Resultants and discriminants of the multiplication polynomials of Jacobi elliptic functions

Koji Yamagata ${ }^{\text {a,* }}$, Masakazu Yamagishi ${ }^{\text {b }}$
${ }^{a}$ Field of Mathematics and Mathematical Science, Department of Computer Science and Engineering, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555, Japan
${ }^{b}$ Department of Mathematics, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555, Japan

Abstract

We compute the resultants and discriminants of the multiplication polynomials of Jacobi elliptic functions by using Fourier expansions.

Keywords:

Jacobi elliptic function, multiplication polynomial, resultant, discriminant, Chebyshev polynomial
2010 MSC: 33E05, 12D05

1. Introduction

Resultants and discriminants have been calculated for various kinds of division (sometimes called multiplication) polynomials; cyclotomic polynomials (several different proofs are known; see for example [1], [3], [6]), real cyclotomic polynomials ([7], [11]), Chebyshev polynomials ([4], [8], [11]), multiplication polynomials of the Weierstrass \wp-function ([9]). It seems that no one has ever calculated the resultants of multiplication polynomials of Jacobi elliptic functions.

Consider the Jacobi elliptic functions sn, cn, dn with modulus $k\left(k^{2} \neq 0,1\right.$; k may be complex). Let $x=\operatorname{sn} u, y=\operatorname{cn} u, z=\operatorname{dn} u$. For each positive

[^0]integer n, there exist polynomials $A_{n}, B_{n}, C_{n}, D_{n}$ in x with the following property:
\[

(\operatorname{sn} n u, \operatorname{cn} n u, \operatorname{dn} n u)= $$
\begin{cases}\left(\frac{x A_{n}(x)}{D_{n}(x)}, \frac{y B_{n}(x)}{D_{n}(x)}, \frac{z C_{n}(x)}{D_{n}(x)}\right) & \text { if } n \text { is odd } \tag{1.1}\\ \left(\frac{x y z A_{n}(x)}{D_{n}(x)}, \frac{B_{n}(x)}{D_{n}(x)}, \frac{C_{n}(x)}{D_{n}(x)}\right) & \text { if } n \text { is even. }\end{cases}
$$
\]

See Section 2 for a precise description. The coefficients of $A_{n}, B_{n}, C_{n}, D_{n}$ belong to $\mathbb{Z}\left[k^{2}\right]$.

The main result of this paper is the following
Theorem 1.1. Let $X, Y \in\{A, B, C, D\}, X \neq Y$ and $n \geq 1$. We have

$$
\begin{equation*}
\operatorname{res}\left(X_{n}, Y_{n}\right)=\kappa_{n}(X, Y) k^{2 l_{n}(X, Y)}\left(1-k^{2}\right)^{m_{n}(X, Y)} \tag{1.2}
\end{equation*}
$$

where

$$
\begin{gathered}
\kappa_{n}(X, Y)=2^{\frac{n^{2}\left(n^{2}-1\right)}{3}}, \quad l_{n}(X, Y)=l_{n}(Y, X), \quad m_{n}(X, Y)=m_{n}(Y, X), \\
l_{n}(A, B)=m_{n}(A, D)= \begin{cases}\frac{n^{2}\left(n^{2}-1\right)}{n^{2}-4} & \text { if } n \text { is odd, } \\
\frac{n^{2}\left(n^{2}-1\right)}{6} & \text { if } n \text { is even, }\end{cases} \\
l_{n}(A, C)=l_{n}(A, D)=m_{n}(A, B)=m_{n}(A, C)= \begin{cases}\frac{\left(n^{2}-1\right)\left(2 n^{2}-3\right)}{12} & \text { if } n \text { is odd, }, \\
\frac{n^{2}\left(n^{2}-4\right)}{6} & \text { if } n \text { is even, },\end{cases} \\
l_{n}(B, C)=l_{n}(B, D)=m_{n}(B, D)=m_{n}(C, D)= \begin{cases}\frac{\left(n^{2}-1\right)\left(2 n^{2}-3\right)}{12} & \text { if } n \text { is odd, } \\
\frac{n^{2}\left(n^{2}-1\right)}{6} & \text { if } n \text { is even, }\end{cases} \\
l_{n}(C, D)=m_{n}(B, C)= \begin{cases}\frac{n^{2}\left(n^{2}-1\right)}{6} & \text { if } n \text { is odd }, \\
\frac{n^{2}\left(n^{2}+2\right)}{6} & \text { if } n \text { is even } .\end{cases}
\end{gathered}
$$

The proof goes along the lines of Schmidt [9]. First we show the existence of integers $\kappa_{n}(X, Y)>0, l_{n}(X, Y) \geq 0$, and $m_{n}(X, Y) \geq 0$ not depending on k such that (1.2) holds (Lemma 3.2). Then, comparing the q-expansions of both sides of (1.2), we determine the three constants. To be more precise, a comparison of the degrees of the leading terms determines $l_{n}(X, Y)$. Changing k to its complementary modulus k^{\prime} (i.e., $k^{2}+k^{\prime 2}=1$), we get $m_{n}(X, Y)$ (Corollary 3.3). A comparison of the leading constants finally yields the determination of $\kappa_{n}(X, Y)$.

The organization of this paper is as follows. In Section 2 we review on Jacobi elliptic functions and basic properties of their multiplication polynomials $A_{n}, B_{n}, C_{n}, D_{n}$. In Section 3 we show the general shape of $\operatorname{res}\left(X_{n}, Y_{n}\right)$ as given in (1.2). After preparing some q-expansions in Section 4, we give a proof of Theorem 1.1 in Section 5. As an application, we also calculate the discriminants of $A_{n}, B_{n}, C_{n}, D_{n}$ in Section 6. In the final Section 7 we mention the degenerate cases $k^{2}=0,1$.

2. Jacobi elliptic functions

Since the assertion of Theorem 1.1 is an identity in k, we may assume $0<k<1$ for the proof. Following the traditional notation as in [2] or [10], we write Jacobi elliptic functions $\operatorname{sn}(u, k), \operatorname{cn}(u, k), \operatorname{dn}(u, k)$ simply as $\operatorname{sn} u, \mathrm{cn} u, \operatorname{dn} u$, respectively. The periods of $\mathrm{sn}, \mathrm{cn}, \mathrm{dn}$ are

$$
4 m K+2 n i K^{\prime}, \quad 2 m K+2 n\left(K+i K^{\prime}\right), \quad 2 m K+4 n i K^{\prime} \quad(m, n \in \mathbb{Z})
$$

respectively, where

$$
K=\int_{0}^{1} \frac{d t}{\sqrt{\left(1-t^{2}\right)\left(1-k^{2} t^{2}\right)}}, \quad K^{\prime}=\int_{0}^{1} \frac{d t}{\sqrt{\left(1-t^{2}\right)\left(1-k^{\prime 2} t^{2}\right)}}
$$

are complete elliptic integrals of the first kind and $k^{\prime}=\sqrt{1-k^{2}}$ is the complementary modulus.

The following are basic properties of the polynomials $A_{n}, B_{n}, C_{n}, D_{n}$ referred to in Introduction.

Proposition 2.1.

1. $A_{n}, B_{n}, C_{n}, D_{n}$ are determined by

$$
A_{1}=B_{1}=C_{1}=D_{1}=1
$$

and the recurrence relations

$$
\begin{aligned}
& A_{2 n}=2 A_{n} B_{n} C_{n} D_{n}, \\
& B_{2 n}= \begin{cases}y^{2} B_{n}^{2} D_{n}^{2}-x^{2} z^{2} A_{n}^{2} C_{n}^{2} & \text { if } n \text { is odd }, \\
B_{n}^{2} D_{n}^{2}-x^{2} y^{2} z^{2} A_{n}^{2} C_{n}^{2} & \text { if } n \text { is even },\end{cases} \\
& C_{2 n}= \begin{cases}z^{2} C_{n}^{2} D_{n}^{2}-k^{2} x^{2} y^{2} A_{n}^{2} B_{n}^{2} & \text { if } n \text { is odd, }, \\
C_{n}^{2} D_{n}^{2}-k^{2} x^{2} y^{2} z^{2} A_{n}^{2} B_{n}^{2} & \text { if } n \text { is even, }\end{cases} \\
& D_{2 n}= \begin{cases}D_{n}^{4}-k^{2} x^{4} A_{n}^{4} & \text { if } n \text { is odd, }, \\
D_{n}^{4}-k^{2} x^{4} y^{4} z^{4} A_{n}^{4} & \text { if } n \text { is even, }\end{cases} \\
& A_{2 n+1}= \begin{cases}A_{n} B_{n+1} C_{n+1} D_{n}+y^{2} z^{2} A_{n+1} B_{n} C_{n} D_{n+1} & \text { if } n \text { is odd }, \\
y^{2} z^{2} A_{n} B_{n+1} C_{n+1} D_{n}+A_{n+1} B_{n} C_{n} D_{n+1} & \text { if } n \text { is even },\end{cases} \\
& B_{2 n+1}=B_{n} B_{n+1} D_{n} D_{n+1}-x^{2} z^{2} A_{n} A_{n+1} C_{n} C_{n+1}, \\
& C_{2 n+1}=C_{n} C_{n+1} D_{n} D_{n+1}-k^{2} x^{2} y^{2} A_{n} A_{n+1} B_{n} B_{n+1} \text {, } \\
& D_{2 n+1}=D_{n}^{2} D_{n+1}^{2}-k^{2} x^{4} y^{2} z^{2} A_{n}^{2} A_{n+1}^{2} .
\end{aligned}
$$

2. The coefficients of $A_{n}, B_{n}, C_{n}, D_{n}$ belong to $\mathbb{Z}\left[k^{2}\right]$.
3. $A_{n}, B_{n}, C_{n}, D_{n}$ are even polynomials, i.e., polynomials in x^{2}.
4. The leading terms are as follows.

$$
\begin{aligned}
& A_{n}(x)= \begin{cases}(-1)^{(n-1) / 2}(\sqrt{k} x)^{n^{2}-1}+\cdots & \text { if } n \text { is odd, } \\
(-1)^{(n-2) / 2} n(\sqrt{k} x)^{n^{2}-4}+\cdots & \text { if } n \text { is even, }\end{cases} \\
& B_{n}(x)= \begin{cases}(\sqrt{k} x)^{n^{2}-1}+\cdots & \text { if } n \text { is odd, } \\
(\sqrt{k} x)^{n^{2}}+\cdots & \text { if } n \text { is even, }\end{cases} \\
& C_{n}(x)= \begin{cases}(\sqrt{k} x)^{n^{2}-1}+\cdots & \text { if } n \text { is odd, } \\
(\sqrt{k} x)^{n^{2}}+\cdots & \text { if } n \text { is even, }\end{cases} \\
& D_{n}(x)= \begin{cases}(-1)^{(n-1) / 2} n(\sqrt{k} x)^{n^{2}-1}+\cdots & \text { if } n \text { is odd, } \\
(-1)^{n / 2}(\sqrt{k} x)^{n^{2}}+\cdots & \text { if } n \text { is even. }\end{cases}
\end{aligned}
$$

5. $A_{n}(0)=n, B_{n}(0)=C_{n}(0)=D_{n}(0)=1$.
6.

$$
\begin{aligned}
& A_{n}(1)= \begin{cases}(-1)^{(n-1) / 2}\left(k^{\prime 2}\right)^{\left(n^{2}-1\right) / 4} & \text { if } n \text { is odd }, \\
n\left(-k^{\prime 2}\right)^{n^{2} / 4-1} & \text { if } n \text { is even },\end{cases} \\
& B_{n}(1)= \begin{cases}(-1)^{(n-1) / 2} n\left(k^{\prime 2}\right)^{\left(n^{2}-1\right) / 4} & \text { if } n \text { is odd, }, \\
\left(-k^{\prime 2}\right)^{n^{2} / 4} & \text { if } n \text { is even },\end{cases} \\
& C_{n}(1)=D_{n}(1)=\left(k^{\prime 2}\right)^{\left\lfloor n^{2} / 4\right\rfloor} .
\end{aligned}
$$

7.

$$
\begin{aligned}
& A_{n}(1 / k)= \begin{cases}(-1)^{(n-1) / 2}\left(k^{\prime 2} k^{-2}\right)^{\left(n^{2}-1\right) / 4} & \text { if } n \text { is odd, } \\
n\left(k^{\prime 2} k^{-2}\right)^{n^{2} / 4-1} & \text { if } n \text { is even, }\end{cases} \\
& C_{n}(1 / k)= \begin{cases}(-1)^{(n-1) / 2} n\left(k^{\prime 2} k^{-2}\right)^{\left(n^{2}-1\right) / 4} & \text { if } n \text { is odd, } \\
\left(k^{\prime 2} k^{-2}\right)^{n^{2} / 4} & \text { if } n \text { is even, },\end{cases} \\
& B_{n}(1 / k)=D_{n}(1 / k)=\left(-k^{\prime 2} k^{-2}\right)^{\left\lfloor n^{2} / 4\right\rfloor} .
\end{aligned}
$$

8. We have the following factorization:

$$
\begin{aligned}
& A_{n}(x)=a_{n} \prod_{(r, s) \in R_{n},(r, s) \equiv(0,0)}\left(x^{2}-\mathrm{sn}^{2} \frac{r K+s i K^{\prime}}{n}\right), \\
& B_{n}(x)=b_{n} \prod_{(r, s) \in R_{n},(r, s) \equiv(1,0)}\left(x^{2}-\mathrm{sn}^{2} \frac{r K+s i K^{\prime}}{n}\right), \\
& C_{n}(x)=c_{n} \prod_{(r, s) \in R_{n},(r, s) \equiv(1,1)}\left(x^{2}-\mathrm{sn}^{2} \frac{r K+s i K^{\prime}}{n}\right), \\
& D_{n}(x)=d_{n} \prod_{(r, s) \in R_{n},(r, s) \equiv(0,1)}\left(x^{2}-\mathrm{sn}^{2} \frac{r K+s i K^{\prime}}{n}\right),
\end{aligned}
$$

where
$R_{n}=(\{1,2, \ldots, n-1\} \times\{0, n\}) \sqcup(\{0,1, \ldots, 2 n-1\} \times\{1,2, \ldots, n-1\})$,
the leading coefficients $a_{n}, b_{n}, c_{n}, d_{n}$ are as given in part 4, and the congruences are taken modulo 2.
9. $A_{n}, B_{n}, C_{n}, D_{n}$ are pairwise prime to each other as polynomials in x.

Proof. First we note that the polynomials $A_{n}, B_{n}, C_{n}, D_{n}$ in our notation are the ones denoted by $A_{n}^{\prime}, B_{n}^{\prime}, C_{n}^{\prime}, D_{n}^{\prime}$ in [2, p.87]. With this translation in mind, part 1 is found in [2, p.79]. Parts $2-7$ are then deduced from the recurrence relations. Part 8 is essentially found in [2, p.92]. The last claim follows from the factorization.

We describe the effect of changing k to k^{\prime}. To this end, we introduce a notation:

$$
\begin{equation*}
f^{*}(x)={\sqrt{1-x^{2}}}^{\operatorname{deg} f} f\left(\frac{i x}{\sqrt{1-x^{2}}}\right) . \tag{2.1}
\end{equation*}
$$

Lemma 2.2. Let $f(x)$ be an even polynomial of degree $2 n$.

1. $f^{*}(x)$ is also an even polynomial.
2. The coefficient of $x^{2 n}$ in $f^{*}(x)$ is $(-1)^{n} f(1)$. In particular, $\operatorname{deg} f^{*}=$ $\operatorname{deg} f$ if and only if $f(1) \neq 0$.
3. $f^{* *}(x)=f(x)$ if $f(1) \neq 0$.

Recall that $A_{n}, B_{n}, C_{n}, D_{n}$ are even polynomials and do not vanish at $x=1$.

Proposition 2.3. If we write $A_{n}(x, k)$ etc., to indicate the dependency on k, then we have

$$
\begin{array}{ll}
A_{n}\left(x, k^{\prime}\right)=A_{n}^{*}(x, k), & B_{n}\left(x, k^{\prime}\right)=D_{n}^{*}(x, k) \\
C_{n}\left(x, k^{\prime}\right)=C_{n}^{*}(x, k), & D_{n}\left(x, k^{\prime}\right)=B_{n}^{*}(x, k)
\end{array}
$$

Proof. If the zeros of an even polynomial $f(x)$ with $f(1) \neq 0$ are $\pm \alpha_{j}(j=$ $1,2, \ldots, n)$, then those of $f^{*}(x)$ are

$$
\pm \frac{i \alpha_{j}}{\sqrt{1-\alpha_{j}^{2}}}(j=1,2, \ldots, n)
$$

Using this observation, the identity

$$
\operatorname{sn}(i u, k)=\frac{i \operatorname{sn}\left(u, k^{\prime}\right)}{\operatorname{cn}\left(u, k^{\prime}\right)}
$$

(cf. [10, 22•4]), and part 8 of Proposition 2.1, we see that both sides have exactly the same set of zeros in each case. We also see that the leading coefficients coincide by using parts 4 and 6 of Proposition 2.1. This completes the proof.

3. Resultants

The resultant of two polynomials

$$
\begin{aligned}
& f(x)=a\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{m}\right), \quad a \neq 0 \\
& g(x)=b\left(x-\beta_{1}\right) \cdots\left(x-\beta_{n}\right), \quad b \neq 0
\end{aligned}
$$

is defined as

$$
\operatorname{res}(f, g)=a^{n} b^{m} \prod_{i=1}^{m} \prod_{j=1}^{n}\left(\alpha_{i}-\beta_{j}\right)=a^{n} \prod_{i=1}^{m} g\left(\alpha_{i}\right)
$$

Lemma 3.1. Let h be another polynomial.

1. $\operatorname{res}(g, f)=(-1)^{m n} \operatorname{res}(f, g)$.
2. $\operatorname{res}(f, g h)=\operatorname{res}(f, g) \operatorname{res}(f, h), \operatorname{res}(f g, h)=\operatorname{res}(f, h) \operatorname{res}(g, h)$.
3. $\operatorname{res}(f, g+f h)=a^{s-n} \operatorname{res}(f, g)$, where $s=\operatorname{deg}(g+f h)$.
4. Suppose further that f, g are even polynomials which do not vanish at $x=1$. Then with the notation in (2.1), we have

$$
\operatorname{res}\left(f^{*}, g^{*}\right)=\operatorname{res}(f, g)
$$

Proof. The first three are easily seen. The proof of the last assertion is reduced to the case $f(x)=x^{2}-p, g(x)=x^{2}-q$, since both the resultant and the operation * are multiplicative. In this case we have $f^{*}(x)=(p-$ 1) $x^{2}-p, g^{*}(x)=(q-1) x^{2}-q$, so that

$$
\operatorname{res}\left(f^{*}, g^{*}\right)=(p-q)^{2}=\operatorname{res}(f, g)
$$

as desired.
Let $X, Y \in\{A, B, C, D\}, X \neq Y$ and $n \geq 1$. Our object is the calculation of $\operatorname{res}\left(X_{n}, Y_{n}\right)$. By a well known Sylvester determinant expression of the resultant and by part 2 of Proposition 2.1, we see that $\operatorname{res}\left(X_{n}, Y_{n}\right) \in \mathbb{Z}\left[k^{2}\right]$. Also, we have $\operatorname{res}\left(X_{n}, Y_{n}\right)=\operatorname{res}\left(Y_{n}, X_{n}\right)$ since both $\operatorname{deg} X_{n}$ and $\operatorname{deg} Y_{n}$ are even.

The general shape of $\operatorname{res}\left(X_{n}, Y_{n}\right)$ is given as follows.
Lemma 3.2. Let $X, Y \in\{A, B, C, D\}, X \neq Y$. For each positive integer n, there exist integers $\kappa_{n}(X, Y)>0, l_{n}(X, Y) \geq 0$, and $m_{n}(X, Y) \geq 0$ not depending on k such that

$$
\operatorname{res}\left(X_{n}, Y_{n}\right)=\kappa_{n}(X, Y) k^{2 l_{n}(X, Y)}\left(1-k^{2}\right)^{m_{n}(X, Y)}
$$

Proof. We regard res $\left(X_{n}, Y_{n}\right)$ as a polynomial in k^{2}. Part 9 of Proposition 2.1 implies that $\operatorname{res}\left(X_{n}, Y_{n}\right) \neq 0$ if $k^{2} \neq 0,1$. Hence by the Hilbert Nullstellensatz (cf. [5, IX $\S 1$ Theorem 1.5]), there exist a positive integer t and a polynomial $Q \in \mathbb{Q}\left[k^{2}\right]$ such that $\left(k^{2}\left(1-k^{2}\right)\right)^{t}=Q \operatorname{res}\left(X_{n}, Y_{n}\right)$. Since $\mathbb{Q}\left[k^{2}\right]$ is a unique factorization domain, it follows that $\operatorname{res}\left(X_{n}, Y_{n}\right)=\kappa k^{2 l}\left(1-k^{2}\right)^{m}$ for some $\kappa \in \mathbb{Q}$ and some non-negative integers l, m. Since $\operatorname{res}\left(X_{n}, Y_{n}\right) \in \mathbb{Z}\left[k^{2}\right]$ and both X_{n} and Y_{n} are polynomials in x^{2}, we see that κ is a positive integer.

By Proposition 2.3 and Lemma 3.1, we have
Corollary 3.3. With the notation of Lemma 3.2,

$$
\begin{aligned}
l_{n}(A, B) & =m_{n}(A, D), \quad l_{n}(A, D)=m_{n}(A, B), \\
l_{n}(A, C) & =m_{n}(A, C), \\
l_{n}(B, C) & =m_{n}(C, D), \quad l_{n}(C, D)=m_{n}(B, C), \\
l_{n}(B, D) & =m_{n}(B, D), \\
\kappa_{n}(A, B) & =\kappa_{n}(A, D), \\
\kappa_{n}(B, C) & =\kappa_{n}(C, D) .
\end{aligned}
$$

On the other hand, by part 8 of Proposition 2.1, we get
Proposition 3.4. Let $X, Y \in\{A, B, C, D\}, X \neq Y$. Then we have

$$
\operatorname{res}\left(X_{n}, Y_{n}\right)=x_{n}^{\operatorname{deg} Y_{n}} y_{n}^{\operatorname{deg} X_{n}} \prod_{(r, s) \in R_{n}^{X}} \prod_{\left(r^{\prime}, s^{\prime}\right) \in R_{n}^{Y}} f\left(r, s, r^{\prime}, s^{\prime}\right)^{2}
$$

where x_{n}, y_{n} denote the leading coefficients of X_{n}, Y_{n} respectively,

$$
\begin{gathered}
\mathbf{v}_{A}=(0,0), \mathbf{v}_{B}=(1,0), \mathbf{v}_{C}=(1,1), \mathbf{v}_{D}=(0,1), \\
R_{n}=(\{1,2, \ldots, n-1\} \times\{0, n\}) \sqcup(\{0,1, \ldots, 2 n-1\} \times\{1,2, \ldots, n-1\}), \\
R_{n}^{X}=\left\{(r, s) \in R_{n} \mid(r, s) \equiv \mathbf{v}_{X} \quad(\bmod 2)\right\},
\end{gathered}
$$

and

$$
f\left(r, s, r^{\prime}, s^{\prime}\right)=\operatorname{sn}^{2} \frac{r K+s i K^{\prime}}{n}-\operatorname{sn}^{2} \frac{r^{\prime} K+s^{\prime} i K^{\prime}}{n} .
$$

So we need a closer look at $f\left(r, s, r^{\prime}, s^{\prime}\right)^{2}$.

4. q-expansions

Let $\tau=i K^{\prime} / K$ and $q=e^{\pi i \tau}$. By our assumption $0<k<1$, we see that K and K^{\prime} are positive real numbers, so that $\operatorname{Im}(\tau)>0$ and $0<|q|<1$. We use the following q-expansions ($[10,21 \cdot 61]$):

$$
\begin{align*}
& k^{\frac{1}{2}}=\frac{\vartheta_{2}(0)}{\vartheta_{3}(0)}=\frac{2 \sum_{j=0}^{\infty} q^{\left(j+\frac{1}{2}\right)^{2}}}{1+2 \sum_{j=0}^{\infty} q^{j^{2}}}=2 q^{\frac{1}{4}}+\cdots \tag{4.1}\\
& 2 K=\pi \vartheta_{3}(0)^{2}=\pi\left(1+\sum_{j=0}^{\infty} q^{j^{2}}\right)^{2}
\end{align*}
$$

Let $u=2 K x / \pi$. We also use the following ([10, 22•6,22•61]):

$$
\begin{equation*}
\operatorname{sn} u=\frac{2 \pi}{K k} \sum_{j=0}^{\infty} \frac{q^{j+\frac{1}{2}} \sin (2 j+1) x}{1-q^{2 j+1}} \tag{4.2}
\end{equation*}
$$

valid throughout the strip $|\operatorname{Im}(x)|<\frac{\pi}{2} \operatorname{Im}(\tau)$, and

$$
\begin{equation*}
\text { ns } u=\frac{1}{\operatorname{sn} u}=\frac{\pi}{2 K} \operatorname{cosec} x+\frac{2 \pi}{K} \sum_{j=0}^{\infty} \frac{q^{2 j+1} \sin (2 j+1) x}{1-q^{2 j+1}} \tag{4.3}
\end{equation*}
$$

valid throughout $|\operatorname{Im}(x)|<\pi \operatorname{Im}(\tau)$, except at the points $x \in \pi \mathbb{Z}$.
Now let

$$
u=\frac{r K+s i K^{\prime}}{n}, \quad(r, s) \in R_{n}
$$

We can apply (4.2) if $0 \leq s<n$ and (4.3) if $s=n$. By using $\exp i x=\zeta^{r} q^{\frac{s}{2 n}}$, where $\zeta=\exp \frac{\pi i}{2 n}$, we find that the complex number

$$
-4 \operatorname{sn}^{2} \frac{r K+s i K^{\prime}}{n}
$$

is expressed as a Laurent series in $q^{\frac{1}{2 n}}$ whose leading term has degree $q^{-\frac{s}{n}}$ and coefficient

$$
\begin{cases}\left(\zeta^{r}-\zeta^{-r}\right)^{2} & \text { if } s=0 \\ \zeta^{-2 r} & \text { if } 0<s<n \\ \left(\zeta^{r}-\zeta^{-r}\right)^{-2} & \text { if } s=n\end{cases}
$$

Thus we get the leading term of the q-expansion of $f\left(r, s, r^{\prime}, s^{\prime}\right)^{2}$. We may suppose $s \geq s^{\prime}$ since $f\left(r^{\prime}, s^{\prime}, r, s\right)^{2}=f\left(r, s, r^{\prime}, s^{\prime}\right)^{2}$.

Lemma 4.1. For $s \geq s^{\prime}$, the leading term of the q-expansion of $16 f\left(r, s, r^{\prime}, s^{\prime}\right)^{2}$ has degree $q^{-\frac{2 s}{n}}$ and coefficient $L\left(r, s, r^{\prime}, s^{\prime}\right)$, where

$$
L\left(r, s, r^{\prime}, s^{\prime}\right)= \begin{cases}\left(\left(\zeta^{r}-\zeta^{-r}\right)^{2}-\left(\zeta^{r^{\prime}}-\zeta^{-r^{\prime}}\right)^{2}\right)^{2} & \text { if } s^{\prime}=s=0 \\ \zeta^{-4 r} & \text { if } s^{\prime}<s<n \\ \left(\zeta^{-2 r}-\zeta^{-2 r^{\prime}}\right)^{2} & \text { if } s^{\prime}=s<n \\ \left(\zeta^{r}-\zeta^{-r}\right)^{-4} & \text { if } s^{\prime}<s=n \\ \left(\left(\zeta^{r}-\zeta^{-r}\right)^{-2}-\left(\zeta^{\prime}-\zeta^{-r^{\prime}}\right)^{-2}\right)^{2} & \text { if } s^{\prime}=s=n\end{cases}
$$

and $\zeta=\exp \frac{\pi i}{2 n}$.

5. Proof of Theorem 1.1

Let $X, Y \in\{A, B, C, D\}, X \neq Y$. We have $\operatorname{res}\left(X_{n}, Y_{n}\right)=\operatorname{res}\left(Y_{n}, X_{n}\right)$ as noticed earlier, so we have only to consider the six cases

$$
(X, Y) \in\{(A, B),(A, C),(A, D),(B, C),(B, D),(C, D)\}
$$

As in Proposition 3.4, let x_{n}, y_{n} denote the leading coefficients (with respect to the variable x) of X_{n}, Y_{n}, respectively. By part 4 of Proposition 2.1 and (4.1), we can consider the q-expansions of x_{n} and y_{n}, so let x_{n}^{\prime} and y_{n}^{\prime} denote the leading terms of these q-expansions, respectively. Then by Proposition 3.4 and Lemma 4.1, the leading term of the q-expansion of $\operatorname{res}\left(X_{n}, Y_{n}\right)$ is

$$
\begin{equation*}
x_{n}^{\prime}{ }^{\operatorname{deg} Y_{n}} y_{n}^{\prime \operatorname{deg} X_{n}} \prod_{(r, s) \in R_{n}^{X}} \prod_{\left(r^{\prime}, s^{\prime}\right) \in R_{n}^{Y}} \frac{L\left(r, s, r^{\prime}, s^{\prime}\right)}{16} q^{-\frac{2}{n} \max \left\{s, s^{\prime}\right\}} \tag{5.1}
\end{equation*}
$$

First we observe the degree in q. By Lemma 3.2 and (4.1), the leading term of the q-expansion of $\operatorname{res}\left(X_{n}, Y_{n}\right)$ has degree $q^{l_{n}(X, Y)}$. On the other hand, it follows from part 4 of Proposition 2.1 and (4.1) that ${x_{n}^{\prime}}^{\operatorname{deg} Y_{n}} y_{n}^{\prime \operatorname{deg} X_{n}}$ has degree $q^{\frac{1}{2} \operatorname{deg} X_{n} \operatorname{deg} Y_{n}}$, hence by (5.1) we find that

$$
l_{n}(X, Y)=\frac{1}{2} \operatorname{deg} X_{n} \operatorname{deg} Y_{n}-\frac{2}{n} \sum_{(r, s) \in R_{n}^{X}} \sum_{\left(r^{\prime}, s^{\prime}\right) \in R_{n}^{Y}} \max \left\{s, s^{\prime}\right\}
$$

The authors are not aware of any clever method to compute the last double sum, but anyway an elementary counting argument gives the value of $l_{n}(X, Y)$, and hence that of $m_{n}(X, Y)$ by Corollary 3.3 , as stated in Theorem 1.1.

Next we observe the leading coefficient of the q-expansion of $\operatorname{res}\left(X_{n}, Y_{n}\right)$. By Lemma 3.2 and (4.1), it is $\kappa_{n}(X, Y) 16^{l_{n}(X, Y)}$. Since $\kappa_{n}(X, Y)$ is known to be positive, it suffices to determine the absolute value of the coefficient of (5.1). By Lemma 3.2, we may further assume that

$$
\begin{equation*}
(X, Y) \in\{(A, C),(A, D),(B, C),(B, D)\} . \tag{5.2}
\end{equation*}
$$

By part 4 of Proposition 2.1 and (4.1), the leading coefficient of $x_{n}^{\prime \operatorname{deg} Y_{n}} y_{n}^{\prime \operatorname{deg} X_{n}}$ is

$$
\begin{cases}2^{2 \operatorname{deg} X_{n} \operatorname{deg} Y_{n}} n^{n^{2}} & \text { if } X=A, n \text { is even } \tag{5.3}\\ 2^{2 \operatorname{deg} X_{n} \operatorname{deg} Y_{n}} n^{n^{2}-1} & \text { if } Y=D, n \text { is odd }, \\ 2^{2 \operatorname{deg} X_{n} \operatorname{deg} Y_{n}} & \text { otherwise }\end{cases}
$$

The contribution of 16's in (5.1) gives

$$
\begin{equation*}
16^{-\# R_{n}^{X} \# R_{n}^{Y}}=2^{-\operatorname{deg} X_{n} \operatorname{deg} Y_{n}} \tag{5.4}
\end{equation*}
$$

Now let

$$
P=\prod_{(r, s) \in R_{n}^{X}} \prod_{\left(r^{\prime}, s^{\prime}\right) \in R_{n}^{Y}}\left|L\left(r, s, r^{\prime}, s^{\prime}\right)\right|
$$

and decompose P into the product $P_{1} P_{2} P_{3} P_{4}$, where

$$
\begin{aligned}
& P_{1}=\prod_{\substack{(r, s) \in R_{n}^{X},\left(r^{\prime}, s^{\prime}\right) \in R_{n}^{Y}, s \notin\{0, n\}}}\left|L\left(r, s, r^{\prime}, s^{\prime}\right)\right|, \\
& P_{2}=\prod_{\substack{(r, s) \in\{0, n\} \\
s \in\{0, n\}}} \prod_{\substack{\left.r^{\prime}, s^{\prime}\right) \in R_{n}^{Y},}}\left|L\left(r, s, r^{\prime}, s^{\prime}\right)\right|, \\
& P_{3}=\prod_{\substack{(r, s) \in R_{n}^{X}, \notin\{0, n\} \\
s \notin\{0, n\}}} \prod_{\substack{\left.s^{\prime}, s^{\prime}\right) \in R_{n}^{Y},}}\left|L\left(r, s, r^{\prime}, s^{\prime}\right)\right|, \\
& P_{4}= \prod_{\substack{(r, s) \in R_{n}^{X}, s \in\{0, n\}}} \prod_{\substack{\left.r^{\prime}, s^{\prime}\right) \in R_{n}^{Y},}}\left|L\left(r, s, r^{\prime}, s^{\prime}\right)\right| .
\end{aligned}
$$

If we write $\mathbf{v}_{X}=\left(v_{X}, w_{X}\right)$ and $\mathbf{v}_{Y}=\left(v_{Y}, w_{Y}\right)$, then by the assumption (5.2), we have $w_{X}=0$ and $w_{Y}=1$. So, as far as we are concerned here, s is always even and s^{\prime} is always odd. By Lemma 4.1, we have

$$
\left|L\left(r, s, r^{\prime}, s^{\prime}\right)\right|= \begin{cases}\left|1-\zeta_{2 n}^{r^{\prime}}\right|^{-4} & \text { if } s<s^{\prime}=n \text { and } n \text { is odd } \\ \left|1-\zeta_{2 n}^{r}\right|^{-4} & \text { if } s^{\prime}<s=n \text { and } n \text { is even } \\ 1 & \text { otherwise }\end{cases}
$$

where we put $\zeta_{m}=\exp \frac{2 \pi i}{m}$, so that

$$
\begin{aligned}
& P_{1}=1, \\
& P_{2}= \begin{cases}1 & \text { if } n \text { is odd }, \\
\prod_{0<r<n, r \equiv v_{X}}\left|1-\zeta_{2 n}^{r}\right|^{-2 n^{2}} & \text { if } n \text { is even },\end{cases} \\
& P_{3}= \begin{cases}\prod_{0<r^{\prime}<n, r^{\prime} \equiv v_{Y}}\left|1-\zeta_{2 n}^{r^{\prime}}\right|^{-2 n(n-1)} & \text { if } n \text { is odd }, \\
1 & \text { if } n \text { is even, }\end{cases} \\
& P_{4}= \begin{cases}\prod_{0<r^{\prime}<n, r^{\prime} \equiv v_{Y}}\left|1-\zeta_{2 n}^{r^{\prime}}\right|^{-2(n-1)} & \text { if } n \text { is odd }, \\
1 & \text { if } n \text { is even. } .\end{cases}
\end{aligned}
$$

By Lemma 5.1 below, we find that

$$
P= \begin{cases}1 & \text { if } n \text { is odd and } Y=C \tag{5.5}\\ n^{-\left(n^{2}-1\right)} & \text { if } n \text { is odd and } Y=D \\ 2^{-n^{2}} & \text { if } n \text { is even and } X=B \\ (n / 2)^{-n^{2}} & \text { if } n \text { is even and } X=A\end{cases}
$$

Putting (5.1), (5.3), (5.4), and (5.5) together and using the value of $l_{n}(X, Y)$, we complete the proof of Theorem 1.1.

Lemma 5.1. Let $\zeta_{m}=\exp \frac{2 \pi i}{m}$. For any positive integer n, we have

$$
\begin{align*}
\prod_{0<r<n, r: \text { odd }}\left|1-\zeta_{2 n}^{r}\right|^{2} & = \begin{cases}1 & \text { if } n \text { is odd }, \\
2 & \text { if } n \text { is even },\end{cases} \tag{5.6}\\
\prod_{0<r<n, r: \text { even }}\left|1-\zeta_{2 n}^{r}\right|^{2} & = \begin{cases}n & \text { if } n \text { is odd }, \\
n / 2 & \text { if } n \text { is even } .\end{cases} \tag{5.7}
\end{align*}
$$

Proof. Using $\prod_{r=1}^{n-1}\left(1-\zeta_{n}^{r}\right)=n$ and $\left|1-\zeta_{n}^{r}\right|=\left|1-\zeta_{n}^{n-r}\right|$, we have

$$
\prod_{0<r<n / 2}\left|1-\zeta_{n}^{r}\right|^{2}= \begin{cases}n & \text { if } n \text { is odd } \tag{5.8}\\ n / 2 & \text { if } n \text { is even }\end{cases}
$$

which is nothing but (5.7). Replacing n with $2 n$ in (5.8) and then dividing it by (5.7), we get (5.6).

6. Discriminants

The discriminant of a polynomial f with degree n and leading coefficient a is defined as

$$
\operatorname{disc}(f)=(-1)^{n(n-1) / 2} a^{-1} \operatorname{res}\left(f, f^{\prime}\right)
$$

(see [5, IV §8]). As an application of Theorem 1.1, we get the following
Theorem 6.1. Let $X \in\{A, B, C, D\}$ and $n \geq 1$. We have

$$
\operatorname{disc}\left(X_{n}\right)=\kappa_{n}(X) k^{2 l_{n}(X)}\left(1-k^{2}\right)^{m_{n}(X)}
$$

where:
If n is odd, then

$$
\begin{aligned}
& \kappa_{n}(A)=\kappa_{n}(D)=(-1)^{\frac{n-1}{2}} 2^{\frac{n^{2}\left(n^{2}-1\right)}{3}} n^{n^{2}-2}, \\
& \kappa_{n}(B)=\kappa_{n}(C)=2^{\frac{n^{2}\left(n^{2}-1\right)}{3}} n^{n^{2}-3}, \\
& l_{n}(A)=l_{n}(B)=l_{n}(C)=l_{n}(D)=\frac{\left(n^{2}-1\right)\left(2 n^{2}-3\right)}{12}, \\
& m_{n}(A)=m_{n}(B)=m_{n}(C)=m_{n}(D)=\frac{\left(n^{2}-1\right)\left(n^{2}-3\right)}{6} \text {. }
\end{aligned}
$$

If n is even, then

$$
\begin{aligned}
\kappa_{n}(A) & =(-1)^{\frac{n-2}{2}} 2^{\frac{n^{2}\left(n^{2}-1\right)}{3}} n^{n^{2}-10}, \\
\kappa_{n}(B)=\kappa_{n}(C)=(-1)^{\frac{n}{2}} \kappa_{n}(D) & =2^{\frac{n^{2}\left(n^{2}-1\right)}{3}} n^{n^{2}} \\
l_{n}(A) & =\frac{\left(n^{2}-4\right)\left(2 n^{2}-9\right)}{12}, \\
l_{n}(B) & =\frac{n^{2}\left(2 n^{2}-5\right)}{12} \\
l_{n}(C)=l_{n}(D) & =\frac{n^{2}\left(2 n^{2}+1\right)}{12}, \\
m_{n}(A) & =\frac{\left(n^{2}-4\right)\left(n^{2}-6\right)}{6} \\
m_{n}(B)=m_{n}(C) & =\frac{n^{2}\left(n^{2}-1\right)}{6} \\
m_{n}(D) & =\frac{n^{2}\left(n^{2}-4\right)}{6}
\end{aligned}
$$

Proof. First we recall that

$$
\begin{aligned}
& \frac{d}{d u} \operatorname{sn} u=\operatorname{cn} u \operatorname{dn} u \\
& \frac{d}{d u} \operatorname{cn} u=-\operatorname{sn} u \operatorname{dn} u, \\
& \frac{d}{d u} \operatorname{dn} u=-k^{2} \operatorname{sn} u \operatorname{cn} u .
\end{aligned}
$$

On differentiating both sides of (1.1) with respect to x, we get

$$
\begin{align*}
n B_{n} C_{n} & = \begin{cases}A_{n} D_{n}+x\left(A_{n}^{\prime} D_{n}-A_{n} D_{n}^{\prime}\right) & \text { if } n \text { is odd, } \\
\left(y^{2} z^{2}-x^{2} z^{2}-k^{2} x^{2} y^{2}\right) A_{n} D_{n}+x y^{2} z^{2}\left(A_{n}^{\prime} D_{n}-A_{n} D_{n}^{\prime}\right) & \text { if } n \text { is even, }\end{cases} \tag{6.1}\\
-n x A_{n} C_{n} & = \begin{cases}-x B_{n} D_{n}+y^{2}\left(B_{n}^{\prime} D_{n}-B_{n} D_{n}^{\prime}\right) & \text { if } n \text { is odd } \\
B_{n}^{\prime} D_{n}-B_{n} D_{n}^{\prime} & \text { if } n \text { is even },\end{cases} \tag{6.2}\\
-n k^{2} x A_{n} B_{n} & = \begin{cases}-k^{2} x C_{n} D_{n}+z^{2}\left(C_{n}^{\prime} D_{n}-C_{n} D_{n}^{\prime}\right) & \text { if } n \text { is odd } \\
C_{n}^{\prime} D_{n}-C_{n} D_{n}^{\prime} & \text { if } n \text { is even. }\end{cases} \tag{6.3}
\end{align*}
$$

We illustrate the proof in the case of B_{n}, n :even. Taking resultants of both sides of (6.2) with B_{n}, we get, by Lemma 3.1,

$$
\operatorname{res}\left(-n x A_{n} C_{n}, B_{n}\right)=b_{n}^{-2} \operatorname{res}\left(B_{n}^{\prime} D_{n}, B_{n}\right),
$$

where $b_{n}=k^{\left(n^{2}-1\right) / 2}$ is the leading coefficient of $B_{n}(x)$ (cf. part 4 of Proposition 2.1). By the multiplicativity of resultant and by the facts $\operatorname{deg} B_{n}=n^{2}-1$ and $\operatorname{res}\left(x, B_{n}\right)=B_{n}(0)=1$, we get

$$
n^{n^{2}-1} \operatorname{res}\left(A_{n}, B_{n}\right) \operatorname{res}\left(B_{n}, C_{n}\right)=\operatorname{res}\left(B_{n}, D_{n}\right) b_{n}^{-1} \operatorname{disc}\left(B_{n}\right) .
$$

Substituting the result of Theorem 1.1, we get $\operatorname{disc}\left(B_{n}\right)$.
The computation in the remaining cases is similar; Theorem 1.1 and Proposition 2.1 contain all the information we need; for example,

$$
\operatorname{res}\left(z^{2}, A_{n}\right)=\operatorname{res}\left(1-k^{2} x^{2}, A_{n}\right)=\left(-k^{2}\right)^{\operatorname{deg} A_{n}} A_{n}(1 / k)^{2} .
$$

7. Degenerate Case

In this final section, we state without proof what happens in the "degenerate" cases $k^{2}=0,1$, if we formally define the polynomials $A_{n}, B_{n}, C_{n}, D_{n}$ by using the same recurrence relations in part 1 of Proposition 2.1. The proof can be carried out, for example, as in [11].

In the case $k^{2}=0$, we have

$$
\begin{aligned}
& A_{n}(x)= \begin{cases}\mathscr{U}_{n}\left(\sqrt{1-x^{2}}\right) & \text { if } n \text { is odd } \\
\frac{\mathscr{U}_{n}\left(\sqrt{1-x^{2}}\right)}{\sqrt{1-x^{2}}} & \text { if } n \text { is even, }\end{cases} \\
& B_{n}(x)= \begin{cases}\frac{T_{n}\left(\sqrt{1-x^{2}}\right)}{\sqrt{1-x^{2}}} & \text { if } n \text { is odd, } \\
T\left(\sqrt{1-x^{2}}\right) & \text { if } n \text { is even, }\end{cases} \\
& C_{n}(x)=D_{n}(x)=1,
\end{aligned}
$$

where T_{n} and \mathscr{U}_{n} are the Chebyshev polynomials of the first and second kind, of degree n and $n-1$, respectively.

In the case $k^{2}=1$, we have

$$
\begin{aligned}
& A_{n}(x)= \begin{cases}\left(1-x^{2}\right)^{n(n-1) / 2} \tilde{A}_{n}(x) & \text { if } n \text { is odd }, \\
\left(1-x^{2}\right)^{n(n-1) / 2-1} \tilde{A}_{n}(x) & \text { if } n \text { is even },\end{cases} \\
& B_{n}(x)=C_{n}(x)=\left(1-x^{2}\right)^{\left\lfloor n^{2} / 2\right\rfloor}, \\
& D_{n}(x)=\left(1-x^{2}\right)^{n(n-1) / 2} \tilde{D}_{n}(x),
\end{aligned}
$$

where

$$
\begin{aligned}
& \tilde{A}_{n}(x)={\sqrt{1-x^{2}}}^{n-1} \mathscr{U}_{n}\left(\frac{1}{\sqrt{1-x^{2}}}\right), \\
& \tilde{D}_{n}(x)={\sqrt{1-x^{2}}}^{n} T_{n}\left(\frac{1}{\sqrt{1-x^{2}}}\right) .
\end{aligned}
$$

Note that $\tilde{A}_{n}, \tilde{D}_{n}$ are polynomials in x^{2}.
The identity (1.1) holds true also in these degenerate cases, as

$$
\operatorname{sn} u=\sin u, \text { cn } u=\cos u, \operatorname{dn} u=1
$$

if $k^{2}=0$, and

$$
\operatorname{sn} u=\tanh u, \operatorname{cn} u=\operatorname{dn} u=\frac{1}{\cosh u}
$$

if $k^{2}=1$.

Proposition 7.1.

1. If $k^{2}=0$, then $\operatorname{res}\left(A_{n}, B_{n}\right)=2^{n(n-1)}$.
2. If $k^{2}=1$, then $\operatorname{res}\left(\tilde{A}_{n}, \tilde{D}_{n}\right)=2^{n(n-1)}$.
[1] Tom M. Apostol. Resultants of cyclotomic polynomials. Proc. Amer. Math. Soc., 24:457-462, 1970.
[2] Arthur Cayley. An Elementary Treatise on Elliptic Functions. George Bell and Sons., London, second edition, 1895.
[3] Fritz-Erdmann Diederichsen. Über die Ausreduktion ganzzahliger Gruppendarstellungen bei arithmetischer Äquivalenz. Abh. Math. Sem. Hansischen Univ., 13:357-412, 1940.
[4] David P. Jacobs, Mohamed O. Rayes, and Vilmar Trevisan. The resultant of Chebyshev polynomials. Canad. Math. Bull., 54(2):288-296, 2011.
[5] Serge Lang. Algebra, volume 211 of Graduate Texts in Mathematics. Springer-Verlag, New York, third edition, 2002.
[6] Emma T. Lehmer. A numerical function applied to cyclotomy. Bull. Amer. Math. Soc., 36(4):291-298, 1930.
[7] K. Alan Loper and Nicholas J. Werner. Resultants of minimal polynomials of maximal real cyclotomic extensions. J. Number Theory, 158:298315, 2016.
[8] Stéphane R. Louboutin. Resultants of Chebyshev polynomials: a short proof. Canad. Math. Bull., 56(3):602-605, 2013.
[9] Harry Schmidt. Resultants and discriminants of multiplication polynomials for elliptic curves. J. Number Theory, 149:70-91, 2015. Appendix A by Schmidt and Jung Kyu Canci.
[10] E. T. Whittaker and G. N. Watson. A course of modern analysis. Cambridge Mathematical Library. Cambridge University Press, Cambridge, 1996. An introduction to the general theory of infinite processes and of analytic functions; with an account of the principal transcendental functions, Reprint of the fourth (1927) edition.
[11] Masakazu Yamagishi. Resultants of Chebyshev polynomials: the first, second, third, and fourth kinds. Canad. Math. Bull., 58(2):423-431, 2015.

[^0]: *Corresponding author
 Email addresses: k.yamagata.355@nitech.jp (Koji Yamagata), yamagishi.masakazu@nitech.ac.jp (Masakazu Yamagishi)

