughout

we assume that E[6] < oco.

(IV) The maintenance and replacement costs of the system
m(f, z) and ¢(¢, z) represent respectively the maintenance cost and replacement
cost of the system at the state (¢,2), and ¢(¢, A) represents the replacement cost at

failure. In Chapter 1 and 2, ¢(¢,2z) = C > 0 and ¢(¢,A) =C + Cp > 0.

(V) The stopping time, control-limit and state-age dependent policies
Definition 1.1. For ¢ > 0, let S be the o—field generated by the two-dimensional
process {£(1), Z(t)} up to time 1, i.e., |
Se = 0((§(s), 2(9)), s €[0,1)). | (1.1.4)
For a random variable T, if
{T<t}e forallt>o, | (1.1.5)
then T is called S¢—stopping time.
Definition 1.2. A replacement policy is called the control-limit policy if the
system is replaced upon failure or when the damage process exceeds a critical control
process, whichever occurs first. |

Definition 1.3. A replacement policy is called the stdte-age dependent policy if



the system is replaced upon failure or the sojourn time in a state (¢, z) reaches a

threshold level A(¢,2) which is a positive real-valued function.

(VI) The cost criterions
1. The long-run average cost per unit time.

2. The total expected discounted cost.

‘Remark.

(1) It can be seen that if the environment of the system is restricted to only one
st'a.te (i.e. the case that the influences of the environment is not considered), the
process {Z(1)}s>o defined in (1.2) becomes the semi-Markov damage process given
by Posner and Zuckerman [51]. Moreover, if {Z; ,,)()}i>0 is taken as a compound
Poisson process with the intensity p(¢), then the process {Z(?)}«>0 is a conditional
compound Poisson process with the random intensity p(¢(?)).

(2) When the system is replaced, if the environment state does not restore to the
initial state £(0), the successive replacement periods of identical systems no long form
a renewal process. This is different from the traditional shock models in which the
sgccessive replacement time points is a renewal process.

Throughout the thesis, the term ’increasing’ will be used to mean ’non-decreasing’

and ’decreasing’ to mean ’non-increasing’, and the following will be standard notation:

FPenl-1=P[- o =¢ 20 = 4]
B[ 1= E[- o =1i,2Z0 = 7]
E¢,)| - s BIA] = E[ -xBléo =i, Z0 = 2, 4]

" where A and B are events, xp is the indicate function of the set B.



1.2 Review of the literatures

Now wé‘review the related literatures.

The Ieplé;:ement shock models with additive damage have been studied in quite a
number of recent articles. An excellent survey of the theory of optimal replacement of
systems subject to shocks, specifying results up to 1989, can be found in Valdez-Flores
and Feldman [65] The shock models with various additive damages are investigated
and the optimal replacement policies are given.

Taylor 7[61] studies the shock model that shocks occur according to a Poisson
ﬁrocess and the damage process caused by shocks are independent and identically
exponential variable. The replacement cost before failure and at failure, ¢(z) = C > 0
and ¢(A) = C + Cy,Cp > 0, respectively, are constants independent of the damage
level at the time of replacement. Taylor derives the long-run average cost per unit
time expression and proves that the optimal policy is control-limit rule.

Feldman [26,28] generalizes Taylor’s model by allowing the times between shocks
to be arbitrarily distributed and dependent on the #ccumulated damage. He assumes
that the cumulative damage is a increasing semi-Markov process and finds the optimal
policy among the set of control-limit policies that replace only at shock times. Feldman
[27] studies the same problem for the total expected discounted cost and without the
restriction to control-limit policies. He proves that the optimal policy, among the
policies that replace at shock times, is a control-limit policy provided some conditions
are satisfied, but no algorithm is given to find the optimal policy.

Feldman’s models allow failures and replacements at shock times only. Aven and
Gaarder [11] look .;n a very similar shock model where the system can fail at any time
with a probability that is conditional upon the history of the process. They show that
if the conditional failure rate of the system is increasing, the policy that minimizes
the long-run average cost per unit time is a control- limit rule. They do not give an

algorithm to solve the problem.



Siedersleben [60] considers a éystem that deteriorates continuously, but whose state
is observed only at random times T5,. The problem can be regarded as a shock model
whé'ré, the c.umulative deterioration between times 7,7 and T,,— is z,-1, and the
magﬁiﬁiid_e of the shock at time T}, is Z, — 2,~1. He assumes that the process forms
a Mark.o-v renewal process and that the inspection cost is negligible. The replacement
cost ¢(z) is assumed to be a increasing function of the cumulative deterioration level.
Under some monotonicity conditions, Siedersleben proves that a control-limit policy
is optimal for the total expected discounted cost criterion.

Zuckerman [72] generalizes Feldman [26] by allowing replacement at any time
before failure instead of being restricted to at shock times only. Zu;:kerman uses an
(Z,Y) process that describes the cumulative deterioration level Z and time elapsed
time since the last shock Y in order to prove, under some conditions, that the optimal
replacement time that minimizes the long-run average cost per unit time calls for
replacement upon failure or when the (Z,Y) process is lexicographically bigger than
or equal to (2*,y*), whichever occurs first. Thus, his policy is a combination rule of a
control-limit policy and a state-age dependent policy. |

Abdel-Hameed and Shimi [7] generalize Taylor’s cost model by allowing the re-
placement cost before failure to be a increasing convex function of the cumulative
damage, where the damage caused by shocks are independent and identically dis-
tributed random variables. They use martingale theory to show that the optimal re-
placement is a control-limit rule when replacement can be made only at shock times.
Zuckerman [68] analyzes Abdel-Hameed and Shimi’s model and proves that the opti-
mal policy given in their article is optimal among all replacement policies that consider
replacement at any stopping time before failure, i.e., the optimal policy replaces at
shock times so that the restriction to replace only at shock times can be dropped from
Taylor’s and Abdel-Hameed and Shimi’s models. Zuckerman’s proof is based on the
fact that the time between shocks is exponentially distributed.

Abdel-Hameed [3] considers the optimal replacement problem when the damage

9



process is a nén-homogeneous Lévy process. In [4] he studies a system that is subject
to shocks by using an increasing pure-jump strong Markov process. The system is
assume to fail once its cumulative damage process exceeds a threshold. He shows
that for this general jump process, a control-limit policy is optimal for the long-run
average cost per unit time, provided some conditions on the cost are satisfied. Abdel-
Hameed [2] treats the optimal maintenance problem when the deterioration process is
increasing pure jump Markov process that is monitored periodically. In [6] he considers
the optimal replacement and maintenance of systems subject to semi-Markov damage.
The system is assume to have a random threshold, and it fails once the cumulative
damage process exceeds it. He determines the optimal replacement policy, within
the class of control-limit policies, according to the total expected discounted cost and
long-run average cost per unit time criterion.

Bergman [15] presents a general model for optimal replacement when the policy
is based on the measurement of an increasing state variable, such as the cumulative
damage caused by shocks. He does not assume anything about the damage process,
other than it is increasing. A replacement can take place at any time before failure. He
shows that the policy minimizing the long-run average cost per unit time is a control-
limit policy. Bergman gives a convergent iterative algorithm to find the optimal policy.

Nummelin [47] studies the same general model as Bergman’s, except that the
replacement costs before failure, and at‘failure are random variables dependent on
the history of the system up to time ¢, i.e., the costs are non-negative stochastic
processes adapted to the damage level of the system. He proves that the optimal rule
is a control-limit policy and gives an iterative algorithm, very similar to Bergman’s,
to find the optimai replacement time. Aven [8] uses a counting process approach to
present setup, for a large class of replacement models. Several of the shock models
discussed before fall into this general setup.

Kao [36] considers the optimal state-age dependent replacement problem and gives

a detail analysis by using semi-Markov decision theory on the discrete time parameter
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space. Gottlieb [32] studies a system subject to shocks occurring according to a semi-
Markov process with the time between shocks being random variables dependent on
ﬁl_g deterioration level. His model can replace the system at any time before failure.
Gottlieb relaxes the assumption that the failure rate is increasing with respect to the
cumulative damage. He proves that weaker conditions are sufficient for the optimal
replacement policy to be of the control-limit class using the long-run average cost per
unit time criterion. He gives an algorithm to find the optimal policy for the case in
which the state space is or can approximated by a lattice grid. His policy is a state-age
dependent rule that replaces as soon as the time since the last shock reaches some
threshold level which is a function of the accumulated damage.

Feldman and Joo [29] study a similar problem. They have the time between shocks
being independent and identically distributed random variables with an increasing
failure-rate distribution function. They also find the optimal state-age dependent
policy that minimizes the long-run average cost per unit time, and prove that the
optimal state-age dependent policy is a decreasing function with respect to the state
space. They give an efficient algorithm to find the optimal policy and compare it with
other algorithms.

Mizuno [42] studies the same problem as Gottlieb [32] and transforms it to what
he calls a generalized mathematical programming problem, which can be reduced to a
version of a linear program if the state and action spaces are finite. the main result in
Mizuno is the proof of the optimality of the control-limit policy under weaker sufficient
conditions.

Posner and Zuckerman [51] study the same problem as Gottlieb [32] and present
the same results under weaker suﬁicient conditions for both the long-run average
cost per unit time and the total expected discounted cost. They give different sets
of conditions for the cases in which the system can be replaced at any time before
failure. They also prove that the optimal policies for both cases replace at éhock

times, provided some conditions are satisfied in the cumulative hazard rate and the
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distribution of times between shocks.

Some results have been published for the cases in which system deterioration occurs
continuously as we as induced by shocks at discrete points of time. Feldman [25]‘
generalizes his previous works by allowing shocks to occur continuously during a time
interval. This model aséumes that the cumulative damage is a semi-Markov process
for every deterioration period. He proves that, among the policies that replace within
the sets of deterioration times only, the one that minimizes the lbng-run average
cost per unit time is a control-limit policy. Zuckerman [71] studies a system that
the accumulative deterioration through a continuous ”wear” process and eventually
fails; i.e., the model allows an infinite number of shocks in a finite period of time. The
system can be replaced at any stopping time before failure. The policy that minimizes
the long-run average cost per unit time is shown to be of the control-limit class.

The shock models presented above have considered replacement or not replacement
as the only two possible maintenance actions that can be taken at every deterioration
level. Several researchers have developed more general models that allow the decision
maker choose one of several maintenance decisions at every damage level that affect
the deterioration process of the system. Chikte and Deshmukh [19] study a system
subject to randomly occuring shocks that can be controlled by continuously preventive
maintenance expenditures. They show that a control-limit policy is optimal and that
the maintenance expenditure rate should be reduced as the deterioration level increases
to the control-limit.

Valdez-Flores [64] studies a system that can be repaired to better damage levels
at a cost that depends on the deterioration of the system and the extent of the repair.
At every shock a/decision is made whether to repair or to leave the system as is. He
uses Markov renewal processes to model the problem, and gives sufficient conditions
for the policy that minimizes the long-run average cost per unit time to be a pseudo-
control-limit policy.

Yamada [67] describes the shock model by using a general jump process. The

12



replacement cost before failure is a function of the @cumulated damage and the time
of the replacement, while the replacement cost at failure is fixed. He uses martin-
éde theory to show that the optimal replacement time can be found explicitly under
appropriate conditions for the cumulative deterioration process and the cost function.

~The models presented thus far are analyzed under assumption that the system is
only subject to shock, not influenced by other factors such as environment, temper-
ature, etc. In some cases, these factors are important measurements that must be
c‘onsidered, in order to give a more appropriate replacement policy for the system.
Waldmann: [66] includes an ”environment process” to the regular shock model. In
particular; he considers that each shock causes a discrete or lattice random amount
of damage depending on the realization of a stochastic process describing the envi-
ronment. Furthermore, he assumes a limited dependency between the environment
process and the shock magnitudes. He proves that the policy that minimizes the total
expected discounted cost is a rule that replaces the system whenever the accumulated
damage exceeds a critical nuxﬁber that depends on the state of the enviroment, and

does not replace otherwise.
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1.3 Outline of the thesis

In the following we summarize the thesis. This thesis consists of Instroduction,
Chapter 2-4, Conclusion and References.

Chapter 2 considers an optimal replacement problem of the system existing in
an randomly varying environment that can be described by a Poisson process. The
system receives z;. sequence of randomly occurring shocks, and each shock causes a
random magnitude of damage. Shock arrivals and shock magnitudes are affected
by state changes of the Poisson environment process. For the long-run average cost
per unit time as well as the total expected discounted cost, we derive the optimal
stopping times on the two class sets of replacement policies: (1) the replacement
can be made only at shock times or jump times of the Poisson environment process;
(2) the replacement can be made at any stopping times before failure. By defining
an integer-valued random variable, we prove that the optimal Ieplécement policies
are control-limit rules dependent on the Poisson environment process, and give the
control-limit processes and the corresponding bounded processes. Furthermore, the
results obtained there can be extended to the case that the environment process is a
increasing Markov process with a constant jump rate. At the last, applications of the
model are given.

Chapter 3 investigates an state-age dependent optimal replacement problem for a
network system consisted of a main-system and a sub-system with N components. The
~ component’s functioning times are exponentially distributed random variables with
the same parameters, and every failed component is repaired by one repairman by
taking an exponentially distributed time. The main-system is subject to a sequence
of randomly occurring shocks and each shock causes a random amount of damage.
Shock arrivals and magnitudes depend on the accumulated damage level of thé main-
system itself and the number of the functioning components of the sub-system. Any

of the shocks or component’s failures might cause the main-systen to fail. By using
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the Markov decision theory, we derive an optimal state-age dependent Iepiacement
policy which minimizes the long-run aveiage cost per unit time. The results can be
aﬁblied to the case that the environment process is a general Markov jump process.
At the later, we investigate two-special cases.

Chapter 4 analyzes a generally optimal maintenance-replacement problem of the
system. The randomly varying enviroment is described by a general jump Markov
process. The system is subject to shocks influenced by changes of the environment
state. The system can be maintained or replaced at any time before failure, at costs
dependent on the environment state and the accumulated damage level. We allow
that the damaged system become to *better” after every maintenance, i.e., the dam-
age level of the system has an randomly decreasing magnitude which is assumed to be
stochastically decreasing with respect to the accumulated damage level. Furthermore,
we assume that the state of the environment process does not change when the system
_ is replaced. In this case, analysis is difficult by the general renewal theory because the
. successive replacement period; of identical systems no longer form a renewal process.

For the total expected randomly discounted cost, we derive, by the Dynamic pro-
gramming method, an optimal maintenance-replacement control-limit policy which is
a function dependent on the environment process.

Conclusion summarizes the results of the thesis, and states the optimal mantenance-
replacement problems to be examined in the future.

References are provided in the end of the thesis.
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CHAPTER 2

OPTIMAL REPLACEMENT UNDER ADDITIVE DAMAGE
IN A POISSON RANDOM ENVIRONMENT

2.1 Introduction

In this chapter we consider a system existing in a random environment. The
randomly varying environment is described by a Poisson process called Poisson en-
vironment process (PEP). The system receives shocks at random points of time and
is subject to failure. Each shock causes 2 random amount of damage which accumu-
lates additively over time and depends on the environment state. The damage process
is assumed to be a piecewise semi-Markov process (PSMP) which is constructed by
the shock process and the environment process. Any of the shocks or the changes of
the environment state might cause the system to fail. The survival probability at a
shock time or a jump time is determined by a known survival function of the state
of the PEP, the accumulated damage level and the realized shock magnitude. Upon
failure, the system must be replaced at a cost C > 0 along with an additional penalty
cost Cp > 0. The system may be replaced before failure at a cost of only C. The
replacement cycles are repeated indefinitely.

We investigate optimal stopping time problems for such the system by the sam-
ple’s analyzing method that has been used to derive optimal stopping times of the
systems subject to shocks by many researchers. For example, Taylor [61] studies the
shock model 'where the cumulative damage process is a compound Poisson process.
Feldman [26,28] generalizes Taylor’s model by allowing the times between shocks to

be arbitrarily distribution and dependent on the accumulated damage level. Abdel-
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Hameed [3] considers the optimal replacement problem when the damage process is a
non-homogeneous Lévy process. In [4] he studies a system that is subject to shocks
by using an increasing pure-jump strong Markov process. Zuckerman [72] and [68]
‘-‘genera.]izes respectively Feldman [26] and Abdel-Hameed and Shimi [7] by allowing
replacement at .any time before failure instead of being restricted to at shock times -
only. Posner and Zuckerman deal with optimal stopping time problems that the dam-
age process is a semi-Markov process. Yamada [67] analyzes the shock model by using
a general jump process, etc. The sample’s analyzing method for shock models can be
described as follows.

Let II be a stopping time set of a damage process {Z(t)}:>0, and ©r the expected
cost incurred up to random time T € II. If there exists a increasing function g(-) such
that

or = BT o(2()di, (2.1.1)
then infren Or = infren E[JT 9(Z(1))d1]. (2.1.2)
In general, Z(?) is an increasix;g process, the optimal stopping time can be get by the
following.

T* = min{inf{t; ¢(Z(%)) > 0}, 6} ' (2.1.3)
where § is the first failure time.

Depending on damage processes of systems, the various methods have been used in
deriving formula (2.1.1). For instance, the infinitesimal operator method for Markov
damage processes (see rl‘laylor [61], Zuckerman [68,72]), the martingale method for gen-
eral jump processes (see Yamada [67]). In this Chapter, we present sum representing
forms different from the integral representing form (2.1.1) by defining an integer-valued
random variable. In this chapter, we do not restrict our attention to these stopping
times for which replacements are made only at shock times or jump times of the en-
vironment process, i.e. the general stopping rules will be examined. Furthermore, we
consider the long-run average cost per unit time case as well as‘the total expected

discounted case. The distributions of the intershock times and the shock magnitudes
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in present model depend on the environment state and the accumulated damage level.
We prove that the control-limit policies are optimal over the stopping times valued
only at shock times or jump times of PEP. For the general stopping time case, we
derive the combiﬁation policies of the damage level’s control-limit and the state-age
dependent policies like that given in Zuckerman [72].

Although oi)timal replacement problem of the system is discussed only under a
Poisson random environment, in fact, the conclusions can be easily extended to a case
where the environment process is a increasing Markov process with a constant jump
rate.

This Chapter is organized as follows, in Section 2.2, the PSMP shock model is
formulated, and in Section 2.3 and 2.4, optimal replacement policies for the long-run
average cost and the expected discounted-cost are considered respectively. In Section _

2.5, two application examples are given.
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2.2 The model and Preliminaries

In this Chapter, the environment of the system is described by a Poisson process,
ie., () = N(t) where {N(#)},5, is a Poisson process with the intensity 5. The state
space N4={0,1,2,...} and the initial state is N(0) = 0. Let {wn}n>0 be the jump
points of {N(t)};59, wo = 0. Then P(wp41 —wy < 1) =1—€77 for n > 0. We call
{N(t)}s>0 Poisson environment process(PEP).

For any (i,20) € N4 X Ry, let {Z(; ,)(1)}:>0 be a semi-Markov brocess with the
state space Ry and the initial state Z(;,,)(0) = Zg; The semi-Markov kernel of the

process {Z; ,,)(¥)}¢>0 is defined as follows. For any £,2 € Ry,and t >0, let

P(Z(i,20)(Tnt1) = Z(i20)(Ta) £ 23 Thgr = Th S UZ(iz0)(Ta) = 2) (2.2.1)
= [o Gi(als)Hi(ds)

where {7} }n>0 (7§ = 0) are jump points of {Z(; ,)(¥)}ez0, Hi(+) is the conditional
distribution of the intershock time 7., — 7i given Z(,-,,o)(r,';) = 7z and Gi(4s) is
the conditional distribution of Z ) (7i41) — Z(i,2)(7s) given Z(; ,)(7i) = z and
78,1 — 7. = 5. We suppose that {Z(;;,)()}:>0 be the right-continuous regular brocess
with left-hand limits.

The stochastic process {Z(t)}¢>o specifying the accumulative damage of such a

system is defined by the following.

Z(0) =0 » (2.2.2)
Z(1) = Z(0,0) (M jo<ecwr} T Lzt Z(N(wn) 2wn=)t = Wn)jun<t<wnsi}-

According to the definitions of {Z(;,)(#)}e>0, (i, Zo) € N4+ X Ry, we know that the
procéss {Z(t)}e>0 is also accumulatively additive and right-continuous procesé with
left-hand limits . At the points w,,n > 1, Z(w,) = Z(wn—), and on the interval

[Wn,wn41), the process {Z()}i>0 is a semi-Markov process which depends on the
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environment state N(w,). We call {Z(t)}i>0 piecewise semi-Markov process(PSMP).

The successive jump points of the two-dimensional process {N(t), Z(1)}¢>0 is de-
fined as follows.
To=0

Tps1 = inf{t > Tn; N(1) # N(Ty) or Z(t) # Z(Tn)} forn 2> 0.

Let
Zn = Z(T») ' (2.2.3)
Xnt1 = Zn+1 — Zn for n2>0 :
N, = N(T,).

For the embedded process { Ny, Zyn, Tn}n>0, we have the following Proposition.

Proposition 2.2.1 The process {Npn, Zn,Tn}n>0 is 2 Markov renewal process and
(a) ®i(n) = P(Np41 = No|Zn = 2, Ny = i) = q [§° Hi(s)e ™ ds.
(0) P(Xn41 £2,Tnq1 —Tn L2, = 2, Ny = i)
= J£ 2 Gialu) Hi(duynemds + f§ G (o) Hi(du)e™
+Jo(1 - e Hi(ds) + (1 - ") H3(1)
where Hi(t) =1~ Hi(2).

Proof. Let Sy, S; represent respectively the first interval length from 7, to the next
shock arrival and the first interval length from T, to the next jump of PEP. Then
P(S1 € 1|2y = 2,N, = i) = Hi(t), P(S2 £ 1|Zn = 2,Np = i) = 1 — ¢ and
Tn+1 — T = min{Sy, S2}. We have
(2) ®i(1) = P(S1 < S3|Z0 =2, N, =)
= [° P(S1 £ S2|S2 = 8,2n = 2, Ny = §)dP(S2 < 8|Zpn = 2, Np = 1).
(b) P(Xn41 £ 2, Tp41 =T L U2 = 2, Ny, =4)
= P(Xn1 € 2,Taps = Ta < ;51 < SalZn = 2, N, = i)
+P(Xn+1 £ 2,Tn41 = T S5 < 51120 = 2, Nn =)
= [P P(Xn41 < 2,Tn41 — Tn < 4,51 £ Sa|S2 = 8,2y = 2, N, = i)
xdP(S3 < 8|Zn = 2, Ny, = i)
+ [P P(Xn41 £ 2,Tnp1 — T £ 4,52 < S1|S1=8,Z, = 2, N = i)

xdP(S1 < 8|Zp = z,Ny, = 1).
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The conclusions (a) and (b) follow from introducing the conditional distributions of
S, S into the above equalities. O

We have defined the damage process {Z(t)};>0 of the system. Just after the
j’ump point of the {N (t)}t20 , this process evolves as a semi-Markov process that the
distributions of the intershock times and the shock magnitudes are dependent on the
state in which the {N(#)},5, entered. The state space of the {Z(#)}i>0 is R4. Let
6 be the first failure time of the system, and throughout we assume that E[§] < co.
A failure can occur only at the shock times or jump times of PEP. At time T, < §,
let Z, = z,N, = i. The system fails at T}, 4+; with probability 1 — v(i,z + z) if Tp,4;
is a shock point and the shock magnitude is z , and with probability 1 — v(i + 1, 2)
if Tn41 is a jump point of PEP , where the function v(:,+) : Ny X R4 — [0,1] is the
survival function. In this case, if T),, = 6 for some ng € N4, then we define T, = § for
all » > no on one replacement cycle. In order to use the general renewal arguments
for replacement models, we consider the optimal replacement problem for this system

under the following assumption:

(A) The environment process {N(t)}:¢>0 restores to the initial state N(0) without
any loss of time when the system is replaced, and the damage process is repeated by

(2.2.2).

Let Ri(z,1) = Jr, G2+ )G (dz|t), (2.2.4)
R{(2) = g, Ri(z,0)e " Hi(d1). (2.2.5)

Then Ri(z,1) is the probability that the system will survive at Th4 in state (1, 2),
conditional on T41 — Ty, = and Ty41 is a shock point. Ri(z)is the probability that
the system will survive at T,4; in state (i,2), conditional on that Ty,4; is a shock
point. Similarly, let _

Ri(2) = y(i+1, 2). (2.2.6)

Then Ri(z) is the probability that the system will survive at T4, in state (i, 2),
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conditional on that 7,4 is a jump point of the PEP .

Let II be the class of all stopping times T with respect to the process {N(t), Z(%)}e>0
such that T < 6, and let £ C II be the subclass of these stopping times for which
a replacement can be taken only at the shock times or PEP’s jump times. We will

consider optimal stopping problems on classes = and II respectively.
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2.3 The long-run average cost case

According to assumption (A) and using standard results in renewal theory, we

know, the long-run average cost is the expected cost over a replacement cycle divided

by the expected duration between replacements. That is, the average cost ¥

ated with a replacement policy 7" < 6 can be expressed as follows

_ E[C + Coli7-5)]
Y= )

.

Let ¥*(E) =infrez ¥r;  ¥* =infren Y7
pr(E) = C+CoP(T = 6)— ¥*(E)E[T]
pr = C + CoP(T = 6§) - T*E[T].

Lemma 2.3.1. For any s € N4,z € Ry, T, <6,
(1) P(Tn41 = 6|Tn < 6, Zn = 2, N = i) = 1 = Ri(2) — Ry(2)(1 — &i(n)).
(i) E[Ta4s = TalTn < 6,20 = 2, Ny = i) = A(1 = ®i(7))

where A = ™1,

Proof. (i) By using S1 and S defined in Proposition 2.1, we have
P(Th41=6Tn < 6,2, = z,Ny, =)
= P(Tp41=6;51 £ 5a|Tw < 6,Z, = 2, Ny, =)
| +P(Tots = 655 < Si[Tu < 8,20 = 2, Np = )
= 057 I} 0571 = oy 2 + 2))Gida|u) Hi(duyne=ds
+ 157 [o(1 = (i + 1, 2))ne™™ Hi(ds)
= 3(1) = Ri(2) + (1 - R§(2))(1 — &(n))-
(ii) From Proposition 2.1 (b), we get
P(Tp41 - T, L 1|2, = 2, N, =)
= J3 Hi(s)ne ™ ds + Hi()e™™ + [§(1 - e™1*)Hi(ds) + (1 — e ™) Hi(1).
‘E[T,,H = Tol|Th < 6,2 = 2z, Ny = i) = [§° te" Hi(dt) + [5° tne " Hi(t)dt
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=1_ [ e M H(1)dt, a

Lemma 2.3.2. An optimal replacement policy T*(E) (T*, respectivelly) minimizes

Y in E (in H)lf and only if it minimizes pr(Z) (p1).

Proof. By the definition (2.3.3), it follows that infrez pr(E) = 0. If Uru=) = ¥*(Z),
then prez) = 0 and ¥zezy < (C + CoP(T = §))(E[T])™Y, we ha;re pr(Z) =
C + Co — ¥7.=)E[T] 2 0 = pgez) for all T € E. On the other hand, if pr+z)(E) =
infrez pr(E), pr+=)(E) £ pr(E) forall T € E, and ¥* = (C+Co P(T*(E)))E[T*(E)))H).
We have ¥rpuz) < Ur(E) for all T € E. The proof is completed. o

The minimization of pp(E) can be viewed as a stopping problem with respect to the
two-dimensional process {N(t), Z(t)}¢>0. Forevery T € Z and w € 2, T(w) = Ty(w)
for some n € N4, corresponding to this n, define an integer-valued random variable

L as follows.

_Jn if Tp(w) < 6(w) (2.3.5)
L) = { R otherwise
where ® = inf{n; T,(w) = §(w)}. Therefore, we have T(w) = T, )(w) for every

w € N, ie., T =TL as., and pr(E) = pr,(Z).

Theorem 2.3.3. For T € &,
p1(E) = p1,(E)
= E[ C+Xi55{Colt - RY"(Z5) = RY"(Za)(1 - 357 (n))]
T E)AQ1 - ()} P(Ta < 6) ]
= E[ C+ T55[BN(Z0) — ANM(Z,)|P(Tw < 6) ]
where for 1 € N4,z € Ry
Ai(z) = TH(E)A(1 - 25(n)) (2.3.6)
Bi(z) = Co[1- R{(2) - Rj(2)(1-2;(n)))- (2.3.7)

Proof. By the definition of L, we have -
p1(E) = Lnen, E[C + Coliy=s) — V' (E)ILIL = n]P(L = n) (2.3.8)
= En€N+ E[C + COI{T,,=6} - U*(E)T,)P(L = n).
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Since
E[Ii1,=5)] = E[l{1,=6} I (T _, =6}] + El{T,=6}]{T\_,26}]
- = E[Iiz,_,=5)] + E[ E[li7,=6}|Ta~1 < 6, Zn—1, Nn—1] 1P(Tp-1 < §)
= Blljg, ,=s)] + Bl = B (Zat) = B (Znct)(1 - 2571 (0) ]
XP(Tn-1 < 6),
E[T,] = E[T.Iir,_,=5)] + E[Tnliz,_, 26)]
= E[Tp-11{z,_,=5)]+ E[Tn-11{1,_,#5)] + E[ E[Tn—Tp1|Tr—1 < 6, Zp—1, Nn—1] ]
' X P(Tp-1 < 6)
= E[Tp-1] + BN - 8371 (1))] P(Toy < 6)):
E[C + Coliz,=5y — ¥*(E)T:]
= E[C + Colir,_ =5} — Y (E)Tn-1]
+E[ Coll = B (Zn-1) = By (Zama)(1 = 87773 ()]
~U* @M1 = 8707 (1) 1P(Tamy < )
and pr, = C, we get by repegting the above procedure,
pr.(E) = B[ C+ I3 {Colt - B'(Z) - B3 (Z)(1 - 83 (m))]
T E(1 - Z(M)}P(Ti < 6) 1.
Introducing this equality into (2.3.8), we complete the proof. a
Hence, determining a stopping time in Z is equivalent to determining L for every

w € . Next, we first consider optimal stopping problem on =.

Assumption 2.3.4.
(a) Ri(z)and Ri(z) are decreasing in z and in i.
(b) H}(t) is increasing in z and in i.

Roughly speaking, assumptions (a) implieé that survival function v(1, z) is decreas-
ing in z and in 4, and (b) means that the intershock times will becorﬁe shorter and
shorter and the damage magnitudes caused by shocks will become larger and larger
with increasing of the damage level and the state of PEP. In this sense, we refer that

the environment state become worse and worse.
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By assumption 2.3.4, we have that @' (9) is increasing in z and in i, A'(z) is
decréasing in z and in ¢, and B"(z) is increasing in z and in i. Therefore, for any
2 € Ry

Bi(z) — A'(2) < B (2) — At1(2) i€ Ng. (2.3.9)

Fori € Ny, let

f) = { inf{z; A‘(2) < Bi(2)} if{...} £0 (2.3.;0)

00 otherwise.

By the monotone properties of A*(z) and B(z) in z and in i, we can see that if
{...}i, =@ for some iy € N4 where {...};, is the definition set of f(i) , {...}; =0

for all { < ip. Thus by the definition of f(i) and (2.3.9), we get the following result.
Lemma 2.3.5. f(i) is decreasing in i.

Theorem 2.3.8. Under Assumption 3.3, the policy with the control-limit process

f(N (1)) is an optimal stopping policy in E.

Proof. Let S =URy{z; A'(z) < B'(2)}, define a stopping time such that

oo [ min{inf{t>0; Z(t)> AN@)), 6 HS£G  (23.11)
T(E) = ) otherwise .

We first consider the case that & #@. Since N(¢) and Z(¢) are increasing jump
processes in ¢, f(N(t)) is decreasing jump process in ¢, we have T*(E) € E. By
Theorem 2.3.3,
pr=)E) = B[ C+ Lr5 BN(Za) - AN(Z,))P(Ta < 6) |-

From the definition of T*(Z), for w € §, we have
AN OO (f(Npoy(w)) € BN @OO(F(Npa)(w)) and Zpage)(w) 2 FH(Npe)(w))-
Hence BNL‘(U)(”)(ZL.(w)(w)) - ANL‘(w)(“)(ZL.(w)(w)) >0 |
and BN @1 (Zp ) () = AN @1 (ZL0 ) 1 (0)) <O,
Furthermore, |

BN~W)(Z, (w)) = AN (Z,(w)) > BNE @ )(Z ey (w)) = AV N (Z Ly (w))
ifn > [W), and  BY(Z,(w) = AME)(Z,(w))
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< BNe @1 Z )y (W) = AN @O (Z L0y ()
if n < L*(w). Thus, for any T € E, we have
p1(E) — pr+(z)(E)
= E[ [CE21-[BM(Za) — AN(Z24)]P(Tn < 6) [I(1314)]
~B[ [SE3 (B (Za) — AN (Za)IP(Ts < 6) Ugepn]
> 0.
When & =@, we get that A*(z) > B(z2) for all i € N4,z € Ry. This implies that
policy 6 is optimal stopping time. Therefore T*(Z) is optimal in = and this completes
the proof. a
Remark. By the monotone properties of A*(z) and B'(z) in z and in i, & =@ if
and only if lim;— o A*(0) > lim;—o B*(0).
In the case that the damagé process of the system is PSMP, the control-limit is

no longer a constant, but is the function of the environment process PEP.

Corollary 2.3.7. For every environment state 1, let
a(i) = inf{z; T*(E)A < Co(1 — Ry(2))}. (2.3.12)
Then f)<a(i)  forallie Ny.

Proof. Since f(#) can be rewritten as follows ,

£) =int{z  Co(@i(n) - Bi(2)) +[Co(1 - Bi(2)) — T*(E)N(1 - i(n)) 2 0 },
and &:(9) — Ri(z) > 0. Therefore f(i) < af(i). a

From this Corollary, we know that f(N(t)) < a(N(t)) a.s.. Hence we call a(N(?))
the bounded process of the control-limit process f(N(t)).

Next, we consider the wider class II of all stopping times.

For any T € II, there exists n such that T, (w) < T(w) < Typ41(w) for w € Q.
Define L(w) as in (2.3.5), and Sp(w) = T(w) — Ty (w). We have Ty, < T < Tr4+1 and

T=Tr+S5L.

Theorem 2.3.8. For any T € II,
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pr = pr,+ E[CoP(TL+ Sy, = 8T < 6,Z1, Np) = Y*E[SL|TL, < 6, 2L, NL]|P(TL < §)

where pr, is obtained from Theorem 2.3.3 by replacing ¥*(Z) by ¥* in (2.3.6).

Proof. For T € II, we write T = T + S, then
EIir=s}= Ellir=5}I{z,=5)] + Ellir=6)I {11 %6)]
= E[l{iz,=6)] + E[ ElIry+s,=8)TL < 6,20, Ni] |P(TL < 6)
E[T] = E[TI{z,=5)] + E[TT{z,24)]
= E[Tp 7, =5)] + E[TLI{1,26)) + E[ E[SL|TL < 6, Z1, Ni] 1P(TL < 6).
By introducing these equalities into the definition (2.3.4) of pr, we obtain the conclu-
sion. a -
In the following, assume that H:(s) has the continuous density function hi(s). Let
ri(s) = ;‘7%;((—")5 be the hazard rate associated with the distribution function H}(s), and

Y (1) the time since the last shock or the jump of PEP, i.e.,

Y(t) = t—max,>0{Tn; Tn <t} fort>0. (2.3.13)

Now, we introduce a lexicographic rule in the state space Ry X Ry. v = (z,$) is

called lexicographically positive, written v > 0, if v % 0 and the first non-vanishing

coordinate of v is positive. We can order all states contained in the state space of the
bivariate process {(Z(t),Y(1))}¢>0 by using the lexicographic rule,

(21,81) = (22,82) if (21— 22,81 — 83) >~ O.

Assumption 2.3.9.
(a) Ri(z,s)is decreasing with respect to the lexicographic order for every i and
decreasing in i. Rj(z) is decreasing in z and in i.
(b) i(s) is increasing with respect to the lexicographic order for every i and
increasiné in 1.
Although Assumption 2.3.9 is restrictive, some interesting cases satisfy. For ex-
ample: the case in which the intershock time at state (z,1) is characterized by the

exponential distribution with parameter A(z,1) that is a increasing function in z and
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in { respectively, etc. See Zuckerman [72] and Posner and Zuckerman [51] for details.

Theorem 2.3.10. Under Assumption 2.3.9, the policy with the two-dimensional
. control-limit process g(N(t)) defined in the following is an optimal stopping policy.

Fori e Ny,

g(£)={ inf{(z, s); K(i, 2,8) >0} if{...} #0 (2.3.14)

(00, 00) otherwise

where inf is taken according to the lexicographic order and

K(i,2,8) = Co(1 — Ri(z,8))ri(s) + Co(1— Ri(2))p— T*. (2.3.15)

Proof. Define a stopping time T™ as follows.
T* = min{inf{t > 0; (Z2(¢),Y(?)) » g(N ()}, 6}, (2.3.16)
From Theorem 2.3.8, we have
pre = prye + ElCoP(Tie + Sp» = 6|Tie < 8, Zge, Np») = U E[Spe|Tge < 6, Zpe, Nio])
X P(Tre < 6).
It is sufficient to show that T* is optimal. For any s > 0, let 7(8) = min{s,Tn4+1 —Tn},
then from Proposition 2.2.1, we have
E[r(s)|Tn < 6,2, = 2,N, = 1]
= E[1(8); Tn41 ~ Tn < 8|10 < 6,2 = 2, N, = i]
| +E[7(8); Tn+1 — Ty > 8|1y < 8,2 = 2, Ny = i}
= [ e HE(d) + [ ne Hi(0)dt + sHi(s)e™
= py = ui(s)Hi(s)e™™
where pi(s) = [Hi(s)e ™| [t — s)e M Hi(dt) + [°(t — s)ne " Hi(t)dt], and
ui = A1 = ¢4 (n)). Moreover,
P(T,+7(8)=06|Tp < 6,2, = 2,N, =1)
=P(Ta+7(8)=6;51 < S52;51 < 8|1y, < 6,Zp = 2, Ny, = %)
+P(T, +7(8) = 6; 52 < 51352 < 8|1 < 6, Z, = z,Np, = i)
= Jo Jo(1~Ri{(z, w) Hi(du)ne ™" di+(1~ Ry(2))[fg (1~ ") Hi(dt)+(1—e™*) Hi(s)].

The expected marginal cost from waiting an 7(s) units of time is
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K1(i,2,8) = CoP(Ts + 7(8) = 6|T < 6, 2 = 2, Ny = i)
~U*E[r(8)|Tn < 6,Zp = 2,Np = i]
= Co{Jy fo(1 — Ri(z,u)) H(du)ne™""dit
+(1 = Ri(2)[g (1 — ™) Hi(dt) + (1 = e™*) Hi(s)]}
[~ () Ei(s)e ™)
Differentiating K (i, 2, 8) with respect to s, we get
2 K1(i,2,8) = Co[(1 = Ri(2,9))hi(s)e™ + (1= Ry(2))ne ™ Hi(s)] - ¥ H;(s)e™
= [HAi(s)e™™]) 1K (i, 2,3).
For every i, we have K(i,z,3) is increasing with respect to lexicographic order from
Assumption 2.3.9. Therefore, there exists (2*(i),$*(é)) such that K(i,z,s) < 0 if
(z*(i), s*(§)) > (2,) and K (4, z,8) > O otherwise. Note Ki(f,2,0) = 0, thus K;(i,2,$) <
0 if (2*(i), 8*(i)) > (z,s) and Ky(i, z,$) > O otherwise. By the lexicographic rule, we
have $*(i) = oo if z < 2*(i), 0 < 8*(§) < oo if 2 = z*(i), and s*(§) = 0if z > 2z*(i).

Thus

<0 for z < 2*(3)

Ki1(i, 2,00) = B'(z) - A'(2) { >0 for z > 2*(i),

and

s <0 for s < s*(i)
Ky (i, 2" (i), 9) { >0 otherwise.

Furthermore, K (4, z, ) is increasing in i, so that if (z,8) > (2*(4), s*()), K(j, 2,8) > 0
for all j > i. We get that prlpcre} < prelir<r+y <0, prlsee} > prlir>14),
and pri{L=r+s.<53.} < Prel{L=L5.<5;.) £ 0,
prl{L=rr5.>53.) > Prol{L=L~;5.>51.}-

Forall T € II,

T+ — P1

= (pr+ = pr) (<L} + (Pr — PT) (1> L0}
+(pr+ = pT){L=L2;5.<53,} + (pTe — PT)(L=L0;5,>53,) S O-

Therefore T* is optimal stopping time in II and this completes the proof. a
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2.4 The discounted-cost case

By assumption (A), for any replacement policy ' < §, the total expected dis-

counted cost can be expressed as follows

_ E[(C + Coljr=s))ezp(—pT)]

O = =T Bleap(~4T)] (2:4)
where § is a discounted factor. Let
O*(E) =infrezOr; ©O* =infren©r (2.4.2)
er(E) = E[(C + Coliz=s) + ©*(E))e 1] (2.4.3)
er = E[(C + CoIyr=g + ©*)e™PT]. (2.4.4)

We first consider the optimal policy in Z. An optimal replacement policy T3(Z)
in E minimizes Oz if and only if it minimizes ¢7(Z). By the former arguments, for

any T € E, T = Ty, where L is defined by (2.3.5) and ¢7(E) = o1, (E).

Theorem 2.4.1. For T € &,
er(8) = o1, (E)
= E[ C+0*(E)+ LS5 {[(C+0"(E))25 (8, 1)+Co [p, e~ PrH(1- RY™(Z,, 1)) Hp" (d1)]

+¢[C + ©*(E) + Co(1 — R (Z,)))(1 - @5~(8,m)) — (C + ©*(E))}
XEle™PTrIig.<5)] ]
= E[ C+0*(E)+ Li55[DV(Za) - (C + ©* (@) Ele T [i1,<5)] ]
whete  Di(z) = [(C + ©*(E))8L(8,1) + Co [g, e B4 (1 - Ri(2,1))Hi(d1)]

+9[C + ©*(E) + Co(1 — Ri(2))](1 — 2(8,n)) (2:4.5)
and  8i(8,1) = (B+n) [p, Hi)e Fttdt; o= . (2.4.6)

Proof. Similarly to the proof of Theorem 2.3.3, we have
o1, () = E[(C + Col{1,=5) + ©*(E))e~#T"]

= E[(C + COI{T,.:&} + @*(E))e—ﬁT"I{T,‘_l:a}]
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+E[(C + Colyr,=5) + ©*(E))e~PT L1, _, <4)]
= E[(C + Coliz,_,=5} + ©*(E))e~PTr=1I1r, 5] + E[(C + 0*(E))e~PTn-1Ii7. _ <]
+E[ E[(C+Colr,=5)+9©*(E))ePTr-1e=PTn=To-0|T, s < §, Zn—1, Nni] ]
X P(Tn—y < 6) = E[(C + ©*(E))e~PTr-1Ii7,_, <]
= or,_,(E) + E[ E[(C + Colir,=s) + ©*(E))e A Tn=Tr-0|T,_; < 6, Zn—1, Np—1]
—(C +0*(8)) 1E[e 1Lz, _, <s}ls
and E[(C + Colir,=5) + ©*(E))e PTn=To-D)|T;,_y < 6, Zp—1, Nyi]
= (C +0*(2)2377 (8,1) + Co [, e C+M (1 = R (Znmt, ) Ho) (d1)
+0[C + ©*(E) + Co(1 = By "™ (Zu-))](1 = 2277 (8,1)),
and g7,(Z) = C + ©*(Z). Repeating the above procedure and using (2.3.8), we com-
plete the proof. a
Here, the arguments about the discounted cost are similar to that about the long-
run average cost. We will prove that a control-limit policy in Z or II is an optimal
stopping policy and the control-limit is a function of the process N(t). We make the

following assumption.

Assumption 2.4.2.
(21) Ri(z,1)and Ri(z)are decreasing in z and in i, and Ri(z,1) is also decreasing

in t.

Lemma 2.4.3. Under Assumption 2.4.2 and 2.3.4 (b), we have
(i) D'(z) defined in (2.4.5) is increasing in z and in i.

(i) fp(3) is decreasing in i, where for ¢ € N4

fai) = { inf{z; C+0*(E)<D(2)} if{..}#0 (2.4.7)

00 otherwise.
Proof. (i). Note that D(z) can be rewritten by
¢[C + ©*(E) + Co(1 - Ry(2))] + 55 (C + ©*(E))2L(8,m)

+Co(fr, e~ P[54 + (0 Ry(2) — Ri(2, ) H(d1).

By the Assumptions 2.3.3 (b), we have (8, 7) is increasing in z and in i, and by
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Assumption 2.4.2, for z; < 29,
Jn, €L+ (pR5(22) — Ri(22, 1))} H, (d1)
> [n, €L 4 (pRY(21) — Ri(21,))]H}, (40)
> [g, P E 4 (pRY(21) = Ri(21, O)IHE, (d1).
Similarly, we have for i € N,
Jr, P+ (P RS () — RYY (2, 1)) HiY! (d1)
> [p, e P[5 + (0Ri(2) — Ri(z, ) Hi(d).
We can see that Co [p, e'(ﬂ‘*”)‘[ﬁ% + (¢Ri(2) — Ri(z,1))]Hi(d?) is increasing in
z and in i. Hence D'(2) is increasing in z and in .

(ii). From the conclusion of (i), if {...};; =@, then {...}; =@ for i < iy where {...};

is the definition set of fz(i). Hence fg(¢) is decreasing in t. a

Theorem 2.4.4. Under Assumptions 2.4.2 and 2.3.4 (b), the policy with the control-

limit process fg(N(t)) is an optimal stopping policy in E.

Proof. Let & = URy{z; C+ ©*(E) < D(2)}, define a stopping time T3 (E) such that

() = min{inf{t > 0; Z(t) > fa(N(t))}, 6} HS#D (2.3.8)
5(2) = ) otherwise.

We first consider the case that & #@. Since N(¢) and Z(t) are increasing jump
processes in 1, fg(N (1)) is decreasing jump process in f, we have 7* € 5. By Theorem
4.1, |
o13(2)(8) = er.(2)(E)
= E[ C+©0"(E)+ L5 [DV(Za) - (C + ©*(E))Ele T I i1, <s)] |-

n=0

From the definition of T*(Z), for w € 2, we have

C+0*E)< DNL'(w)(“')(fﬁ(NL.(w)(w)) and Zp.(,)(w) 2> fe(Npe)(w)). Hence
DY) Z () - (C + O%(E)) 20

and  DNE@-10)(Zp. 1 (w)) = (C + ©*(E)) < 0.

Furthermore,

DN)(Z,(w)) = (C 4 ©*(E)) 2 DNe@@)(Z 0,y (w)) = (C+ ©*(E) ifn > L*(w),
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and  DMO(Z,(w)) - (C + O%(E)) < DN&1)(Z 1) 1(w)) = (C + 0°(E))
if n < L*(w). Thus, for any T € E, we have
oT — 014(2)
= B[ (SE25DM(Z0(w)) - (C + 0 @Bl Iz, <s)]} za10) ]
~ Bl {SEPDY)(2a(w)) - (C +O*(E)| Ele T Iy, ey |
> 0.
When § =@, we get easily D*(z) < C + @*(E) for § € N4,z € R;. This implies that
policy 6 is optimal. Therefore 7*(Z) is optimal and this completes the proof. a
Remark. By the monotone property of Di(z) in 7 and in i, & =@ if and only if

lim; .o D(0) < C + ©*(E).

Corollary 2.4.5. For every environment state ¢, let
ap(i) =inf{z; C + O*(E) < ¢[C + ©*(E) + Co(1 — Ri(2))] }. (2.4.9)
Then, Ts(8) < ap(i) foralli € Ny.

Proof is similar to that of Corollary 2.3.6. We obtain the bounded process ag(N(t))
of the control-limit process fg(N(t)).
Next we consider optimality in the wider class II. Similarly to Theorem 2.3.8, we

have

Theorem 2.4.6. Y¥or any T € II,
er = o1, + E[ E[(C + Colig45,=6) + ©*)e ™ PSL|TL < 6,2, N — (C + ©%) ]
XE[C—‘STLI{TL<6}]

where o7, is obtained by replacing ©*(Z) by ©* in Theorem 2;4.'1.

Theorem 2.4.7. Under Assumption 2.3.9, the policy with the two-demensional
control-limit process gg(N(?)) defined in the following is an optimal stopping pol-

icy. Fori € N,

0o(i) = {inf{(z,s); KB(i,z,8) > 0} if {...} #0 (2.4.10)
A (00, 00) otherwise

34



where inf is taken according to the lexicographic order and

KP(z,i,5) = Co(1~ Rj(#,8))r(s)+Co(1 —Ré(z)jﬂ—(c+@*)(ﬂ+n)- (2.4.11)

.Proof. Define a stopping time T as follows.
T; =min{inf{t > 0; (Z(1),Y (1)) » gp(N (1))}, 6}, (2.4.12)
Similar to the proof of Theorem 2.3.10, let 7(s) = min{s,Th41 — Tn}.for any s > 0,
we have
E[e~P™|T, < 6,Z, = 2, N, =]
= [ [Ee P Hi(du)pe " dt + 3 e~PUHi(du)e™™*
+ fg Jo ne”B¥meduHi(dt) + [§ ne~(PAmuduHi(s) + i i(s)e~(Bn),
and  E[I{1,+r(s)=6) PO T < 6, Np =i, 25 = 2}]
= Is Jo e7P%(1 — Ri(z,u)) Hi(du)pe " dt + fJ e=P4(1 — Ri(z,u)) Hi(du)e
+(1 = RY(2)g Jo ne P+ dulj(dt) + J§ ne= P+ dull{(s)].
The expected discounted marginal cost from waiting an 7(s) units of time is
Kf(i,2,8) = E[(C + Col {1, +r(s)=8) + O%)e "I, < 6, N, = i, Z, = z}]
—(C+0%) |
= (C+0"){fg Jo e P Hi(du)ne ™ dt + [ e~P* Hi(du)e™™
+ J3 fs ne=BHmudy Hi(dt) + [ ne=B+muduTi(s) + Hi(s)e=(F+m)]
+Colfg fo 7P (1= Ri(z,v)) Hi(du)pe " dt+ [§ e™P*(1—Ri(z, u)) Hi(du)e ™™
+H(1 = Ry()fg Jo ne”FH duli(dt) + [ ﬁe"(”+”)“duf1§(8)]- |
—(C +07).
Differentiating Kf(i, z,8) with respect to s, we have
L KB(i, 2,5) = Col(1 — Ri(z, )i (s)e=+n* 4 (1 = Ri(z)ne=(B+n Ti(s)]
~(C+0")(8+ me B+ Ei(s)
= [e=(B+ms i ()7L KA (4, 2, ).
Under Assumption 2.3.9, KA(i, 2, s) is increasing with respect to lexicographic order
for every 3. By the same arguments as in the proof of Theorem 2.3.10, wé obtain the

conclusion that T 5 1s an optimal stopping time. a
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2.5 Application

The e"xgvironment process may be external factors of an economical or technical
nature as well as internal factors of a statistical nature. Next we give two examples
which can be well examined by our model.

Application 2.5.1. Suppose a system receive two types of shocks at random
points of time and the damage processes be accumulatively additive. Assume one

damage process be a compound Poisson process such as
N(t)
Mi)=> Y, (2.5.1)
n=1
where N(t) representing the shock number in [0,1] is a Poisson process with the
parameter 7 , N(0) = 0. Y,,n > 1 are ii.d random variables with distribution
P(Y, = k) = px,k € N4, and independent on N(1).
The other damage process Z(t) is assumed to be a piecewise semi-Markov process

defined by (2.2.2). In this case, the general assumption (A) is satisfied automatically,

and (2.2.6) becomes the following

3(2) = f: 7@+ &, 2)pr. (2.5.2)
k=1

We can examine the optimal Iepla,cemént problem of the system by taking the damage
process M (1) as the environment process. |

Example 2.5.2. Consider a computer network system comprised of a main-
system and m sub-systems. The network system is new at time ¢ = 0. The lifetimes
of the sub—systemé are independent and exponentiajly distributed random variables
with the same parameters: F(f) = 1 —e™" for ¢t > 0. When sub-systems fail, the
minimal repair is taken. The minimal repair cost of one sub-system is K and the
minimal repair time is assumed to be negligible. Let N (1) be the total minimal repair
numbers of the sub-systems in [0,7]. Then N (%) is a Poisson process with parameter

mn. The main-system is subject to a sequence of randomly occurring shocks. Each
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shock causes a random amount of damage which accumulates additively and depends
on the state of the N (). Any of shocks or failures of the sub-systems might cause the
main-system to fail, and upon failure of the main-system, the network system must
be replaced at cost C + Cp where C is replacemex_lt cost before failure of the main-
system. Z(t) defined by (2.2.2) represents the damage process of the main-system.
The optimal replacement for this computer network system can be well examined by

our model. In this case, for example, the long-urn average cost is

_ E[C+ Y7L n K Iin(r)=n} + Col{7=4)]
¥ = BT _ , (2.5.3)

and

pr=C+ i nKP(N(T) = n) + CoP(T = §) — ¥*(E)E[T). (2.5.4)

n=1

Similarly to Theorem 3.5, we can prove that the policy with the control-limit process
f(N(t)) is an optimal replacement policy, where for i € N,
f() =inf{z;  ¥*A(1 - &% (mn)) < Co[1 — Ri(z) — Ri(2)(1 — &i(mn))]
+E(1 - Ri(2))(1 - @ (mn)) ) | (233.5)
and A = [my]~L.
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CHAPTER 3

AN OPTIMAL STATE-AGE DEPENDENT REPLACEMENT

FOR A NETWORK SYSTEM

3.1 Introduction

The present Chapter deals with an optimal state-age dependent replacement prob-
lem for a network system composed of a main-system and a sub-system with N core-
ponents. The component’s functioning times of the sub-system are independent and
exponentially distributed random variables with the same parameters. Every failed
component is repaired by one repairman by taking an exponentially distributed ran-
dom time. Repaired components are as good as new. The main-system is subject
to a sequence of randomly occurring shocks and each shock causes a random amount
of damage. Shock arrivals and Iﬂagnitudes depend on the accumulated damage level
of the main system itself and the number of the functioning components of the sub-
system. Any of the shocks or component’s failures of the sub-system might cause the
main-system to fail. The survival probability is determined by a known function of
the accumulated damage level, the number of the functioning components and the re-
alized shock magnitude. Upon failure of the main-system, the whole network system
stops to function. We replace the main-system at a cost C' + Cp in which C > 0 is the
replacement cost before its failure. At the same time, we take the emergency repairs
for all failed components. The emergency repair cost of every failed component is K.
The replacement times and the emergency repair times are assumed to be negligible.

Those procedures are repeated indefinitely.
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We are motivated to study the optimal replacement problem for such a network
system in part by the importance in modern practice of such system. In a computer or
communication network system, for example, the centrai computer can be considered
as the main-system. The functioning behaviors of the central computer are not only
dependent on states itself, but also influenced by the state changes of sub-computers
or other computer-aid equipments in the whole computer network. Therefore, it is
necessary to consider affect of those sub-computers when we examine the optimal re-
placement problem for the central computer. Furthermore, in our model, we construct
the damage process of the main-system by a shock process and a Markov process which
expresses the number of the functioning components of the sub-system. As can be
seen below, our model may be applied to optimal replacement problems of systems ex-
isting in a Markov random environment, systems with a Markov modulator or systems
subject to two types of dependent shocks.

In this Chapter, we consider the optimal state-age dependent replacement problem
by using semi-Markov decision theoretic approach. The general theory of the semi-
Markov decision process has been studied by many reseachers. For example, Ross
[54, 56], Lippman [40], De Leve and Federgruen and Tijms [22, 23], etc. The optimal
state-age dependent replacement problems investigated by using semi-Markov decision
i)rocess have been considered by Kao [36], Gottlieb [32] and Kurano [39]. Kao [36] gives
the details by using semi-Markov decision theory on the discrete time parameter space.
Gottlieb [32] derives the form and properties of optimal replacement policy through the
Markov decision theoretic method, and gives conditions for which a control-limit policy
is optimal. Feldman and Joo [29] obtains a closed form expression for the optimal
state-age dependent policy and develops a practical algorithm for finding the optimal
policy. In those models, the behaviors of shock processes and other characteristics are
only dependent on accumulated damage level of systems, not subject to influences of
changes of external or internal environment of systems, or other system’s states. In

this sense, every system is considered as an independent single-unit system. In present,
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considering the mutual influences of the main-system and sub-system, We derive an
optimal state-age dependent replacement policy dependent on the functioning process
of the sub-system for the infinite horizon long-run average cost per unit time. It should
be noticed that the optimal replacement policy of the network system in this Chapter
can be not obtained By the sample’s analyzing method given in Chapter 2 because
the functioning process of the sub-system is not increasing Markov process.

Chapter 3 is organized as follows. In Section 3.2 we formulate our model as a
semi—Markov,decision process and give some preliminary results. In Section 3.3 we

prove that an optimal state-age dependent replacement policy exists, and in Section

3.4, we give an optimal replacement policy. In 3.5 we discuss some special cases.
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3.2 Model and Preliminaries

Consider a network system composed of a main-system and a sub-system with
N components. The network system is new at time ¢ = 0. The lifetimes of the
components of the sub-system are assumed to be independent identical exponential
distribution Fy(1) = 1 — e~ for t > 0. Every failed component is repaired and the
Iepair time is a random variable having the distribution Fy(t) = 1 — e~ for ¢t > 0.
There is only one repairman and repaired components are as good as new. The emer-
gency repairs for all failed components are taken only at times when the main-system
is replaced and the emergency repair cost ihcuned for every component is K. Let the
process {I(?)}¢>0 express the number of the functioning components of the sub-system
at time ?. The state space of {I(?)}e>0 is E = {0,1,..., N}, and the initial state is
I(0) = N. Let {wn}n>o be the transition times of {I(1)}e>0 , ie., w, is a time at
which a component fails or a failed component is restored to functioning. The Markov
transition kernel of the process {I(wn),wn}n>0 is

P(I(wn-i-l) = j;wn-i-l - Wy S t II(wn) = ')

(1 -ty =19 N-Lj=i-1

1+ .
(1 —e @ty =g N -Li=i+1 (3.2.1)
=9 1—e~Mnt i=N;j=N-1
1—e™ i=0;5=1
0 otherwise.
= pij(1 — e#i¥)

where p; = i+ 6;n A, and ;5 = 0if i = N and 1 otherwise. In this Chapter we take
{{t}t>0 as the environment process, i.e., £(t) = I(t). The {I(t)}¢>0 is called Markov
environment process (MEP) of the main-system.

The main-system is subject to a sequexice of randomly occurring shocks and each
shock causes a random amount of damage on it. Shock arrivals and magnitudes
depend on the accumulated damage level of the main system, and the number of the

functioning components of the sub-system.
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Let {Z(; »)(t)}e>0 be a semi-Markov process with the state space Ry and the ini-

tial state Z(; ,,)(0) = zo. For any z,z € Ry, and t € R4, the semi-Markov kernel of

Z(;,zo)(i) is

P(Z(i,20)(Ta21) = Z(i,20)(Th) € 2,y = T8 S 120 00)(78) = 2) (3.2.2)
= Jo Gi(zls)H'(ds) '

where H'(-) is the probability distfibution of the intershock time 7 ,; — 7 and G%(-|t)
is the conditional distribution of Z; ,.)(7i,,) — Z(,-,zo)(r,‘;) given Z(,-’zo)(r,’;) = z and
‘r,';+1 — i = 1. We suppose that Z(i,z)(1) be a right-continuous regular process with
left-hand limits.

Now, by appealing to {Z(; ,.)(t)}>0, We define the process {Z(t)}¢>0 which de-
scribes the cumulative damage level of the main-system such that Z(0) = 0 and

Z(t) = Z(;,z(wn-))(t — wn) on {wn <t <wpy1; I(ws) = i}. That is,

2(0)=0 (3.2.3)
Z2(1) = (1,0 joct<in} + Taz1 21y, 2(0n=)t = Wn) {un<tcwnys}-

The process {Z(#)} >0 is also right-continuous regular process with left-hand limits
- At the points wy, n > 1, Z(ws) = Z(wp—) and on the interval [w,, wp41), the process
{Z(1)}e>0 is a semi-Markov process dependent on the state of L,,. The {Z(1)}i>o is
called piecewise semi-Markov process (PSMP).

In this model, a failure of the main-system can occur only at the time points of
shocks or failures of the components of the sub-system. Let T be such a time point,
and suppose Ir— = i, Z(T'—) = z. At T, if a shock with magnitude z occurs, then the
main-system fails with probability 1— (i, 4,z + z), and if a failure of the components
occurs (i.e. the number of the functioning components become § — 1), then the main-

system fails with probability 1 — y(i,i — 1,2). The function 7 : Z x = x R, —[0,1]
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is the survival function. Let § be the first failure time and A the failure state of the
main-system. We assume E[6] < oo throughout.

‘V.Let E =[0,00] and A(Ex(R4+UA), F) be the set of all mapping from Ex (R4 UA)
to F such that A(i,A) = O for any ¢ € Z. Each function A(+,) of A(EX(R4+UA), E)
is calied a decision or an action. The decision A(f,z) =a (a € [0,00)) means that,
when the state at a decision point T’ is (4, z), the replacement for the main-system and
the emergency repairs for all failed components of the sub-system occur at time T+ a
if no decision points occur in the interval (T°,T + a], and A(, 2) = co means that no
any replacement and repair plan are made, i.e., the next decision point is waited for.

An replacement policy is a sequence 7 = (Ao, 41,...); A; €A. If A; = A for all
+ = 0,1,..., we call 7 a stationary policy. Let II be the set of all policies. For
any m € II, we can obtain the decision processes {I"(t), Z™(t)}s>0 which describe
respectively the number of the functioning components of the sub-system and the
accumulated damage level of the main-system at time ¢ under the policy x. The set
{Tn}n>o of the decision points can be defined as the successive jump points of the
two-dimensional process {I™(t), Z™(t)}¢>0 as follows

To=0

Tpt1 = inf{t > To; I7(1) # I(T,) or Z7(1) # Z*(Tp)}, forn >0. (3.2.4)

Let

Z, = 27(T,) (3.2.5)
Iy = I(T) for n20.

Since a replacement action changes the damage level of the main-system to 0, we
can see that {T5,}n>0 contains three-type points (a) shock points, (b) jump points of
MEP and (c) replacement points. For the semi-Markov decision process {In, Zn, Tn, An }n30,

we have the following Propositions.

Proposition 3.2.1. At Ty, suppose Ip = i, Zo = z and Ao(3, z) = a. Then

(a) ®1(i,a) = Pj,)(T1 is a shock point |Ao(i,z) = a)
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= [ Hi()pie™#itdt + H(a)e™#i¢
(b) ®2(i,a) = P ,)(T1 is a jump point of MEP |4o(4, 2) = a)
= [ — R Hid) + Fi(a)(1 - i)
(c) ®3(i,a) = P ,)(Th is a replacement point |Ao(i, 2) = a) = H'(a)e i

where H*(t) =1 - H'(1).

Proof. Let Sy, S2 represent respectively the first interval length from Tp to the next
shock arrival and the first interval length from T to the next jump of MEP. We have
81(i,2) = Pi,.)(S1 < 83,51 < aldo(iy 2) = @) = [ H (Dpie #itdt + Hi(a)e i,
Similarly, we can obtain (b). For (c), we have

®3(i,a) = P,y (min{Sy, S2} > a|do(i,2) = a) = Ai(a)e™®*. O

Proposition 3.2.2. Fori,j € 5,2 € Ry and B€ <
(@) Pin(h=4,21 € BlAo(i, 2) = a)
= X(5=i}fo Jo Jjz4aemy 705,02 + x)Gi(di|t)H£(dt)#i6"“"d3
+ 15 Jzteemy 101, 2+ 2)GL(de|) HE (a1)e ™) + X (2eBYPis1(i, , 2) @2 (i, 0)
+X{j=N,0eB} 23(4, a)
(b) Pl =7, 21 = BlAo(i, 2) = a)
= X (=i} o Jo S, (1 = 70,4, 2 + 2))Gi (da|t) HF (dt) pie™#ids

+ g Jr, (1= 70,6, 2 + 2))GL(de|) HE (dt)e™] + pij(1 = 7(3, J, 2))82(i, 0).

In this Chapter, we consider the infinite horizon long-run average cost per unit
time. Let ¢ and 7 represent the cost incurred during one-step transition interval and
the length of one-step transition interval respectively. &(i,z,a) = E; ,)[c|4o(i, 2) = a]
and 7(i,z,a) = E ,)[r|Ao(§, z) = a] are the expected cost incurred during the tran-
sition interval and the expected length of the transitioﬁ interval when the starting
states are Ip = 1, Zp = z and the action Ay(4,2) = a is choiced. Under the policy =,

the infinite horizon long-run average cost per unit time J~ is defined as follows.
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Ef \[Ero &(Tnm1) Zn—1, An—1))]

. : (i,5) 2ok=t En-1) Zn-1y
J™(,2)= 1 " - :
(5,2) = lim, sup B, o[Zk=1 7(In=1, Zn—1, An—1)]

(3.2.6)
Let J* = inf,reﬁ J™. For some 7 € I, if J* = J*, we call = optimal and write as 7*.

Now we impose the following conditions on the network system parameters which
ensure the existence of an optimal replacement rule.

Condition 1. Gi(-|t) is stochastically increasing in z and in ¢ for every i € E.

Condition 2. H'(.) bhas the continuous density function h*(-) for every i € =.

Condition 3. 7(i,J, z) is decreasing in z for any ¢,j € E, and v(i,i +1,2) =1

fori=0,1,...,N-1;z € R,.

The condition y(§,§ + 1,z) = 1 asserts that the main-system is nét subject to fail
when a failed component is Iéstored to functioning. From Proposition 3.2.1, 3.2.2
and Condition 3, we have the following expected cost incurred during the transition
interval and the expected length of the transition interval, i.e.

&(i, 2, 0) | (3.2.7)
= (C+ Co+ (N = DE)JZ [;(1 = R(G, 2, ) H¥ (dt)pie~Pi*ds

+ [ (1 = R(i, z,8)) H' (dt)e~#i%]
+H(C+Co+(N—i+1)K)(1=1(i,i—1,2)) L 8y(i, a)+ (C+Co+(N i) K)B3(i, a)
where R(3,2,1) = [p, 7(i,i,z+ 2)G: (dz|t).

7(i,z,6) (3.2.8)
= [ Jo tH (A pie™i*ds + [ 1H (dt)emie + Jo Js tuie#itdtH (ds)

+ [ tuie™#itdtH (a) + a®3(i, a).

Let B be the set of all bounded real-valued functions V (i, z) on = x Ry which are

S—measurable for i € E, B* = {V € B; V(i,z) is increasing in z for i € E} and

Il - || the sup-norm defined on B. It is easy to see that B is a Banach space.
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3.3 Existence of an optimal policy

In discussing the existence of an optimal state-age depende_nt policy, we follow a
method similar to one proposed by Ross [54]. The main result in this section is the
following Theorem 3.3.1 which establishes the existence of optimal policy and gives

an approach to obtain an optimal policy .

Theorem 3.3.1. (i) There exists a bounded function V* € Bt and a constant ©*

satisfying the following average cost optimality equation
V*(i,2) = :2};{ &(i, 2,8) = ©*7(i, 2,a) + E; )[V*(I1, Z1)|Ao(i, 2) = 0] }. (3.3.1)

(ii) There exists an optimal stationary policy #* such that
o* = J"" = J*
and 7* is any stationary policy which, in state (4, 2), prescribes an action minimizing

the right side of (3.3.1).

Since, in our model, the action space is not finite, the treatments are more compli-
cated. Before proving the Theorem 3.3.1, we give several lemmas. First, we consider
an optimal solution of the equation (3.3.1) on the restricted action space R, = [¢, 0]
for any fixed € > 0. In order to prove the existence of an optimal solution on the
R, we consider the total expected discounted cost with the discount rate o > 0 and

introduce an operator Uy, such as for any V € B
Ua,eV (i, 2) = dnf { Eg,pple™"(c + VL1, 21)| 4o, 2) = a] }. (3.3.2)

By Proposition 3.2.2, we have
‘ Ua,e(l., 2,Qa, V) = E(,-,z)[e"”(c + V(Il, Zl))le(i, z) = a,]
= Jo Jo e LV (i, 2) Hi(dt)pie™#*ds + [§ e~ LV (i, 2) Hi(dt)e P

o IV (3, 2)[s (1 = e~ (s Hi(ds) 4 (1 — e~(@tmide) [i(q)]

+(C + (N = )K + V(N,0))e=*s(i, a),
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where

LeV(i, 2) = C+Co+ (N — i) K +V(N,0) (3.3.4)
= Jp, [C+Co+(N =) K+V(N,0)-V (i, 2+2)]1(i, i, 2+2)Gi(dz]t)

LV(i,z) = 6;yAV(i +1,2) +ip{C + Co + (N — i + 1)K + V(NV, 0) (3:3.5)

~[C+Co+ (N -i+1)K+V(N,0)—V(i—1,2)]1(i,i — 1,2)}.
Lemma 3.3.2. For any fixed € > 0, U, ¢ is a monotone contraction operator.

Proof. The monotonicity of Uy ¢ is obvious. For any ¢,z and Vi, V, € B, Uy (1, 2,4, V;)
(7 = 1,2) are the bounded continuous functions in a on R, so there exists ay =
a¥(i, z) such that inf,er, Ua,e(i, 2,8, V;) = Ua,e(i, 2,05, V;). I infoer, Ua,e(i, 2,0, V1) >
infoer, Ua,e(, 2,4, V2), we h#ve
| infoer, Ua,e(i, 2,0, V1) — infoer, Uae(i, 2,a,V2) |

< Ua,e(iy 2,85, V1) — Us (4, 2, a3, V2)

< (2103, 83) + Ba(i, 03) + €7 B3(4,a3)) | V = W ||

=g @) IV-w]. |
Since ®1(4, a3) + @2(4, a3) + ®3(3, a3) = 1, and for a3 > ¢, max;sup, ;(i,a3) #0 (j =
1,2), max; sup, ®3(4,a3) # 1 and max;sup, e~ < 1, we have 2 = max; sup, #°(i, a3)
< 1. Similarly, if infoer, Ua,e(5,2,4,V1) < infier, Ua (i, 2,a,Va), we have gl =
max; sup,
Bi(i,a}) < 1. Therefore || Ua,V — Uy W ||< max{gL, 82}x ||V =W ||. a

_Thus, since U, is a monotone contraction operator, it has a unique fixed point

Va,e which is the minimal total expected discounted cost on the restricted action space

R..

Lemma 3.3.3. Under Condition 1, we have
(1) LV (4, 2), LV (i, 2) are both increasing in z for every ¢, and
Ltvt:,e(i’z) < C+ CO + (N —-i+ I)K + V;,e(N) 0)’

LV (i,2) S pi(C+ Co+ (N —i+ 1)K 4+ V7 (N,0)).
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(ii) Vi (4, 2) is increasing in z for every i € E, and

Vidi,2) SC+Co+ (N —i+1)K + Va (IV,0).

Proof. Let Vo = 0,Vu41 = UqyeVy for » > 1. By induction, we first prove that
the assertions (i) and (ii) hold for the mapping sequence {V;}n>o. Since Vo = 0,
(i) and (ii) hold certainly. Suppose that (i) and (ii) are true for an integer =, then
C + Co+ (N —i)K + Vu(N,0) — Vn(i, z + z) is decreasing in z, and by Condition 1,
Jr [C+Co+ (N~ )K + Vo (N,0) = Vo (4, 2)]7(i, §, 2 + 2)G%(dz]t) is decreasing in .
So LV, (i, 2) is increasing in z. From 1— fp_~(i,i,2 + £)G: (dz|t) > 0, we have
LiVa(i, 2) < C+Co+(N —i4+1)K+Va(N,0)= [p, [C+Co+(N—i+1)K +V4(N,0)
—Vali, 2)]7(i, §, 2 + )G (dz|t)
<C+Co+ (N —i+1)K +V,(i,2)(N,0).
Similarly, we obtain assertion (i) holds for LV, (i, z). From the definition (3.3.3) and
assertion (i), we have Ua,e.(i,z, a, V) is increasing in z, and
Uoe(ir 2,8, Vo) S (C+ Co+ (N =i+ 1)K + Vo(N,0))[21(, ) + 355, 22(7,0)
+e~*¢P3(i, a)]
<C+Co+ (N —-i+1)K+ V4(N,0).
Hence V,41(i, 2) is increasing in z and V,41(4, 2) = infoer, Ua,e(4,2,4,V,) L C+Co +
(N — i+ 1)K + V,(N,0). Assertions (i) and (ii) hold for » 4 1. Finally, the proof

follows from V. = limy—yo0 Va. a

Lemma 3.3.4. For any fixed € > 0, let b = min; H¥(¢)e~(V#+2)e, Then for i € 5,z €
R4, and a € R., we have

() 7(s,2,a) > €b, ¢E(i,2,a) <C+Co+ (N -i+1)K.

(ii) “ v* ”< (C+Co+(N+1)K)e‘°’".

{eme—ab

Proof. For a € R, P .)(T > €|Ao(i,2) = a) = Hi(e)e~*i¢ > b. We have 7(i,2,a) >
e'(e)e™"i€ > €b. From (3.2.6), we get the second inequality of (i). The part (ii) follows

that | V2, (i, 2) |< infaer, | B le™(c+ V2 o(T1, Z0))Ao(i, 2) = a] |[< e=2¥(C + Co+
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(N =i+ 1)K+ || V3 |l). This completes the proof. O

Lemma 3.3.5. For any € > 0,

| (i) There exists a bounded function V,* and a constant O satisfying
VeG2)= inf { (i,z,0) = O17(, 2,0) + B Ve (T, Z1)lAo(in2) = o] }. (3.3.6)

(ii) For some sequence a, — 0, V.*(i,2) = limymoo[Viy, (4, 2) — Vi, (N, 0)].

(iii) ©F = lima—o aVy (N,0).

Proof. For any i € £,z € Ry, and @ > 0, let g5 (4,2) = V7 (i, 2) — V;,;(N, 0) and
0. = aVy (N,0). Since V; (4, 2) = infaer, E(i,)[e™*"(c+Va (11, Z1))]|Ao(4, 2) = a],
02,0 2) = infoen, {2 2 )+ B ot o(Ts Z0)lAoli, 2) = al)+a((i, 2,0) (3.3.7)
Bl (01, 20)|Ao(i, 2) = a]) — aVz (N, 0)7(i, 7,0) + o(a)}.
9a,(i,2) is continuous in @, and || g5 /IS C + Co + (N + 1)K < co. Moreover,
10 lIS all Vacll< w < oo. It follows that there exists {ay, }n<o With
ay | 0 such that the following convergences hold:
limpaoo OF, c = 0F,  limpaco g3, (F, 2) = V(5 2).
Now we write
U(i, 2,6, V) = &3, 2, 8) — ©:7(i, 2,8) + E; [V (I1, Z1)| Ao (i, 2) = a).
" Since the function U(, z,4,V,*) and the function in { } of the equality (3.3.7) are
uniformly bounded continuous in a, there exists a a* = a*(i,z) € R such that
infoer, Ui, 2,a,V) = U(i, 2,0, V). If g5, (4§, 2) > infoer, U(4, 2,0, V), We have
| 92,(5 2) - infaer, U(i, 2,0, V") |
< {2, z,8%) + E(,2)[95,,e(T1, Z1)|Ao(i, 2) = a*]) + an(e(f, 2,0*)
+EG,5) 95,11, 21)4o(i, 2) = @*]) — 0 V5, (N, 0)7(i, z,a%) + o(an) }
—{e(i, z,a*) — OF7(i, z,a*) + E(; [V (11, Z1)| 4o (§, 2) = a*]}
< an((i, z,0%) + E 5)[95, (11, Z1)| 4o (i, 2) = a*])
< 2a,(C + Co+ (N + 1)K) + o(ay) — 0.

If g5 (i, 2) <infoep, U(4, 2,a4,V), we have the same conclusion. Finally, replacing a
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by a5, in (3.3.7) and taking limit as z — oo in both sides of the resulting equality, we
see that OF and V.* satisfy the equality (3.3.6). This completes the proof of the part
(1). The.#ssertion (ii) follows from the above proof.
To prové the assertion (iii), we note that since aVj (N,0) is bounded, it follows

that for any sequence a, — O there is a subsequence oz;, such that

lim, g a;V;;. (N,0)
exists. By the proof of (i) it follows that this limit must be ©. Hence,

©: =1lim, _, a;V;,n (,0)

and the proof is complete. O

From the above Lemma 3.3.3 and 3.3.5, we get easily the following.

Corollary 3.3.8 (i) V.*(i, 2) is increasing in z and decreasing in ¢, and
VA(i,2) < C+Co+ (N —i+ 1)K +V*(N,0).

(ii) O is decreasing in .

Let ©* = lime—o ©%, and V* = limo V.*. Now, we shall prove that ©* and V*
satisfy the average cost optimality equation (3.3.1).

Proof of Theorem 3.3.1. (i) Since U(i,z,4,V) defined in (3.3.9) is uniformly
bounded continuous in @ on the interval R, there exists a* = a*(i, 2) € R, such that
inf,er, U(i, 2,8, V)
= U(i, z,8", V). I infogo,00) U (4, 2,8, V) 2> infaer, Ue(i, 7, 4, V), then

| inf,eqo,00) U(hr 2,8, V*) = V*(i, 2) | '
<l inf o] Ulis 208, V) = Vi [+ | V" =V
=| infaefo,00) U3y 2,8, V*) = infaer, U(i, 2,0, V.5) | + || V" =V ||
<U(i,z,a*,V*)=U(i,z,a*, V2)+ || V* = V||

<||@* -0 7(i,z,a*)+2]||V* =V ||—= 0 (as € = 0). We have
Wlr N Ve TRl N . N
4 (”z) - :ell_I'I(l)V; (Z,Z) - ael[l(')l,foo] U(z,z,a,Ve )
If inf,e[o,00) U (1, 2,8, V") < infacr, Uc(s,z,a,V>), we have the same conclusion. This
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completes the proof of the Theorem 3.3.1 (i).

(ii) For any fixed € > 0, let 7 = (Ao, 41,...) where A, € R, for n > 0, and «¢ be
any stationary policy which, in state (i, z), prescribes an action minimizing the right
side of (3.3.6). Let &, = o(lo, Z0, Aoy +y1n, Zn, An), n 2 0. For any policy =,

Ere{EialVe(Ji, Zi) — B[V (L, 2:)[Si-1]]}
= D BV (L, Z0)] — Em[E™[Ve (L, Z)[Si]]} = 0.
But, |
Em Ve (5, Z0)|Si-1] = By, zi) Ve (5iy Z)| Aii]
= &(Li1, Zi-1, Ai-1) = Ot7(Lic1y Zim1, Aim1) + By, 2, ) [V (5 Z0)] Ai-i]
~&(Li-1, Zict, Aict) + 037 (Licty Zicyy Aic1)
> infoer {&(fi-1) Zi-1,8)— O F(Lim1, Zim1, &)+ E1,_,  z,_) [V (I, Z3)| Ai-1 = a]}
—&(Li-1, Zi-1, Ai-1) + O T(Li-1, Zi-1, Ai-1)
= V2 (Lim1) Zim1) = €(Ti-1, Zim1, Aim1) + 957 (Lic1,y Zim1, Aim1),

with equality for #} since #} is defined to take the infimum action. Hence

Er‘{Z[V:(Ii) Z{)—‘/:(I;_l, Zi—l)'*'é(-['—l’ Zt‘-l: Al'-l)—e:f(-['—l) Zl'—ly Ai—l)]} Z 0;

=1

or _
E™[V*(1n, Zn) = VH(N,0)] + E™[}7 €(li-1, Zi-1, Ai-1)]
Er [y T(Lie1y Zie1, Aimt)]

=1

0 <

with equality for x¥. Now, letting » — oo and using the boundedness of V* and
the fact that Lemma 3.3.4 implies that for A;—; € R, E™ Y% 7(Li-1, Zi-1, Ai-1) >

neb — 00. We have that

O* < lim E‘K[Z?:l E(If~17Zi—1;A€—1)]

; =l = J"(Ip, 2
= nvoo B3 F(Lie1, Zie1, Ai-1))] (o, )

with equality for #} and for all values of (Ip, Zp). By the definitions of ©* and V*,

and that lim.,o 7 = 7, we get for any =« € II

€e—+0 =0

0* =lim O] < lim J™ = J~
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with equality for #* = lim¢~o #¥. This completes the proof of the part (ii).
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3.4 An optimal policy

For the state (i,2), let a*(i,2) the minimal solution satisfying the average cost
optimality equation (3.3.1), and A* = a*(i,2). It follows from Theorem 3.3.1 (ii)
that 7* = (4%, 4%,...). Furthermore, let (1) = %,(g% the the hazard rate associated

with the distribution function H*(-), we consider the minimal solution a*(%, z) in this

section. First, we get the following Lemma 3.4.1 from Lemma 3.3.3.

Lemma 3.4.1. Under Condition 1, we have
(i) V*(4, 2) is increasing in z and V*(i,2) < C + Co+ (N — i+ 1)K + V*(N,0).
(@) L:V*(i,2), LV*(4, z) are both increasing in z for every i, and
LV*(i,z) <C+Co+ (N —i+ 1)K + V*(N,0),
LV*(i,2) L pi(C+ Co+ (N —i+ 1)K + V*(N,0)).

Lemma 38.4.2. For { € E,z € R4, there exists a minimal solution a*(4, z) satisfying

the following equation.

w(C + (N — K + V*(N,0)) + 0 = LV*(52),
L.V*(i,2)— (C+ (N = )K +V*(N,0))

a*(i,7) € {0,00} U {a; r'(a) =

Proof. By Proposition 3.2.2, we have (3.4.1)

U@, 5,0,V) =[5 Jo LV (i, 2) H (dt)pie™i*ds + [§ LeV*(i, 2) Hi(dt)e™Hi°
+LLV*(i,2)®3(i,a) + (C + (N — ) K + V*(N,0))®3(i, a) — 0*7(i, 2, ).

Thus U(4,2,4,V*) is continuous and differentiable with respect to a. By solving

%U(i,z,a, V*) = 0, we obtain the assertion. a

Since LV™*(4, z) is increasing in z for every i € E, there exists a z* = 2*(i) such
that
2*(5) =inf{z; pi(C+ (N —-4)K +V*(N,0))+0*-LV*(i,z) >0} (3.4.2)

where inf{@} = co. Furthermore, since by Condition 1, LoV*(i, z) is increasing in a,
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there exists a @ = a(4, z) such that
a(i,z) =inf{a; L,V*(i,z) - (C + (N —4i)K +V*(N,0)) >0} (3.4.3)
where inf{0} = oo.

Theorem 3.4.3. If r*(1) is a strict monotone function or a constant in ¢, then there
exists a unique minimal solution a*(i, z) such that: for z > z*(3),
a*(i, z) = inf{a € [a(i, 2), o0];

(C+ (N =) +V*(N,0) + 0" = LV*(iy2),

: Hi
™M@ 2 TG ) - C T (W= )E LV (V,0)

(3.4.4)

where inf{@} = co. If lim;,, *(t) = 00, then a*(i, z) < co. Moreover, for z < 2*(4),
a*(i,2) =inf{a € [0,a(4, 2));

LV*(iyz) = wi(C + (N = DK +V*(N,0) - 0" (5.45)
(C+ (N = DK + V*(N,0)) — L,V*(i, 2) -

ri(e) <
and inf{0} = 0.

Proof. From Lemma 3.4.2, the minimal solution a*(i, z) should satisfy the following

inequalities:

for a < a*(i, 2), (L V*(i,2) = (C+ (N —§)K + V*(N,0)))r*(a) (3.4.6)
<pi(C+(N-i)K + Vf"(N, 0)) + ©* — LV*(i, 2),
and for a > a*(,2), (LaV*(i,z)— (C + (N —i)K + V*(N,0)))r'(a) (3.4.7)

> pi(C + (N = )K + V*(N,0)) + 0* = LV*(i, 2).
For z > 2*(i), the inequality (3.4.6) holds for all a € [0,a(s, 2)), ie. U(, z,ba, V*)is
decreasing in a on [0,a(i, z)), so we have a*(i,z) € [a(i, 2), 00]. Since #*(2) is a strict
monotone function in ¢ or a constant and L;V*(i, z) is increasing in ¢, if the set {...}
of (3.4.4) is not empty, then a*(i, z) defined in (3.4.4) is the unique minimal solution.
Otherwise, we have U(i,z,a,V*) is decreasing in a on [0, 0], thus a*(i, z) = co. Ob-
viously, when lim;_,o, 7*(1) = 00, a*(i, z) < co. Similarly, for z < 2*(i), the inequality

(3.4.7) holds for all a € [a(i, z), ], i.e. U(i,2,a,V*) is increasing in a on [a(, z), 00],

LV*(i,2)=p i C+(N=i)K+V*(N,0)—0* _
(CH(IN-OE+V (NO)-LaV*(2)  —

so we have a*(i, 2) € [0,a(i, 2)). Since lim, ., 4(;,2)
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+00,if the set {...} of (3.4.5) is not empty, then a*(i, z) defined in (3.4.5) is the unique
minimal solution. Otherwise, we have U(i, z,a, V™) is increasing in @ on [0, c0], thus

a*(¢,2) = 0. The proof is complete. a
Corollary 3.4.4. a*(i, z) is decreasing in 2.

Proof. Since L;V*(i, z) and LV*(i, 2) are increasing in z, it follows that the right-side
of the inequality in { } of (3.4.4) is decreasing in 2, and the right-side of the inequality
in { } of (3.4.5) is increasing in z. So a*(3, 2) is decreasing in z. O

Remark. (i) In Lemma 3.4.3, we require the strict monotonicity (strict increasing
or decreasing) or a constant of the hazard rate r*(¢) to ensure the unique existence
of the minimal solution a*(#,z). This requirement, in general, can be satisfied by
many used distributions such as Negative exponential, Gamma, Weibull and Normal
distributions, etc. For more general distribution,r similar to Lemma 3.4.3, we have
a*(i,z) € [a(i, z),00] if z > 2*(i), and a*(4, 2) € [0, a(4, z)) otherwise.
(ii) Since the distribution H*(t) of the intershock times depend on the state i of
the functioning components of the sub-system, it is possible that the hazard rate
(1) is increasing for some state i, and decreasing for others. For example, let ¢*
(1 < i* < N) fixed, & > 0,x(i) = X5 i € E, and H'(t) be Weibull distribution
‘with the parameters x and «(3), i.e.

; k(1) 1. (- T
i) = Sy Otezpl- Ly,

The hazard rate for i € Z is ri(t) = @(%)"(")‘1. Hence r*(t) is increasing for
i < N —i*, decreasing for i > N — i* + 1 and constant rV="*1(1) = -"-(—N—,:Az
for i = N —4* + 1. In this case, by Theorem 3.4.3, we can determine respectively
the minimal solution a*(:,-) for the increasing, decreasing and constant hazard rates.
Therefore, our model can be applied to deal with the optimal replacement problem in
which the hazard rate associated with the distribution function H'(-) is alet.rnétively

increasing, decreasing in ¢ or a constant in the system’s functioning period.

55



3.5 Tow-special cases

In the former sections, we derived an optimal state-age dépendent policy 7*. The
policy 7* is influenced by changes of states of the process {I(t)}e>0. Since {I(t)}:>0
is a Markov jump process, our model can be applied to optimal state-age dependent
replacement problems of systems existing in a Ma.rkov random environment, systems
with a Markov modulator or systems subject to two type of dependent shocks. In the
following, let A = 0o, i.e. the repair times of the failed components of the sub-system
are negligible, we consider ihe following special cases.

(i) In this case, if we assume that y(i,i — 1,z) = 1 for i = 1,...,N;z € Ry,
then problem become a general replacement problem for a single-unit system since
I(t) = N for t > 0 and the main-system is not affected by the component’s failures
of the sub-system. Such problems have been studied by Kao [36], and Gottlieb [32].
Let r(1) = 1V (1), G.(z]t) = GY (z]t). We have that if r(2) is increasing in ¢, then the

minimal solution satisfies the equation

*(2) =i i(z),00]; r(a >
a*(z) = inf{a € [a(2),00]; r(a) 2 Co - Jp,[Co+V*(z+z)]7(z + $)Gz(dZIa)}

where a(z) = inf{a; Co~ [, [Co+V*(z+2)]¥(z+ 2)G,(dz]a) > 0}.

(i) In this case, if we take I(?) as to the failed number of the components of the
sub-system in [0,1], then {I(t)}s>0 is a Poisson process with the Iﬁarameter Np. As-
sume that y(i,i + 1,z) < 1. The main-system is subject to two types of dependent
shocks. The process {Z(t)}e>0 defined as in (3.2.2) still presents the damage of the
main-system. Assume H™({) = H(1), v(n,n +1,2) > y(n + 1,n + 2,2) and G7(-|t) is
stochastically increasing in z and in n. Fuithermore, we replace the whole sub-system

when the main-system is replaced. Under these assumptions, we have the following
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assertion.

Corollary 3.5.1.
(i) V*(n, 2) is increasing in z and in n, V*(n,2) < C + Co + Nk + V*(0,0).

(ii) The minimal solution a*(n, z) is decreasing in z and in .
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CHAPTER 4

DYNAMICALLY OPTIMAL REPLACEMENT UNDER
ADDITIVE DAMAGE IN A MARKOV RANDOM

ENVIRONMENT

4.1 Introduction

In Chapter 2 we have dealt with the optimal replacement problem for the system
existing in a Poisson randomly varying environment, and in Chapter 3, we have con-
sidered the optimal replacement for a network system where the functioning process
of the components of the sub-system that.is a Markov process is taken as the envi-
ronment of the main-system. In these two models, the assumption (A) in Chapter 2
and the assumption that the emergency repairs for all failed components are executed
when the main-system is replaced in Chapter 3 imply that the environment processes
are also restored to the initial states when the systems are replaced, so that the suc-
cessive replacements periods of identical systems form a renewal process. In addition
to that, we have not consider the maintenance actions for the system in Chapter 2
and the main-system in Chapter 3. The purpose of the present Chapter is to inves-
tigate an optimal maintenance-teplacement problem for a more general system by
means of Dynamic programming method. Here we do not require that the Markov
environment process return to the initial state when the system is replaced. In this
case, the successive replacement periods of identical systems no long forms a renewal
process. Therefore, analysis is difficult by general renewal arguments given in Chapter
2 and by the semi-Markov decision method given in Chapter 3 ( thefe because of the

renewal property, we obtained that ©* = J* = J™ (i, z) for all initial value (i, 2), i.e.,
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the minimal long-run average cost per unit time is not dependent on the initial value).
We consider the replacement actions as well as the maintenance actions, and allow
that the damaged system become to better” after the system is maintained, i.e., the
damage level of the system has an randomly decreasing magnitude which is assumed
to be stochastically decreasing with respect to the accumulated damage level. For
the total expected randomly discounted cost, we first prove that exists a control-limit
policy, and then this control-limit policy is optimal.

The shock models studied by Dynamic programming approach have been given by
some researchers. Siedersleben [60] considers a system that deteriorates continuously,
but whose state is observed only at randomly times. He proves that a control-limit
policy is optimal for the total expected discounted cost criterion. Waldmann [66] ex-
amines a shock model for discrete time and lattice state space, in which an randomly
varying environment process and maintenance actions are introduced. But the main-
tenance action does not change the damage level of the system. He gives an optimal
control-limit policy dependent on the environment process. The general theory of
Dynamic programming can be found in Schal [57].

Now we describe the model to be study in this Chapter. Consider a system existing
in a random environment. The environment is described by a Markov jump process.
The system is subject to a sequence of randomly occurring shocks and to failure,
and each shock causes a random amount of damage which .accumula.tes additively
over time. The shock arrival and shock magnitude are influenced by changes of the
environment. The damage process is assumed to be a piecewise semi-Markov process.
The failure can occur only at times of shock arrival or jump of the environment process.
The survival probability at a shock time or a jump time is determined by a known
survival function of the accumulated damage level of the system, the environment
state and the realized shock magnitude. Upon failure the system must be replaced
by a new one having properties that are statistically equivalent to the original, and a

cost is incurred. The replacement cycles are repeated indefinitely. The system may
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be maintained or replaced before failure at a smaller cost. The replacement time and
maintenance time are assumed to be negligible.

The Chapter is organized as follows, in Section 4.2, the piecewise semi-Markov
shock model is formulated, and in Section 4.3, properties of the total expected ran-
domly discounted cost is derived. In Section 4.4, it is proved that a control-limit rule

is an optimal replacement policy.

60



4.2 The Model and Preliminaries

Let {£(t)}t20 be a stochastic process specifying the environment of the system.
The process '{f(t)}tzo is assumed to be a stationary regular Markov jump procéss
with the state space I' and the initial state £(0). Let R be a o-field of I such that one
point set {¢} € ® and {wa}nz0 (wo = 0) the jump points of {£(!)}so- The Q(¢, A) is
a Markov kernel on (T, R) with Q(¢, {¢}) = 0, i.e., Q(§,") is a probability measure for
every ¢ € T, and Q(+, A) is a R-measurable function for every A € R. For any 4 € R

and t € Ry, let

P(§(wn+1) € 4, wntt = wn S 16(s), 9 < wn) = Q(§(wn), A)(1 — ) (4.2.1)

where 7 : I' — R, is a finite function. {£(t)}t20 is called Markov environment process
(MEP).

For any (¢, 20) € I'X Ry, let {Z(¢ »,)(2)}¢>0 be a semi-Markov process with the state
space E = Ry U {00}, and the initial state Z ,)(0) = 2. For any z € E,z € Ry,

and t € Ry, the semi-Markov kernel of {Z; ;,)(t)}i>0 is defined as follows.

P(Z(t, ) (1) = Ziea)(TE) £ 2,7 gy = 78 SUZem)(T) =2)  (44.2)
= Gi(2)H(1)

where {7{}n>0 ( 7§ = 0) are the jump points of the {Z(¢ .o)(1)}e0, HE(:) is the
probability distribution of the intershock time r¢,; — r§ and G§(-) is the conditional
distribution of Ze .0)(7$41) = Z(e,z0)(7E) given Z(g ) (18) = z We suppose that the
{Z(¢,:)(1)}ex0 be a right-continuous regular process with left-hand limits.

By appealing to {Z¢,,,)}e>0, we define the stochastic process { Z(1)}¢>o specifying

the cumulative damage of the system in one replacement cycle such that Z(0) = 0

and Z(1) = Z, z(wn—)(t = w) o0 {wy <t < wpy1;€(w) = ¢} That is,

Z(0)=0 ‘ (4.2.3)
Z(1) = Z(0),0) W jo<t<in} T Znet Z(ewn), Zwn=)E = Wn){wn<t<wnir}
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According to the definitions of {Z(, .)(V)}t>0, (§,Z0) € T X R4, we know that the
process {Z(1)}¢>o is also a right-continuous regular process with left-hand limits . At
the points wy,n > 1, Z(wy) = Z(w,—), and on the interval [w,,wn41), the process
{Z (f)}gzo is a semi-Markov process which depends on the environment state {(wy).
We call {Z(t)}e>0 piecewise semi-Markov process(PSMP). The state space of {Z(t)}ex0
is E = [0,00]. In this Chapter, we use oo to indicate the failure state instead of A.

A failure of the system can occur only at the time points of shock or jump of
the MEP. Let T is such a time point, suppose ¢(T'=) = ¢ and Z(T'-) = z. At time
T, if a shock of magnitude z occurs, then the system fails with known probability
1-4(z,¢,2), and if a jump of the MEP into the state ¢ occurs, then the system fails
with known probability 1 — 4(z,¢,0). The function v : R4 x I' x E — [0, 1] is the
survival function. Let § = inf{t, Z(t) = oo}, then § is the first failure time of the
system. Throughout we assume that E[6] < oo.

Let A be a set of maintenance-replacement decisions such as the following. -

A = {A(,") = (a(++),i(-,+)) | a(++) : T x E — [0,00),i(+,+) : ' x E — {0,1}

are % X S—measurable and a(¢,00) = 0,i(¢,00) = 1 for any ¢ € I'}.

Definition 4.2.1. A decision policy 4 = (a(¢, 2), (¢, z)) € A is called a control-limit

policy if for every possible state ¢ € T, there is a real-number f(¢) such that

_ ) (a(§2),0)  ifz<f(§) (4.24)
A7) = { (Z(f, ﬁ),l) :)t;erwise.

The function f(-) is called a control-limit.

An infinite stage maintenance-replacement policy is a sequence = = (Ag, 41, -);
A;e AIfA, =4 fb: all § = 0,1,---, we call = a stationary policy. Let II be the
set of all policies such as . Thereby for any n € II, we can obtain a decision process
{Z7(t)}t>0 which describes the accumulated damage level of the system at time ¢
under the policy «.

 Suppose at a decision time T, ¢(T') = ¢,Z(T)* = z. For a € [0,00), the decision
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A(¢, z) = (a,0) means that we maintain the system at time T + a if no other decision
poinfcs occur in the interval (7,7 + a] and incur a cost m(¢,z), and the decision
A(¢,2) = (a,1) means that we replace the system at time T' + a if no other decision
points occur in the interval (7,7 + a] and incur a cost ¢(¢,2). For a = oo, the
decisions A(¢,z) = (00,i) (i =1,2) means that we neither maintain nor replace the
system at any time, but wait for the next decision time. After execution of an action
(maintenance or replacement), the behaviors of the damage process are influenced as
follows.

1. At time T + a, if a maintenance action is taken, the damage level z prior to
T'+a has an randomly decreasing amount Y (¢, z) with the distribution function F¥(y).
Here we assume

i Fé(2)=P(Y(¢,2)<2z)=1 for z € [0,00).
ii F!(y) is stochastically decreasing in z.

2. The environment state £ does not change whatever action is taken. From time
T + a, the damage process evolves still as a PSMP with the initial environment state
¢ and damage level z — Y (¢, z) (maintenance) or 0 (replacement).

The set of the decision points is {T},}n>0 Which are the successive jump points of
the two-dimensional process {¢(t), Z™(1)}¢>0 defined as follows

To=0 (4.2.5)
Topr=inf{t > Tw;  &(1) #&(Tn) or Z7°(1) # Z°(Tn)}  forn 0.

Since any maintenance action and replacement action change the damage level,
we can see that {T,,}n>0 contains three-type points (a) shock points, (b) jump points
of the MEP, and (c) action points (i.e. at which an action is executed). At point T,

if we immediately take an action(i.e. 4 =0 ), then Tp,4; = T}, Let

Z = Z%(T,) (4.2.6).
& = E(Th) for n > 0.

For the Markov-decision process {én, Zn, T, An}n>0, Wwe have
Proposition 4.2.2. At T, < 8, & = €, 2, = 2, if a(€,2) = a, then
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(a) @1(¢,a) = P(Tn41 is a shock point [¢n = ¢, Z, = 2,a(§,2) = a)
= J3 HE0n(@)e™Odt + H(a)e™02,
(b) 5(¢,a) = P(Tn41 is a jump point of the MEP |¢, = ¢, Z, = z,a(§,2) = a)
= [2(1 — e MONFE(dt) + (1 — e~ "(2) HE(a).
(c) ®3(¢,a) = P(Tn41 is 2 action point [¢, = ¢, Z, = 2,4a(¢, 2) = a)
= Hé(a)e~(E)e
where H¢(a) =1 — H¢(a).
Proof is same as that in Proposition 3.2.1. a
Let B= {V; I'x E — R|V is bounded and ® x S—measurable}, B* ={V; V €
B|V(¢,z) is increasing in z for any ¢ € I'}, and || - || the sup-norm defined on B. Hence
B is a Banach space.
In this model, we consider an randomly discounted cost case. The discounted rate
is a function of the MEP and is denoted by A(E(t)). The discounted factor at T, is

e~A(Tr) where

n—1

ATn) = Y (A1) = MENT; + Aln-1)Tn (4.2.7)

j=1

and the discounted cost incurred at T, is as follows

K = e'A(T")k(fn_l,Z,,_l,An_l) if T}, is a action point (4.2.8)
"1l1o0 otherwise

where

k(¢ 2, A) ._.{ m(¢,2) ifi(2) =0 (4.2.9)

c(é,z)  otherwise.
Note that although the right-hand of (2.6) is the function of £o,é1,. .., &n—1; 0,11,
<., Ty, it is denoted by A(T;) for the notational simplicity.
The total expected randomly discounted cost incurred under =, starting at time 0

in state (&, 2) is given by

Vie(¢,2) = E{D Knléo = ¢, 20 = z}. (4.2.10)
n=1
Let
V* = infren V. (4.2.11)
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Definition 4.2.3. If # € II and V, = V*, then « is called optimal.

Assumption 4.2.4.°
(a) v(z,¢,z) is decreasing in z and z for any £ € I'.
(b) The cost function m and c are in B, m(¢,2) > 0,¢(¢,2) > 0 and
m(¢,00) = c(¢,00) for any ¢ € T.
(c) H%(t) has a continuous density function A¢(¢) for any ¢ € T .

(d) A = infeer A(¢) > O.
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4.3 The total expected randomly discounted cost

In this section, we discuss the total expected randomly discounted cost over infinite

horizon. First by the proposition 4.2.2, we get the following lemma.

Lemma 4.3.1. Forany { € T,z € R4, a € [0,00] and V € B
E(,)[e OV (1, Z1)| Ao (¢, 2)]
[V(¢,00) = L1V (¢, 2)] Y1 (¢, a) + [Ee[V (1, 0)] — L2V (€, 2)]¥2(¢, a)

~ + [ V(& 7z — y)FE(dy)e €1 B4(¢,a) if Ao(¢,2) = (a,0)
[V(¢,00) — LV (£, 2)]¥1(¢,a) + [Ee[V (€1, 0)] = L2V (€, 2)]¥a(€, 0)
+V(£,0)e=2)ep;(¢, a) otherwise

where  LiV(§,2) = [p,[V(§,00) = V(£ 2 + 2)]7(2, €, 2) G (dz)
LV (¢, 2) = [p[V(¢,00) = V(¢ 2)]7(2 ¢, 0)Q(¢, 4C)
B[V (§1,00)] = Jr V({, 00)Q(¢, &)
y(6,0) = f5 fi e MOHE(du)n(g)e Ot + f3 e MO HE(du)e=Oe
Va(é,0) = J§ fo 2(€)e~ OO quHE(dt)+ 5 n(¢)e~ KOO dulé(a).

Proof. For the case that Ay(&,2) = (a,0), considering whether or not the sojourn
time in the state (¢,2) exceeds & and using Si, S defined in Proposition 2.2.1, we
have
B e M ONV (81, Z1)|Ao(é, 2) = (a,0)]
= Eg,»[e MOV (&1, 21); 1 < S2; 51 < s|Ao(é, 2) = (a,0)]
+E¢ »le XNV (&1, 21); S2 < 51552 < ]40(¢, 2) = (a,0)]
+E(5,,)[e‘>‘(5)TlV(£1,Zl);min{Sl,Sz} > alAo(¢,2) = (a,0)]
= Jg Jo e [5, V(€ 2+ 2)7(2, €, 2) + V (€, 00)(1 = 7(2,¢,2))]
xG(dz)HE (du)p(€)edt
+ 15 J3 €O V(G )22, 6,0) + V(¢ 00)(1 = 7(2,¢,0))
XQ(¢, d¢)n(¢)e™ ™ dul(d1)
+J5 V(& 2= 9)FH(dy)e 02 24(¢, 0)
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By rearranging the right-hand of the above equality, we can obtain lemma 4.3.1 when
Ao(¢, 2) = (a,0). The case that Ag(4, z) = (a,1) can be proved by similar manner.0

Now, we define the following operators Uy,Us, and U.

Definition 4.3.2. For any V € B,¢ € T, z € [0, 00) énd a € [0,00], let
U1(a)V (¢, 2) = Ui(§,2,6,V) (4.3.1)
= (m(€,2) + J§ V(& 2 — 9)F(dy))e ™ 0@5(¢,0)
+V (€, 00) = L1V (¢, 2)]¥1(¢, )
HEe[V (§1,00)] — L2V (¢, 2)]¥2(¢, 0)
Ua(a)V (¢, 2) = V2§, 2,0,V) (4.3.2)
= (c(6,2) + V(£,0))e7E224(¢,0)
+V (€, 00) = L1V (¢, 2)]¥1(¢, )
+HEe[V (1, 00)] = L2V (¢, 2)]¥2(£, a)

UV, 2) = Hﬁn{aei[gio] Ui(a)V (¢, z)’aéﬁ},fw] Ua(a)V (¢, 2)} (4.3.3)

UV(¢,0) = Uo(0)V(£,00). (4.3.4)

In the following, we first consider restricted operator U on the restricted action

space R = [¢,00] for any € > 0, ie. forV € B

UV (¢, 2) = min{ inf Ui(a)V(, 2), inf Ua(a)V (& 2)}- (4.3.5)

Lemma 4.3.3. For fixed ¢ > 0, U¢ is a monotone contraction operator .

Proof. From lemma 3.1 and definition 3.3, the monotone property of U¢ is obvious.
Next we prove the contraction property of U¢. For any &,z and V, U;(a)V (&, 2)(i =
1,2) are bounded continuous function in @ on [¢,00]. Hence for V,W € B, there exist

ai(¢,2),a3(¢, 2) € Re satisfying the following equalities

dnf U1(a)V(§,2) = Ur(ai(6, 2)V (s 2)
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Inf D(@W(§2) = Us(a3(§, 2NV (S 2)
Thus |infeer, Ur(a)V (¢, 2) — infoer, U1W (¢, 2) |
=| Ur(ai(¢, 2))V (¢, 2) = Ur(a3(&, 2))W (€, 2) |
<| U(a3(é, 2))V (€, 2) — Ur(a3(¢,2)W (£, 2) |
< ( Wi(€,05(8, 2)) + Va(€, a5(6, 2)) + e O3 B4(¢, a3(¢,2)) )|V - W ||
< ( 21(&,83(8, 2)) + ®2(¢, a3(6, 2)) + e O3By (¢,a3(¢,2)) VIV =W ||
= a3 IV =W
where
BE(a3(8, 2)) = B1(€, a3(€, 2)) + Ba(€, a5(€, 2)) + e~ O3EDB4(¢, a5(¢, 2)).-
Since for any ¢ € T and z € Ry, ®1(¢,a3(¢, 2)) + Da(€, a%(¢, 2)) + D3(€, a3(¢,2)) = 1,
and for a3(¢, z) > €, we have supg , 8i(¢,a3(¢,2)) # 0(i = 1,2), supg, a(¢,a3(6, 2)) #
1, and by Assumption 4.2.4 (d), sup; , e~ *85(&:2) < 1, Thereby g = sup , f¢(a3(¢, 2))
< 1. We have ’
I inf Ti(@)V — inf Tu@W IS ANV =W .
Similazly , there exists a f, < 1 such that
Il inf Ta(a)V = inf Ua(a)W IS ANV =W I
Since

UV ) - UW(E ) IS maxl] ing T(@)V(E,2) - inf Ui(@W(6,2) I}

it follows that || UV — UW ||< max{B, A} |V - W ||. o
As U*¢ is a monotone contraction operator, it has a unique fixed point V** € B.
Now we discuss the properties of this fixed point . Using the operator U¢, we define
a mapping sequence {V;}n>0 as follows
Vo=0 (4.3.6)
Vo=UV,y n>1l |

We have V,, € B and V,, is non-negative functidn for n > 0.

Lemma 4.3.4. Assume that for any ¢ € T,t € R4, G{(-) is stochastically increasing
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in z, then
(i) V. € B*.
({i)L1Va (¢, 2) and LyV, (¢, z) are decreasing in z.

Proof. By induction, we prove the assertions (i) and (ii). Since ¥y = 0 and
Vi(é,2) = min{ inf m(¢,2)e > O®5(¢, ), inf (¢, 2)eE*85(¢, )},
a€ER¢ a€R¢

(i) and (ii) hold certainly when n = 0,1. Suppose that (i) and (ii) are true for an
integer n. Consider two cases for z1 < 22:
CASEl:  if UV, (¢, 22) = infacr, Ui(a)Va(é, 22),
Vat1(6, 22) = Va1 (€, 21) = infaer, U1(a)Va(§, 22) = UVal§, 21)

> infaer, U1(8)Va(é, 22) — infaer, U1(a)Va(§, 21)

> infaer {U1(8)Va(é; 22) — Ur(a)Vu(é; 22)}

= infaer {[m(¢, 22) —m(é, 21) + [§? Val&, 22— 9) F5, (49)) = [5* Va(§, 21— 9) Ff, (4))]

xe~ 22 ®5(¢, a) + [L1Valé, 21) — L1 Va(€, 22)]¥1(¢, 0)
+[L2Va(é, 21) — LaVa(§, 22)]¥2(§, )}

> infaer{ [m(é, 22) — m(é, 21)]e X E°@5(¢,a) } 20,

where the third inequality follows from
LiVa(é,21) — LiVa(é,22) 20  i=1,2,
and F{(.) is stochastically decreasing in z, i.e., since V5 (¢, 22 — y) > Vn(f, zl> - y), we
have
[ V(& — 9)F5(dy) = [§' V(& 21— 9) Ff (dy)
2[5 V(& 22 = 9)F5(d9)) = 5 V(6,22 - 1) Fy(dy)) 2 0.
CASE2:  if UV,(¢, 22) = inf,er, U2(a)V, (€, z3), similarly
Vat1(é522) = Vaa(é, 21)
> infaer { [c(¢, 22) = c(¢, 21)]e ™€) B5(¢,a) } > 0.

By Assumption 4.2.4 (2) and (i), (Va+1(¢, 00)—Va+41(§, 242))7(2, ¢, 7) is decreasing

in z and since G(.) is stochastically increasing in z, L Vp41(¢,2) and L3V,41(¢, 2)

are decreasing in 2. (i) and (ii) hold for n + 1. These complete the proof. O
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Corollary 4.3.5. For any fixed € > 0,
(a') VM =limp—eo Vo € B*.
(b) L;V**(¢,2) and LyV**(¢, 2) are decreasing in 2 for any ¢el.

Next we introduce operator U defined as follows, for V € B

UV(¢,2) = min{aei(%’fw] U(a)V (¢, 2), aeié%,foo] Us(a)V (¢, 2)} (4.3.7)

Lemma 4.3.6. There exists a unique non-negative function V** € B satisfying

TV**(¢,2) = V*™*(¢,2).
Proof. For ¢ € T, V**(¢, z) is a non-negative decreasing function in €. Let
V> (¢, z) = ll_l;[(l)"e = ll_x}bmm{alenlii'( U1(¢, z,a,V),alenlii'€ Ui(¢,z,a,V)}.  (4.3.8)

Then V** is a uniquely determined non-negative function, and by Corollary 4.3.5 (a),

V** ¢ B*. From the monotonicities of Uy, Ua, we have
P_{% min{aiél}g‘ U1(¢, 2, q, V:*)a aien}g, U1(¢, 2, a, V:*)}
2 l-l_xf(l)mln{alen}g( Ul(f,Z,a,V )’alen_li Ul(eyz>a1V )}
> mln{ll_% alé\é‘ U1(¢, 2,0,V ),ll_rf(l) alén}{‘ U1(¢,2,a,V*)}
= mi inf U ,a,V*), inf Us(¢,z,e,V*™)} 4.3.9
mind, Qo U6 2 V) B Db na VR (439)

First we consider the case that TV**(¢,2) = infae(0,00) U1(€5 2, 85 V**). For any ¢ > 0,

there exists a ao satisfying
inf  Uy(¢,2,a,V) > Us(¢, 2,80, V) — o (4.3.10)

a€(0,00]

Also by the monotone convergence theorem, we have
li_x'r}) U1(¢, 2,80, V™) = Ur(&, 2,00, V™), (4.3.11)
and for € < ag, ag € R, thus
li—lvr})aien}g‘ Ul(f,z,a,Ve**) < Ul(i,z,ao,V**). (4.3.12)
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By (4.3.10), we have

aei(lcl)?:oo] Ul(f: z,a, V“) > 11_{‘(1) aieni Ul(f) 2y a'va V;ﬂ) - U

As o — 0, it holds that

aei(%foo] Ul(f: 2,0, V**) 2 P_{% aiéllg( Ul(es 2,a, Ve“) (4‘3'13)

> ll_l’l’(l) min{aiéllg‘ Uy(¢, 2, a, Ve"),aienlg‘ Us(¢,2,a,V™)}.
From (4.3.9) and (4.3.13), we have
lim min inf T3¢, a,'n**),aié%( Ual6 2,0, VN = dnt Uil 0, V)
That is _
V(6 2) = Bm Ve (6, 2) = Im V(6 ) = UV(6,2).
When TV**(¢,2) = inf,e(0,00] U2(£) 2, 8, V**), the proof is similar. a

Now we consider the operator U defined in (4.3.3). Similar to the proof of Lemma

4.3.6, we can prove that the operator U has a unique fixed point.
Lemma 4.3.7. There exists a unique fixed point to operator U.
Proof. Fori=1,2,

aei[%,foo] Ui(¢, z,a,V) = min{U;(¢, 2,0, V), aei(%,foo] Ui(¢,2,a,V)}, (4.3.14)

and U;(¢, z,a,V) is left-hand continuous at @ = 0, i.e.limy o Ui (¢, 2,4, V) = U(, 2,0, V).
By using these relations, similar Lemma 4.3.6, we obtain the conclusion. O

In the following, we still use V** to denote the fixed point of operator U for
simplification of notation.

For any ¢ €T, let
o(€) = inf{z, m(&,2)—c(£,2) > 0} (4.3.15)

and inf{0} = oo.
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Theorem 4.3.8. Assume that m(§,z) — c(¢,2) is increasing in 2 for z € [0, a(¢)).
Then there exists a function f(¢) satisfying
(@) f¢)<a(f) for{el.
(ii)
0V = { MmO e

Proof. For any fixed £ € T, let
£(€) = inf{z, m(¢,2)—c(§,2)+[5 V(& 2—y)Fi(dy)-V(0) 20} (4.3.16)
and inf{0} = oo.
(i) Since V**(¢, z) is increasing in z, and F§(-) is stochastically decreasing in z. We
have 7 V**(¢,2 — y)F¢(dy) is increasing in z and
5 V(6,2 = 9)FH(dy) 2 [ V*(¢,0)Fi(dy) = V**(£,0).
Hence m(¢,2) —c(é,2) + J§ V**(§,2 — y)Fi(dy) - V(£,0) 2 m(§, 2) — (¢, 2)-
The result (i) is follows.
(i) For z < f(&), we have c(§,2) = m(§,2) + V*"(6,0) = [§ V(6,7 — 9)F§(dy) > 0.
inf, (0,00 U2(8)V**(¢, 2) — infae(0,00] U1 (@)V**(£, %)
> infoefo,00 { U2(a)V**(§, 2) — Ur(a)V** (£, 2)}
= min{c(¢, z) — m(€, 2) + V**(£,0) = J§ V**(£, 2 — 9) F (dv),
inf g0, {(c(6:2) = m(€,2) + V(6,00
= J§ V(& 7 — y)FE(dy))e X1 85(¢, 0)}}
>0.
Thus inf,e[o,00) U2(8)V**(€, 2) 2 infag(o,o0) U1 (@)V**(§, 2). For z > f(£), we have
inf,[0,00] U1(6)V**(€, 2) — infag(o,c0) U2(@)V**(§, 2)
> min{m(¢,z) — (¢, 2) + Jg V**(§, 2 — 9)Fi(dy) - V**(§,0),
infae(0,00){(m(&, 2) = (&, 2) + J5 V**(¢, 2 = 9)Ff (dy)
—V**(§,0))e"X®225(¢, 0)}
> 0. |

Thus inf,efo 00 U1(a)V**(€,2) 2 infaepo,00) U2(a)V**(§, 7). These complete the proof
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of result (ii). a

Theorem 4.3.9. For ¢ € T, let r¢(¢) be the hazard rate associated the distribution
function H(?). If r¢(?) is a monotone function, then there exists a unique minimal

solution a* = a*(¢, 2) satisfying the following equality
TvV*™(¢,z) = mm{ael[%,foo] Ui(a)V (f,z),ae1££°] Us(a)V*™*(&,2) }, (4.3.17)

and

a6, 2) = { al(6,2)  if z < f(§) (4.3.18)

a3(¢,z)  otherwise,
where a1(¢, 2), a3(£, z) € [0,00] are the minimal solutions of the following equations
(4.3.19) and (4.3.20) respectively.
M(&, 2,0, V™) = (m(&,2) + J§ V(& 2 — 9) FE(d))(r* (a) + A(&) +1(§)), (4.3.19)
M(¢, 2,8,V™) = (e(€, 2) + V**(€,0))(ré(a) + A(€) +7(8)) (4.3.20)
where
M(E, 2,0, V**) = [V**(¢,00) — LV**(¢, 2)]ré (a) (4.3.21)

+[Ee[V** (61, 00)] — LaV** (&, 2)]n(£)-

Proof. From Theorem 4.3.6, we have V**(, z) = inf,¢[o,00) U1(a)V**(¢, 2)
for z < f(¢). Differentiating with respect to a and rearranging, we obtain (4.3.19).
By the monotonicity of r{(a), this minimal solution is unique. The proof of the case

for z > f(¢) is similar. O
Corollary 4.3.10. If ¢(¢,z) = c(¢) for z € Ry, then a3(¢, z) is decreasing in z.

Proof. From Corollary 4.3.5 (b), V**(¢,00)=L; V**(¢, z) and E¢[V**(§1,00)]—LaV**(¢, 2)
are increasing in z. We get M (¢, z,a,V**) is increasing in z. On the other hand, if

c(¢, z) = ¢(¢), the right-hand of (4.3.20) becomes (c(¢)+V**(£,0))(r¢(a)+A(€) +7(¢))
which is not dependent on z. Hence, the minimal solution a3(¢, z) satisfying the equa-

tion (4.3.20) is decreasing in z. o
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In the following, we examine the influences of the maintenance action and the
environment state on the control-limit f(¢) defined in (4.3.16).

At state (&, z), if a maintenance action is executed, the distribution function of
the decreasing magnitude of the damage is F(-). The two extreme cases of the F&(4)
are (a) P(Y(¢,2) = z) = 1, (b) P(Y(§2) = 0) = 1. The case (a) means that
every maintenance action restores the system to a new one (i.e. z = 0), and (b)
that maintenance actions have no influences on the damage level. For (a), we have
JE V(€2 — 4)Fi(dy) = V**(£,0) and £(£) = a(é). (in this case, if m(¢, 7) < c(¢,2)
for all z, then f(£) = oo, i.e. it is always optimal to maintain the system. if
m(€,z) > c(§,2) for all z, then f(¢) = 0, i.e. it is always optimal to replace the

system). For (b), we have [ V**(¢,z — y)Ff(dy) = V**(¢, 2), and

O =8 =int{z, m(E2)—c(¢2)+V™(2)-V™(0)20}. (43.22)
For a general distribution function F£(-), we have the following theorem.

Theorem 4.3.11. (i) Let f(¢) be a control-limit associated with F¢(-), then
B(§) < f§) S aff) for{eT.
(i) Let f;(¢) be control-limits associated with Ff’z() for i = 1,2.
It Ff,(y) < Ff (y) for 0 < y < z, then f1(§) > fa€) for é € L.
Proof. For (i), we have 0 < [§ V**(¢,z — y)Fi(dy) < V**(¢,z) — V**(¢,0), and for
(i), f§V**(& 2 — y)F{,(dy) < J§ V(& 2 — y)F5 ,(dy). From definition (4.3.16) of
J(:), these lead to the desired results. 0O
In general, influences of the environment are complex because changes of the envi-
ronment influence simultaneously the shock arrival, shock magnitude and the failure
rate. In some cases, it is difficult to compare influencing affects of two environment.
Let ¢1,¢ € T, for instance, Hé(:) > H&(.), and Gi1(:) > G() for z € [0,0).
Rough speaking, these imply that at state {;, the shock arrival is faster than that at

state {2, while shock magnitude is smaller than that at state 2. So that, we can not
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appreciafe simply which of the states £ and {3 is a better environment to the system.
Here, we consider a particular case as follows.
For ¢ € T, let HE(-) = H(-), AM(&) = A, (&) = . We introduce a order < on the
state space I'. For &1 < &2, we refer as the following
(1) 1-7(2,41,2) £1-1(2,62,1),
(i) G () 2 G (), and Q(&1,°) 2 Q(42,7)
for z,z € [0, 00).

The meaning of (i) is obvious. The (ii) means that distribution functions G&(-)
and Q(¢,-) are stochastically increasing in order <. In this case, we call ¢ is a
better environment than £ to fhe system. If m(¢,z2),c(é, 2) are increasing in order
<, similar to the proof of Theorem 4.3.4, we also have V**(¢,z) is increasing in
order <, and L1V, (¢, 2), LaVa(§, 2) are decreasing in order <. Furthermore, suppose
the environment state restores the initial state {; when the system is replaéed (this
corresponds to the case where the environment is a internal factor of the system). We

have
£€) = nt{z, m(&,2)=c(, )+ [ V6, 2=DFd) =V (60,0) 2 0}. (43.23)

Corollary 4.3.12. (i) If m(¢,z) — ¢(¢, 2) is increasing in order <, then for & < £2,
(&) > f(&).
(i) If ¢(¢,2) = c(z), then for & < &3, a3(é1,2) 2 a5($2,2)-
where a3(¢, z) is a minimal solution of the equation (3.20)
under the above assumptions.
Remark.

Note that we do not require the environment process £(t) be a increasing process
in order <. This Corollary shows that the control-limit corresponding to a worse
environment is lower. In this case, the system may be replaced early. For a general
state space I without order, the control-limit f(-) can be taken as a criterion function.

That is, if f(&1) > f(&2), we can think that & is a better environment then 2.
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4.4 Optimal Maintenance-Replacement Policy

Let A* € A be a control-limit policy defined by

. _ ) (63(6,2),0) i 2 < f(¢) (4.4.1)
A6 2) = { (Z;(f,z),l) t)tlzlerwise,

where f(¢) is defined in (4.3.16), and a3 (¢, 2),a3(¢, ) are the minimal solutions of the
equations (4.3.19),(4.3.20) respectively. Let #* = (4*, A*,...), then =* presents such
a maintenance-replacement policy: at decision point Ty, the decision is 4, (¢, 2Z,) =
A*(€ny Zn); if Zy < f(&n), and the sojoun time at state (é,,2,) exceeds aj(én,Zn),
we maintain the system at time Ty, + a](én, Zp); if Z, > f(&n), and the sojoun time at
state (&,, Z,) exceeds a5(¢n, Zy), we 1eplace the system at time T, + a5(é,,Z,). We

will prove that #n* is an optimal replacement policy . For any = € II, let

N =inf{n | i,(¢,:,2Z,) =1} C(44.2)
N@®) = Zoso I{Ta<i) (4.4.3)

Then, Ty~ is the first replacement time of the system under x, and N(?) is a point pro-
cess corresponding to the stationary Markov renewal process {£n,Zn,T,,},,20. Using

Tn= and N(t), we define the operator Hy= on B by
Tyx— \
HN’V(&.Z) = E(f:z)[‘/(H_ e—A(t)m(ft:Zr(t))dN(i)+e—A(TN’r)(c(€N*1 ZN")+V(£N")0))]

where A(t)=AT,) HT,<t<Th41, n2>0. (4.4.4)
Remark. \ |

(1) Hn<V(€,2) can be interpreted as follows: let V be the ’remaining cost’,
that is, if the process is stopped at time t in state (¢,2) we have to pay the dis-
counted amount e~AMV(¢,2). After the execution of a replacement the system
moves without loss of time into the state 2 = 0 and the environment state does
not change. Employing the policy 7, we have that the replacement causes the first
cost JoN*~ e~AOm(¢,, Z7(1))dN () + e~ATN")(£x, Zy=) which is equal to

z{‘;";l e‘A(T‘)m(&, Z) + e~ATnx) c(én=,ZnN~), and after that there remain costs of
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e~ AINTIV (é5+,0). So that Hy«V (¢, z) means the expected randomly discounted cost
of thel first replacement under =, starting at time 0 in state (¢, 2).
(2) By Proposition 4.2.2 and a stationary policy =, the process {¢n, Zn, Tn}n>o0 is
a stationary Markov renewal process. Since ETnx < E§ < 00 , Hy= is well-defined.
Thé expected randomly discounted costs incurred under 7 until n-th replacement
can be given by _
Ve = Hnp ... Hn;Vo, (4.4.5)
where the terminal cost function V; is set to be 0 .
Let
Uy =inf, V2 (4.4.6)

Uoo = liMpoyoo Un. (4.4.7)

Lemma 4.4.1. (2) limpueo V2=V, .
(b) V* 2> .
(€) Vae =V*

Proof. (a) For every n > 0, there is an integer m > n such that

m m+1
Eg)[)_ Kn] < Hnp - HngVo < B o) Y Kal-
=1 } =1

Since Vyx € B for any 7 € II, we get, Vyx < limpooo V;? < Vi
(b) By V; > up and (a), we have limu—oo V;* > limp— oo %n, Which yields inf, Vi >
Uoo-

(¢) Under the policy 7*, we have

HyeVo(é,2) = T02y B ollor ™™ e 2 Om(&, 27())AN () + e ATNNc(enn, Znv)
+V(£N"10))|Nr. = n]P(E,z)(Nr‘ = n)
= E?:l UnVQ(f, Z)P(e’z)(N”. = n)
= E¢ »lUN" Vo),

and

Hyp HypVol62) = BealUNT B UM Vo))
= zroxo=1 E:::‘I Unjmvo(fr z)P(é,z)(Nl‘fr = n)P(E,z)(N; = m)
= B, »[UNT M7 V).
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By induction, we have Hyes ... HysVo = E[UNl’“"'“*N;.Vo], and n < Nf" +...+
N, as.. Thus, P(limpvoo NJ +...+NT" =00) =1and UNE ANy V**, as.
(n — 00). Noting U™V, is increasing in n, we get lim,.oo E[UNf"*"""Nrf‘ Vol = V',

le., Vee = V*, o
Lemma 4.4.2. u, > V™.

Proof. For any n > 1 and « € II, let m = NJ+,...,+NT. Then, V* > E[U™ V]

and u, = inf, V* > E[U™ V;]. Let n — 00, we have uo > V*. O
Theorem 4.4.3. n* is an optimal stationary maintenance-replacement policy.

Proof. From Lemma 4.4.1 and 4.4.2, %o > V** = Vye > V* > 4y, thus, Vi = V™,
Therefore, #* is an optimal stationary policy whose maintenace-replacement rule is

the control-limit type. a
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CHAPTER 5

CONCLUSION

5.1 Summery of the results

We summarize the results of the thesis in this section.

We have investigated in the former Chapters the optimal maintenance-replacement
problems of the systems subject to shocks by considering influences of the environ-
ments. We have constructed a new damage process (piecewise semi-Markov process)
by the shock process and the environment process. This piecewise semi-Markov dam-
age process generalizes the semi-Markov damage process studied by the former re-
seachers, so that the results obtained can be applied to the case that influences of
environments are not considered. In Chapter 2, we have analyzed the optimal re-
placement problem where the state changes of the environment process is described
by a Poisson process. By defining an integer-valued random variable, we have gotten’
the sum representing forms for the cost functions, which are more natural because
that both the damage process and the environment process are jump processes. We
have proved that the control-limit policies are optimal for two types of stopping time
sets, and obtained the corresponding bounded processes. In particular, the control-
limit policies for general stopping time case are the combination rules of the damage
level’s control-limit policies and the state-age dependent policies. It has been seen
that, however, the sample’s analyzing method used in this Chapter depends greatly
on the monotone increasing property of the Poisson environment process.

In Chapter 3 we have investigated an optimal state-age dependent replacement
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problem for a network system consisted of a main-system and a sub-system with N
components. The functioning process of components of the sub-system is a Markov
process with the finite state space, which is taken as the environment process of
the main-system. By using Markov decision approach, we have derived an optimal
state-age dependent replacement policy minimizing the long-run average cost per unit
time. The results can be extended to the case that the environment process is a
general Markov jump process. At the last, the Markov decision approach used in this
Chapter has some differences from that given in Ross [54,56] since the action space in
our model is infinite, which makes the calculations more complicate.

We have examined in Chapter 4 a general optimal maintenance-replacement prob-
lem of the system existing in a Markov randomly varying environment. We have con-
sidered the replacement action as well as the maintenance actions, and permitted that
the damaged system become to ”better” after every maintenance, i.e., the damage level
of the system has an randomly decreasing magnitude which is stochastically decreas-
ing with respect to the accumulated damage level. For the total expected randomly
discounted cost, we have derived an optimal control-limit maintenance-replacement
policy dependent on the environment state. As shown as in 4.3, the optimal control-
limit policy has also state-age dependent type, i.e., for every environment state, we
maintain the system when the damage level does not exceed the control-limit and the
sojourn time in that state exceeds an real-value threshold, and replace the system
when the damage level exceeds the control-limit and the sojourn time exceeds another
real-value threshold. Furthermore, we have analyzed the influences of the ma;iﬁtenance
actions and the environment state on the control-limit.

Shock models are one of useful mathematical tools for analyzing the optimal
maintenance-replacement problems for the systems used in the production of goods
and delivery of services, in particular, for the systems used in danger field such as the
atomic powerful station, etc. It isimportant to give more accurate and more appreciate

policies for such systems. This thesis have derived optimal maintenance-replacement
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policies by considering influences of the various environments. The techniques and
methods can be applied to other field such as economic decisions, controls of queueing

systems affected by randomly varying environments.
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5.2 Further problem

The shock models studied in this thesis could be theoretically extended. We simply
discuss further considerable problems and suggestive.comments in the following.

In this thesis we have considered mainly the optimal maintenance-replacement for
the systems influenced by randomly varying environments, not studied the properties
of the failure times of the systems. However, the failure times of the systems depend
greatly on the behaviors of the environment changes, so that it is significant to inves-
tigate the probability distribution properties of the failure times of the systems, such
as the first-passage time distributions, new better than used, new better than used in
expection, etc. It seems difficult to obtain these properties under general conditions
because that the environment’s changes destroy the monotone properties of the prob-
ability distributions of the shock process such as the intershock times and the shock
magnitudes.

As seen as in the definition of the damage process of the system, we have empha-
sized the influences of the environments on the systems, not considered the influences
of the damaged systems on the environments. In Chapter 3, for example, the failures
of components of the sub-system may cause the main-system to fail, and the shock
arrivals and shock magnitudes depend on the number of the functioning components,
while the lifetimes of components of the sub-system are not affected by the behaviors
of the main-system. In fact, these lifetimes may become shorter and shorter with
increasing of the damage level of the main-system. Hence, the main-system é,nd sub-
system influence with each other. In this case, it is necessary to consider these mutual
influences which might result in a more complicate replacement problem.

Applications of optimal maintenance-replacement theory are of great interest.
Shock models have been studied by many authors and will developed in future as
the growth in the complexity of modern systems. The problems mentioned above are

open questions for future research.
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