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Abstract

We compute the resultants and discriminants of the multiplication polyno-
mials of Jacobi elliptic functions by using Fourier expansions.
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1. Introduction

Resultants and discriminants have been calculated for various kinds of
division (sometimes called multiplication) polynomials; cyclotomic polyno-
mials (several different proofs are known; see for example [1], [3], [6]), real
cyclotomic polynomials ([7], [11]), Chebyshev polynomials ([4], [8], [11]), mul-
tiplication polynomials of the Weierstrass p-function ([9]). It seems that no
one has ever calculated the resultants of multiplication polynomials of Jacobi
elliptic functions.

Consider the Jacobi elliptic functions sn, cn, dn with modulus k (k% # 0, 1;
k may be complex). Let x = snu, y = cnu, z = dnu. For each positive
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integer n, there exist polynomials A,, B,, C,, D, in x with the following
property:

(IL’An<.Z') yBn(z) 2C,(x)

D,(z) " Dp(x)’ D,(x

(myzAn(x) w(x) Ch(x)
D,(z) ' Du(x)" D,(z)

> if n is odd,

(snnu, cnnu, dnnu) = (1.1)

> if n is even.

See Section 2 for a precise description. The coefficients of A,, B,,C,, D,
belong to Z[k?].
The main result of this paper is the following

Theorem 1.1. Let XY € {A,B,C,D}, X #Y andn > 1. We have

res(X,, Yy,) = ki (X, V)20V (1 — 2)ma(XY) (1.2)
where
kn(X,Y) =275 (X, Y) = LY, X), mu(X,Y) = ma(Y,X),

(1) if n is odd,

I,(A, B) = mp(A, D) =

if n is even,

{—(”2_1)(%2_3) if n is odd,

(A, C)=1,(A,D)=m,(A, B) =m,(A,C) =

if n is even,

@2-1)(n*-3) if n is odd

In(B,C) = (B, D) = mn(B, D) = mn(C, D) = if n is even

il G if n is odd,

[,(C, D) = my(B,C) = {@ if n is even.

The proof goes along the lines of Schmidt [9]. First we show the existence
of integers k,(X,Y) >0, [,(X,Y) >0, and m,(X,Y) > 0 not depending on
k such that (1.2) holds (Lemma 3.2). Then, comparing the g-expansions of
both sides of (1.2), we determine the three constants. To be more precise, a
comparison of the degrees of the leading terms determines [,(X,Y’). Chang-
ing k to its complementary modulus &’ (i.e., k* + k' = 1), we get m,(X,Y)
(Corollary 3.3). A comparison of the leading constants finally yields the
determination of x,(X,Y).



The organization of this paper is as follows. In Section 2 we review on
Jacobi elliptic functions and basic properties of their multiplication polyno-
mials A, By, Cp, D,,. In Section 3 we show the general shape of res(X,,,Y,)
as given in (1.2). After preparing some g-expansions in Section 4, we give
a proof of Theorem 1.1 in Section 5. As an application, we also calculate
the discriminants of A,,, B,,, C,, D,, in Section 6. In the final Section 7 we
mention the degenerate cases k% = 0, 1.

2. Jacobi elliptic functions

Since the assertion of Theorem 1.1 is an identity in k, we may assume
0 < k < 1 for the proof. Following the traditional notation as in [2] or
[10], we write Jacobi elliptic functions sn(u, k), cn(u, k), dn(u, k) simply as
snu, cnu, dnu, respectively. The periods of sn, cn, dn are

4mK +2niK', 2mK +2n(K +iK'), 2mK +4niK' (m,n € Z)

respectively, where

! dt ;! dt
K:/o Jima e ‘/0 V(I =) (1 = k2)

are complete elliptic integrals of the first kind and & = /1 — k? is the com-
plementary modulus.

The following are basic properties of the polynomials A,,, B,, C,, D,, re-
ferred to in Introduction.

Proposition 2.1.

1. A,, B,,C,, D, are determined by
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and the recurrence relations

A2n = 2AanCnDna
B — y*B2D2 — 2?22 A2C?  if n is odd,
e B2D2 — 2*y?z* A2C%  if n is even,
o _ 22C2D2 — K*2*y*A2B2  if n is odd,
e C2D2 — k*2?y*22 A2 B2 if n is even,
D {Di — k22t A2 if nis odd,
2n —

D} — K2ty 21 AL if n is even,

y222Aan+1Cn+an + An-i—anCnDn-i-l an is even,
B2n+1 = Ban+1DnDn+1 - C5‘222*471‘4714-1C(nC’n—l—l;
CQn—l—l - CnCn+1DnDn+1 - k2x2y2AnAn+1Ban+la

— P22 24,2 2 A2 42
Dopy1 =D, D, | — k"2 y"2"A A, ;.

{Aan+1Cn+1Dn + y*2? Ap 1 BoCrpDyyr  if is odd,
A2n+1 -

2. The coefficients of A, By, Cy, D, belong to Z[k?].
3. A,,B,,C,, D, are even polynomials, i.e., polynomials in 2.
4. The leading terms are as follows.

@) = (=) V2(VEz) ... ifn s odd,
n\T) = (=1)=22n(VEx)” 4+ ... ifn is even,
JWE) T - ifnis odd,
By(x) = {(\/Ex)"Q 4+ .- if n is even,
Wk - ifnds odd,
Cn(z) = {(\/Ex)"Z 4+ .- if n 1s even,
Do(a) = (=)= D2 (VEz)” 4o ifn s odd,
n\l) = (—1)””(\/%5(])"2 + ... if n is even.



_1\(n=1)/2(1.2\(n?=1)/4 ;
A1) = {( 1) (k%) if nis odd,

n(—k2)"* /41 if n is even,
B,(1) = (—=1)= D2 (k2)*=D/4 if s odd,
" (=) /4 if n is even,
Co(1) = Dy(1) = ()71
7.
—1)(n=1)/2(p12].—2 (n?=1)/4 s odd
A1) = DT ) ifn is odd,
n(k"2k=2) /41 if n is even,
1) (n=1)/2p (L2 ]2 (n2-1)/4 s odd
cumy =g TR s odd
(k2E=2)n/4 if n is even,

Bo(1/k) = D, (1/k) = (—kk=2)* /4,

8. We have the following factorization:

An(x) = ay,

( 2TK+SZK/
X
(r,8) € Ry, (7‘ s) =

( QrK—i-szK/
¥ —sn

=
3
&
!
§~
:l

(r,8) € Rn, (r,8) =

)
)
Co() = o H y (x 2 rK + szK’)
)

(r,8) € Rn, (r,8)

( 2TK+SZK/
T

(r,s) € Rn, (r,s)
where
R,=({1,2,...,n—=1} x{0,n})U({0,1,...,2n—1} x{1,2,...,n—1}),

the leading coefficients ay,, by, c,, d,, are as given in part 4, and the con-
gruences are taken modulo 2.

9. A,, B, C,, D, are pairwise prime to each other as polynomials in x.



Proof. First we note that the polynomials A,, B,,C,, D, in our notation
are the ones denoted by A/, B/ C! D! in [2, p.87]. With this translation
in mind, part 1 is found in [2, p.79]. Parts 2-7 are then deduced from the
recurrence relations. Part 8 is essentially found in [2, p.92]. The last claim
follows from the factorization. O

We describe the effect of changing k to £’. To this end, we introduce a

notation: _
f*(x) =V 1-— $2degff <\/%) . (21)

Lemma 2.2. Let f(x) be an even polynomial of degree 2n.

1. f*(x) is also an even polynomial.
2. The coefficient of > in f*(x) is (—=1)"f(1). In particular, deg f* =
deg f if and only if f(1) # 0.
3. f*(x) = fla) if £(1) #0.
Recall that A,, B,,C,, D, are even polynomials and do not vanish at
r =1

Proposition 2.3. If we write A,(z,k) etc., to indicate the dependency on
k, then we have

Ap(z, k) = Al (2, k), B, (z, k") = D} (x, k),
Cnl(x, k') = Ck(x, k), D, (z, k') = B} (z, k).

Proof. If the zeros of an even polynomial f(x) with f(1) # 0 are £a; (j =
1,2,...,n), then those of f*(z) are

ZOéj

+—— (j=1,2,...,n).
11— ozjz
Using this observation, the identity
_ isn(u, k)
k)= ———7-"++
sn(iu, k) en(u, 1)

(cf. [10, 22.4]), and part 8 of Proposition 2.1, we see that both sides have
exactly the same set of zeros in each case. We also see that the leading
coefficients coincide by using parts 4 and 6 of Proposition 2.1. This completes
the proof. O



3. Resultants

The resultant of two polynomials

f@)=a(x =)~ (x—am), a#0,
g(x) =b(x = fr)--- (&= Bn), 0F0

is defined as

res(f.9) = " [[ [Tt = ) = @ [ glew).

i=1 j=1
Lemma 3.1. Let h be another polynomaial.

1. res(g, f) = (=1)™"res(f,g).

2. res(f, gh) =res(f,g)res(f,h), res(fg,h) =res(f, h)res(g,h).

3. res(f,g+ fh) =a*"res(f,g), where s = deg(g + fh).

4. Suppose further that f,g are even polynomials which do not vanish at
x = 1. Then with the notation in (2.1), we have

res(f*, g") = res(f, ).

Proof. The first three are easily seen. The proof of the last assertion is
reduced to the case f(z) = z? — p,g(x) = 2* — ¢, since both the resultant
and the operation * are multiplicative. In this case we have f*(z) = (p —
1)1’2 - D g*(QZ) = (q - 1)132 — 4, S0 that
res(f*,9") = (p — q)* = res(f, 9)

as desired. O

Let X,Y € {A,B,C,D}, X #Y and n > 1. Our object is the calculation
of res(X,,Y,). By a well known Sylvester determinant expression of the
resultant and by part 2 of Proposition 2.1, we see that res(X,,Y,) € Z[k?].
Also, we have res(X,,,Y;) = res(Y,, X,) since both deg X,, and deg,, are

even.
The general shape of res(X,,,Y,) is given as follows.

Lemma 3.2. Let X,Y € {A,B,C,D}, X # Y. For each positive integer
n, there exist integers k,(X,Y) > 0, 1,(X,Y) > 0, and m,(X,Y) > 0 not
depending on k such that

res(X,, Yy) = kin(X, Y )k (1 — 2y (X)),
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Proof. We regard res(X,,,Y;) as a polynomial in k?. Part 9 of Proposition 2.1
implies that res(X,,,Y;) # 0if k& # 0, 1. Hence by the Hilbert Nullstellensatz
(cf. [5, IX §1 Theorem 1.5]), there exist a positive integer ¢ and a polynomial
Q € Q[k?] such that (k*(1 — k?))! = Qres(X,,Y,). Since Q[k?] is a unique
factorization domain, it follows that res(X,,Y;,) = xk*(1 — k%)™ for some
k € Q and some non-negative integers [, m. Since res(X,,Y,) € Z[k?] and
both X,, and Y, are polynomials in 22, we see that x is a positive integer. [

By Proposition 2.3 and Lemma 3.1, we have
Corollary 3.3. With the notation of Lemma 3.2,

I,(A, D) = m,(A, B),

)
A,C) AC
l(B,C)=m,(C,D), 1,(C,D)=my,(B,C),
1,(B, D) = my,(B, D),
kn(A, B) = k,(A, D),
kn(B,C) = k,(C, D).

On the other hand, by part 8 of Proposition 2.1, we get

Proposition 3.4. Let X,Y € {A,B,C,D}, X # Y. Then we have

res(X,,,Y,,) = ados¥nydeg Xn H H f(r, s, r',s)

(r,s)ER (r',s')ERY
where x,,, Yy, denote the leading coefficients of X,,, Y, respectively,
va=(0,0), vg = (1,0), ve = (1,1), vp = (0, 1),
R,=({12,...,n—1} x{0,n}) L ({0,1,...,2n — 1} x {1,2,...,n — 1}),
RX ={(r,s) € R, | (r,s) =vx (mod 2)},
and
o TK + siK’ o 'K + siK'
—— —sn  ————.
n n

f(r,s,r',s") =sn

So we need a closer look at f(r,s,r’, s')%



4. g-expansions

Let 7 =iK'/K and q = ¢™". By our assumption 0 < k < 1, we see that
K and K’ are positive real numbers, so that Im(7) > 0 and 0 < |¢] < 1. We
use the following g-expansions ([10, 21-61]):

QZQ(HQ)Q
g = 20 L (4.1)
93(0) 5
1+2) ¢
=0
0o 2
2K = 030 =7 (1 + qu >
§=0

Snu = K_k 1 q2j+1 (42)
=0
valid throughout the strip |Im(z)| < 5 Im(7), and
1 s 27 o= q¥ T sin(2j + 1)z
nsU = —— = g cosec + N 2. o (4.3)

valid throughout |Im(z)| < 7 Im(7), except at the points z € 7Z.

Now let % e
u= ﬁ, (r,s) € Ry.

n
We can apply (4.2) if 0 < s < n and (4.3) if s = n. By using expiz = ("¢,
where ( = exp ;r—fl, we find that the complex number
o TK 4 siK'

n

—4 sn

is expressed as a Laurent series in qi whose leading term has degree ¢ n
and coefficient

(¢r=¢)?  ifs=0,

¢ if 0 < s <mn,

(C"=¢ )% ifs=n.

9



Thus we get the leading term of the g-expansion of f(r,s,r’,s')?. We may
suppose s > s’ since f(r',s',r,8)? = f(r,s,17, ).

Lemma 4.1. For s > s, the leading term of the q-expansion of 16 f(r, s, 7', s')*
has degree g % and coefficient L(r,s,r',s"), where

(= ¢ = (" =¢7)2? ifs=s=0,

¢4 if 8 <s<mn,
L(r,s,r', ")y =< (7% — C*2T')2 if & = s <mn,
¢ if 8 < s=n,

(
(=)= (=) s =s=n,

and ¢ = exp %

5. Proof of Theorem 1.1

Let X,Y € {A,B,C,D}, X # Y. We have res(X,,Y,) = res(Y,,, X,)) as
noticed earlier, so we have only to consider the six cases

(X,Y)e{(A B),(AC), (A D), (B,C),(B,D),(C,D)}.

As in Proposition 3.4, let x,,, y, denote the leading coefficients (with respect
to the variable x) of X,,, Y,,, respectively. By part 4 of Proposition 2.1 and
(4.1), we can consider the g-expansions of z,, and y,, so let 2/, and y/, denote
the leading terms of these g-expansions, respectively. Then by Proposition
3.4 and Lemma 4.1, the leading term of the g-expansion of res(X,,Y,,) is

1:/ deg Y /dean H H 7"7377” S )qf%max{s,s’}. (51)

(r,8)ERX (r',s’)ERY

First we observe the degree in ¢. By Lemma 3.2 and (4.1), the leading
term of the g-expansion of res(X,,, Y,,) has degree ¢'»(X*¥). On the other hand,
it follows from part 4 of Proposition 2.1 and (4.1) that af &/ 98%n Jag
degree g2 98 XndeeYn fence by (5.1) we find that

n

1 2
IL(X,)Y) = §dean degV, — = Z Z max{s, s'}.
n

(r,s)ERX (1',s")ERY

10



The authors are not aware of any clever method to compute the last dou-
ble sum, but anyway an elementary counting argument gives the value of
[,(X,Y), and hence that of m,(X,Y") by Corollary 3.3, as stated in Theo-
rem 1.1.

Next we observe the leading coefficient of the g-expansion of res(X,,,Y,).
By Lemma 3.2 and (4.1), it is &, (X, Y)16"(5Y) . Since &, (X,Y) is known
to be positive, it suffices to determine the absolute value of the coefficient of
(5.1). By Lemma 3.2, we may further assume that

(X,Y) €{(A,C0),(A,D),(B,C),(B,D)}. (5.2)
By part 4 of Proposition 2.1 and (4.1), the leading coefficient of 7, % "y/ 4
is
92 deg Xy, deg Yy, yyn? if X = A, nis even,
22dean dng,Lnn2—1 ity = D7 n is Odd, (53>
92deg Xp, deg Yn, otherwise.

The contribution of 16’s in (5.1) gives

16—#R§#R3{ — 2—dean dngn' (54>

Now let
H H L(r,s,r' s

(r,s)ERX (1',8')ERY

and decompose P into the product P, P, P3Py, where

H H |L(r,s,r’, s,

(rs)ERY, (' s')eRy,
s¢{0n} s'¢{0n}

P, = H H |L(r,s,r", 5",

(r,s)ERY, ', s')eRy,
se{0,n} s'¢{0n}

Py = H H |L(r,s, 1", s,

(rs)eRy’, (r',s)ERy,
s¢{0,n} s'e{0n}

P, = H H |L(r,s,r", ")

(r,s)ERY, (r',s")ERY,
se{0,n} s E{O n}

11



If we write vy = (vx,wx) and vy = (vy, wy), then by the assumption (5.2),
we have wy = 0 and wy = 1. So, as far as we are concerned here, s is always
even and s’ is always odd. By Lemma 4.1, we have
I1—¢ | if s < s’ =nand n is odd,
|L(r,s,1",s" )| =< |1 = |7* if 8 < s=mnand n is even,

1 otherwise,

where we put (,, = exp 2&, so that

P =1,
p_d! if n is odd,
i H0<T<MEUX I1— C§n|_2"2 if n is even,

P {HWWW 1= G| 720D if s odd,

1 if n is even,

1 if n is even.

P4 = {H0<r’<n,r’zvy |1 - C§;|_2(n_1) if nis Odd>

By Lemma 5.1 below, we find that

1 if nisodd and Y =C,
p_ n_(’j_l) ?f n ?s odd and Y = D, (5.5)
27" if n is even and X = B,

(n/2)~"* if nis even and X = A.

Putting (5.1), (5.3), (5.4), and (5.5) together and using the value of
1,(X,Y), we complete the proof of Theorem 1.1. ]

Lemma 5.1. Let (,, = exp % For any positive integer n, we have

I1 \1—<5nr2:{1 s odd. (5.6)

2 if n is even,

0<r<n,r:odd
H ‘1 Cr ’2 _n an 18 0dd7 (5 7)
0<r<n,r:even o n/2 an 1S even. )

12



Proof. Using [["Z{(1—¢) =n and |1 — (| = |1 — ¢*"|, we have

H 11— = {n if n is odd, (5.8)

n/2 if n is even
0<r<n/2 / ’

which is nothing but (5.7). Replacing n with 2n in (5.8) and then dividing
it by (5.7), we get (5.6). O
6. Discriminants

The discriminant of a polynomial f with degree n and leading coefficient
a is defined as

disc(f) = (=1)"" " 2a " res(f, f)
(see [5, IV §8]). As an application of Theorem 1.1, we get the following

Theorem 6.1. Let X € {A,B,C,D} and n > 1. We have
disc(X,,) = ki (X) k2O (1 — g2y (0,

where:

If n is odd, then

Hn(A) — Fdn(D) _ (_1>L*1 n2(n32_1)nn2 2’
/in(B) _ /‘in(C) _ 2n2(n32—1)nn2_3’
(A) = 1(B) = 1,(C) = 1(D) = "= 1>1(22”2 —3)
My (A) = my(B) = my,(C) = my(D) = (n? — 1)6(n2 —3)

13



If n s even, then

[,(A) =
(4) =
L (B) = n*(2n% —5)
n 12 I
2on?+1
1(©) = 1,(D) = "D,
2_4 2 _
m(A) = (n )6(n 6)7
20,2
-1
ma(B) = my(0) = "),
(D) = n%(n? —4)
" 6
Proof. First we recall that
@snuzcnudnu,
d
—cnu = —snudnu,
du
d 2
@dnu:—k’ SN U CN U,

On differentiating both sides of (1.1) with respect to x, we get

B.C A, D, + z(Al,D,, — A,D.) if n is odd,
nopLn =
(y?2? — 222% — K*2*y*) A, D, + xy?2*(A,D,, — A, D) if nis even,
(6.1)
—zB,D,, +y*(B.D, — B,D.) if nis odd,
—nzA,C, = Ix +y ,( " 2 1 " %s ? (6.2)
B, D, — B, D, if n is even,
—k*xC,D,, + 2*(C!D,, — C,,D})) if n is odd,
—nk’zA,B, =< * +IZ (Cn ) 1 " ?S © (6.3)
c, D, —C,D, if n is even.

14



We illustrate the proof in the case of B,, n:even. Taking resultants of
both sides of (6.2) with B,,, we get, by Lemma 3.1,

res(—nzA,C, B,) = b, ?res(B.,D,, B,),

where b, = k("*~1/2 is the leading coefficient of B, (z) (cf. part 4 of Proposi-
tion 2.1). By the multiplicativity of resultant and by the facts deg B,, = n?—1
and res(x, B,,) = B,(0) = 1, we get

n™ 'res(A,, By) res(By, Cy) = res(By, Dy,)b; " disc(B,).

Substituting the result of Theorem 1.1, we get disc(B,,).
The computation in the remaining cases is similar; Theorem 1.1 and
Proposition 2.1 contain all the information we need; for example,

res(2%, A,) = res(1 — k222, A,) = (—k?)38 4 A, (1/k)2.

7. Degenerate Case

In this final section, we state without proof what happens in the “degen-
erate” cases k* = 0, 1, if we formally define the polynomials A, B,,C,, D,
by using the same recurrence relations in part 1 of Proposition 2.1. The proof
can be carried out, for example, as in [11].

In the case k? = 0, we have

U,(V1—22) if nis odd,

if n is even,

if n is odd,
T(V1—2x?) ifniseven,

where T,, and %, are the Chebyshev polynomials of the first and second kind,
of degree n and n — 1, respectively.

15



In the case k? = 1, we have
_ 2\n(n—1)/2 ; ;
A (z) = (1 —x2) A, () Tfn?sodd,
(1 —22)"=D/2=14 () if n is even,
By (2) = Cu(x) = (1 — 2"/,
Dp(z) =(1-= )n(n R Dn(x)a

where

Note that A,,, D, are polynomials in z2.
The identity (1.1) holds true also in these degenerate cases, as

snu = sinu, cnu = cosu, dnu =1

if k2 =0, and
1

snu = tanhu, cnu =dnu =
coshu

if k2 =1.
Proposition 7.1.

1. If k* =0, then res(A,, B,) = 2",
2. Ifk* =1, then res(A,, D,) = 271,
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