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Abstract

This paper investigates statistical properties of an incompressible pas-

sive vector convected by homogeneous isotropic turbulence by compar-

ing to the velocity and passive scalar, in order to explore the physics

behind the differences and similarities in the statistical properties

between the velocity vector and passive scalar. The passive vector

obeys an equation similar to the Navier-Stokes equation which has

a pseudopressure term to ensure the incompressibity and the pseu-

doviscosity but the convective term is linear. Direct numerical sim-

ulations (DNSs) with resolution of 10243 grid points were performed

with Reynolds numbers Rλ ∼ 90, 200, 300 and 400. Visualizations

show that the geometry of pseudoenstropy is sheetlike, similar to a

passive scalar, but different to the velocity field which has tubelike

structures. The pseudoenergy spectrum obeys the k−5/3 power law,

similar to the kinetic enegy spectrum, and the Kolmogorov Constants

are found to be CK = 1.57 for the velocity, CPV = 1.0 for the pas-

sive vector, and COC = 0.67 for the passive scalar, respectively. The

4/3 law for the cubic moment which is the average of the production

of the longitudinal velocity increment and the square of the passive

vector increment is analytically derived from the equation of the pas-

sive vector and confirmed by the DNS. The one point probability

density function (PDF) of the passive vector is wider than that of ve-

locity which is closer to a Gaussian distribution. The right tail of the

PDFs of the logarithm of the dissipation rates of the kinetic energy

and pseudoenergy are similar, and well approximated by a log-normal

distribution. The left tailf of PDF of the the dissipation rate obey

power laws which consist with the prediction based on chi-square dis-

tribution. The PDF of pressure is negatively skewed, whereas the



pseudopressure PDF is nearly symmetric. The scaling exponents of

the passive vector are anomalous, non-universal for high orders, and

have values between that of velocity and the passive scalar for orders

greater than 4. It is suggested that 1) the small scale statistical prop-

erties of the passive vector are more similar to those of the passive

scalar than those of velocity; 2)the nonlinearity of the Navier-Stokes

equation leads anomalous but universal scaling exponents, and the lin-

earity of the equations of the passive fields bears nonuniversal scaling

exponents and stronger intermittency than the velocity.
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A.2 von Kárman-Howarth Equations and Kolmogorov’s 4/5 Law . . . 76

A.3 vKH Equations for Passive Fields and 4/3 Law . . . . . . . . . . 78

References 81

iv



List of Figures

1.1 One dimensional spectra of kinetic energy. . . . . . . . . . . . . . 3

1.2 Scaling exponents of moments of longitudinal velocity increment. . 4

1.3 Scaling exponents of moments of passive scalar. . . . . . . . . . . 4

4.1 Iso-surface of square of vorticity. . . . . . . . . . . . . . . . . . . . 31

4.2 Iso-surface of square of gradient of passive scalar. . . . . . . . . . 31

4.3 Iso-surface of square of pseudo-vorticity. . . . . . . . . . . . . . . 32

4.4 Isosurface of pressure. . . . . . . . . . . . . . . . . . . . . . . . . 33

4.5 Isosurface of pseudopressure. . . . . . . . . . . . . . . . . . . . . . 33

4.6 Isosurface of squares of gradient of pressure and pseudopressure. . 34

4.7 Time variation of normalized energies. . . . . . . . . . . . . . . . 35

4.8 Time variation of energy dissipation rates. . . . . . . . . . . . . . 35

4.9 Normalized energy spectra. . . . . . . . . . . . . . . . . . . . . . . 37

4.10 Compensated energy spectra. . . . . . . . . . . . . . . . . . . . . 37

4.11 Normalized energy transfer fluxes. . . . . . . . . . . . . . . . . . . 39

4.12 Normalized 3rd order structure functions. . . . . . . . . . . . . . . 39

4.13 Spectra of pressure and pseudo-pressure . . . . . . . . . . . . . . 40

4.14 Comparison of shifted spectra of pressure and pseudo-pressure . . 41

4.15 Spectra of production terms of enstropy. . . . . . . . . . . . . . . 42

4.16 Measurement of the bottleneck effect . . . . . . . . . . . . . . . . 44

4.17 Band-to-band transfer in linear scale. . . . . . . . . . . . . . . . . 45

4.18 Abstract value of band-to-band transfer in logarithm scale. . . . . 46

4.19 PDF of one component of vectors and scalar. . . . . . . . . . . . . 51

4.20 PDF of pressure and pseudo-pressure. . . . . . . . . . . . . . . . . 52

4.21 PDF of gradient of velocity, passive vector and passive scalar. . . 53

v



LIST OF FIGURES

4.22 PDF of gradient of pressure and pseudo-pressure. . . . . . . . . . 53

4.23 PDF of energy dissipation rate. . . . . . . . . . . . . . . . . . . . 55

4.24 PDF of energy dissipation rate in semi-log scale. . . . . . . . . . . 56

4.25 PDF of increments with distance r. . . . . . . . . . . . . . . . . . 57

4.26 PDF of increments of pressure and pseudo-pressure with distance r. 58

4.27 Scaling exponents of moments of field increments . . . . . . . . . 61

4.28 Scaling exponents of fluxes . . . . . . . . . . . . . . . . . . . . . . 62

4.29 Scaling exponents for difference orders . . . . . . . . . . . . . . . 63

vi



List of Tables

3.1 DNS parameters and characteristic statistics. . . . . . . . . . . . 28

4.1 Comparison of scaling exponents for different runs . . . . . . . . . 65

vii



LIST OF TABLES

viii



1

Introduction

1.1 Brief History of Turbulence Research

Turbulence is ubiquitous, occurring in the atmosphere and ocean, in winds and

rivers, inside combustion engines, airplanes and power plants, and, in daily life,

in hot water in kettles and the bath tub. Velocity and pressure in turbulent flow

fluctuate strongly in space and time, but accurate prediction of these variables

is almost impossible; thus, as an alternative, its statistical law has been studied

since Reynolds’ pioneering work.1 One important property of turbulence is its

huge ability to transport heat and mass, which is widely exploited within industry

and daily life. Therefore, it is very important to understand, predict, and control

the turbulent flow that transfers and mixes heat and mass. However, there is

still a lack of understanding of turbulent flow in spite of longstanding efforts, due

to strong nonliearity, infinite degrees of freedom, and dissipative nature of the

Navier-Stokes equation.

Kolmogorov2 made great progress toward understanding turbulence, deriving

a statistical law of velocity fluctuations at small scales with the two hypothesis

and the dimensional arguments. When the Reynolds number is very large, there

exists the inertial range η � r � L in which the nonlinearity is dominant in

the dynamics and neither large scale properties of the flow nor the viscosity are

relevant (See details in Section 2.5), where L is defined as a macro-length scale for

turbulence, and η is the dissipation scale, known as the Kolmogorov length. In

1



1. INTRODUCTION

the inertial range the moments of the velocity increments δru(r) = u(x+r)−u(x)

at separation distance r of two points obey the power law

〈[δru(r)]p〉 = Ap(ε̄r)
ξp , ξp =

p

3
, (1.1)

where 〈 〉 means ensemble averaging, ε̄ is the mean kinetic energy dissipation rate

per unit mass and Ap is non-dimensional constant which is not detemined within

his theory except A3. Kolmogorov derived analytically the third order moment

as 〈
[δru(r)]3

〉
= −4

5
ε̄r, (1.2)

now known as Kolmogorov’s 4/5 law which is the only asymptotically exact result

known of in the context of turbulence. The Fourier transform of
〈
[δru(r)]2

〉
gives

the kinetic energy spectrum, known as the Kolmogorov spectrum,

E(k) = CK ε̄
2/3k−5/3, (1.3)

where CK is the Kolmogorov constant. Many experiments and recent high-

resolution simulations have shown that that Kolmogorov spectrum is observed

regardless of flow type when the Reynolds number is large enough (see Fig. 1.1).

Most striking feature of the Kolmogorv theory is the prediction of existence

of an universal statistical law irrespective of types of turbulent flow. The idea of

universality has been much influenced from the success of the statistical mechan-

ics for the phase transition. The scaling exponent ξp = p/3 of Eq.(1) is a linear

function of order p, which represents the normal scaling. However, many studies

have found that scaling exponents are not linear in p, instead increasing gradu-

ally with the order due to anomalous scaling (see Fig. 1.2). Anomalous scaling

exponents are considered to closely relate to the occurrence of extreme turbu-

lence events, also known as intermittency. This raises questions as to investigate

whether the scaling exponents for turbulence are universal, and how we compute

them using fundamental equations. Present understanding remains limited, and

answering the above questions is an important issue in turbulence research.

2



1.1 Brief History of Turbulence Research

Figure 1.1: One dimensional spectra of kinetic energy.3 Symbols denote results

from experiments, solid lines for results from DNS, dotted line for results from

LRA(Lagrangian renormalized approximation, one of the turbulent models).
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1. INTRODUCTION

Figure 1.2: Scaling exponents of moment of longitudinal velocity increment. One

can find that when p > 3, ξuLp is smaller than p/3 by the Kolmogorov theory.

Figure 1.3: Scaling exponents of moment of longitudinal velocity increment. One

can find that when p > 3, ξθp scatter more than ξuLp , i.e. more magnitude small

than p/3.
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1.2 Passive Scalar in Turbulence

1.2 Passive Scalar in Turbulence

Heat and mass are transferred and mixed via fluid motion, which can transport

aerosols, water vapor, chemical pollutants, and cloud droplets. In engineering

and other real-life scenarios, substantial quantities of scalars can be transferred.

Fuel and oxygen should be mixed as much as possible in combustion engines

to maximize efficiency, while boilers are designed to avoid heat loss. Prediction

of the dispersion of air pollutants, such as radioactive substances and pollen, is

becoming more important in the context of the environment. It is essential to

understand the mixing and transfer of scalars by turbulence. When the influence

of a scalar on fluid motions is small, such as negligible buoyancy force in thermal

convections, the scalar is referred to as passive. In addition to turbulence itself,

the mixing of passive scalars is a canonical problem in the fundamental physics

of turbulence.4,5 The governing equation of a passive scalar θ(x, t) is similar to

the Navier-Stokes equation, where convection is due to turbulent velocity and

dissipation (smearing) to molecular diffusivity, but lacks a pressure term:

(
∂

∂t
+ u · ∇)θ = κ∇2θ + f θ, (1.4)

where κ denotes the diffusive coeffient normalized by density, f θ denotes the ex-

ternal scalar fluctuation injection which plays a role like the external forcing to

velocity. These properties simplify the equation, linear, local in space and ap-

plicable to a single component; in contrast, the Navier-Stokes equation usually

applies to all three components, is nonlinear and nonlocal in space, and the veloc-

ity vector can be solenoidal. Thus, it is reasonable to assume that mathematical

and physical analysis of the statistical properties of scalar fluctuations is simpler

than that of the turbulent velocity field. Passive scalars have similar statistical

properties to velocity fluctuations, e.g., the existence of an inertial convective

range: max(η, ηθ) � r � min(L,Lθ), where Lθ denotes the integral (or forcing)

scale of a passive scalar, and ηθ = η(κ/ν)1/2 denotes the diffusive scale of a passive

scalar. In the inertial convective range; following Kolmogorov,2 the spectrum of

the passive scalar variance is given as

Eθ(k) = COC ε̄
−1/3ε̄θk

−5/3, (1.5)

5



1. INTRODUCTION

where COC is the Obukhov-Corrsin constant, and ε̄θ is the mean destruction rate

of a scalar per unit mass (hereafter, the scalar dissipation rate). Yaglom’s 4/3

law for structure function

−3

4
ε̄θ =

〈
δruL(δrθ)

2
〉
, (1.6)

and the power law for the moments of the scalar increment

〈(δrθ)p〉 ∝ rξ
θ
p , ξθp =

p

3
(1.7)

were developed.6,7, 8, 7, 9, 10,11

Although the statistics of scalars at low order moments are similar to those of

velocity, it is widely recognized that in the inertial convective range, the scaling

exponents of the moments of a passive scalar at high order are smaller than those

of velocity. They also tend to saturate (Fig. 1.3), meaning that a passive scalar is

more intermittent than the velocity field,12,13,14,15,16,17 and also that the spatial

structure of large scalar gradients is sheetlike, in contrast to the vortex tubes

observed for velocity.15,18,19,20

Kraichnan11,21 proposed a model for passive scalars, in which the velocity

field is assumed to follow a Gaussian distribution with a delta correlation in time

(known as the Kraichnan velocity ensemble). The most distinctive aspect of the

model is that the scaling exponents of the scalar increments are derived analyt-

ically. They are determined by the zero mode (i.e., homogeneous solution) of

the linear operator for the scalar moments, and are thus universal.22 The model

has also been extended to many other problems, such as the passive magnetic

field,23 passive scalars in the inverse cascade range for incompressible13,24 and

compressible25 Kraichnan velocity ensembles, and finitely correlated Gaussian

velocity ensembles.26 It is held that when the velocity field is (nearly) Gaus-

sian, the analyses in terms of the zero mode of the linear operator are applicable,

as is the universality of the scaling components for the passive scalar moments.

However, the turbulent velocity field in three dimensions, obeying the Navier-

Stokes equation, differs significantly to the Kraichnan velocity ensemble, being

neither Gaussian nor white noise, and the energy is forward-cascading. For ex-

ample, Gotoh and Watanabe27 studied the intermittency of two passive scalars

convected by the same three-dimensional turbulent velocity field and governed by

6



1.2 Passive Scalar in Turbulence

the Navier-Stokes equation, but excited by different mechanisms (one being the

uniform mean gradient and the other being Gaussian random injection, that is,

white noise in time). It has been found that the scaling exponents of the moments

of scalar increments differ at large scales and are therefore not universal. The

above statistical law, in addition to various data from experiments and numerical

simulations, suggest that passive scalar fluctuations are not as universal as for

velocity, and that our understanding of the universality of passive scalar fluctua-

tions is still lacking. Therefore, it is important to explore the physics responsible

for the differences in statistical properties between velocity and passive scalars,

such as scaling exponents and probability density functions (PDFs). To do this,

it is helpful and effective to introduce an equation for a passive vector, which

shares common properties with the Navier-Stokes and passive scalar equations.

The statistical properties of the passive vector can then be compared with those

of velocity and passive scalars.

Previously, Yoshida and Kaneda28 studied the anomalous scaling of the anisotropy

of second-order moments of a passive vector for the Kraichnan velocity ensemble

in two dimensions. A passive vector w is defined as follows:(
∂

∂t
+ u · ∇

)
w = −∇q + γw · ∇u+ α∇2w, (1.8)

∇ ·w = 0, (1.9)

where γ is a non-dimensional constant. When γ = 1, the pressure term can be

eliminated, and Eq. (1.9) describes a passive magnetic field “w”, excited by the

following term: γw · ∇u. When γ = −1, Eq. (1.9) becomes linear with small

disturbances w to the basic flow u, and is excited by basic flow. When γ = 0, Eq.

(1.9) describes a velocity-like convected field, which is the main objective of this

study. Yoshida and Kaneda showed analytically that the exponent of the isotropic

sector of the structure functions is independent of the existence of a pressure-like

term, while the anisotropic sector depends upon the presence of a pressure-like

term. Adzhemyan29 studied cases with arbitrary γ (where γ is a real number) for

the Kraichnan velocity ensemble in D dimensions using renormalization group

(RG) analysis, and found that when γ = 0, normal scaling is present. Ohkitani30

used direct numerical simulation (DNS) to investigate passive magnetic vectors,

7



1. INTRODUCTION

the effects of the Biat-Savart law, and the depletion of nonlinearity, and found that

a passive magnetic field tends to be more stretched than velocity over short time

scales. Benzi, Biferale and Toschi31 studied scaling exponents of the moments of

increments and fluxes of passive vectors using a shell model, and found they are

the same as the velocity field. Ching et al.32 carried out simulations using shell

models for passive and active vectors, and found that the scaling exponents of a

convected field are dominated by zero modes, regardless of whether or not they are

active. Using RG theory, Antonov et al.33,34,35 studied the anomalous scaling of

solenoidal passive vectors convected by a Gaussian random velocity with a finite

correlation time. They investigated the universality of the scaling exponents, and

their dependence on forcing, large-scale anisotropy, compressibility, and pressure.

We emphasize that our goal and starting point are to investigate the physics

arising from the subtly distinctive properties of the velocity field and passive

scalars. In this study, the equation for a passive vector should share the struc-

ture, and many other properties, of both the Navier-Stokes and passive scalar

equations. Moreover, knowing that the Kraichnan velocity ensemble modified

the properties of passive scalars, we choose DNS for our simulations, where the

velocity field is directly governed by the Navier-Stokes equation. Passive vectors

in this study are assumed to obey the equation(
∂

∂t
+ u · ∇

)
w = −∇q + α∇2w, (1.10)

∇ ·w = 0, (1.11)

where q is the pseudopressure, introduced to ensure incompressibility of vector

w, and α is the pseudoviscosity. The commonalities between Eqs. Eq. (1.10),

Eq. (1.11) and Navier-Stokes equation are as follows:

1. Three components in w;

2. Convection by the velocity, u;

3. Pseudo-pressure q, and resulting incompressibility of w;

4. When α, the total pseudoenergy 1
2

∫
w2dx is conserved.

8



1.2 Passive Scalar in Turbulence

When compared with the governing equation for a passive scalar, the common

properties are:

1. The linearity of the convective term;

2. The molecular dissipation.

In contrast to the three components of w being constrained through incompress-

ibility, the passive scalar is free from constraints among components. It is ex-

pected that the above common properties and structure of equations will make

it easier to find a physical explanation for the differences and similarities in fluc-

tuations between the velocity and passive scalars, which should help us to gain a

deeper understanding of the essence of turbulent transport.

9
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2

Theory of Turbulence

2.1 Governing Equations

Three fields u, w, θ are considered in the cubic box with size L. Three fields are

assumed to be in a turbulent state which is statistically homogenuous isotropic.

Velocity u(x, t), passive vector w(x, t) and passive scalar θ(x, t) are assumed to

be governed by following equations

(
∂

∂t
+ u · ∇)u =−∇p+ ν∇2u+ fu, (2.1)

∇ · u =0, (2.2)

(
∂

∂t
+ u · ∇)w =−∇q + α∇2w + fw, (2.3)

∇ ·w =0, (2.4)

(
∂

∂t
+ u · ∇)θ =κ∇2θ + fθ, (2.5)

respectively, where p = P/ρ dontes pressure P (x, t) normalized by density of

fluid ρ , q(x, t) the pseudo-pressure, ν the kinetic visocity, α the pseudo viscosity,

κ the diffusion coeffecient for θ, fu, fw, and fθ are the external forcings for u, w,

θ, respectively. It is chosen the Schmidt number Scw = ν/α and Scθ = ν/κ to be

unity in present study. The boundary conditions are periodic in three dimensions

with the periodicity L.

11



2. THEORY OF TURBULENCE

2.2 Conversation Laws

When the viscosity vanishes (ν = 0) and the external forcing (fui = 0) is abscent,

multiplying Eq. (2.1) by ui and integrating over the fundamental box V , when

the incompressibility ∂juj = 0 and the Gauss’s theorem are used,

d

dt

∫
1

2
u2dV = −

∫
V

[uiuj∂jui + ui∂ip] dS

= −1

2

∫
A

u2u · ndS −
∫
A

pu · ndS = 0, (2.6)

where S is the surface of the box and n is the normal vector on S. The right hand

side of Eq. (2.6) vanishes because of the periodic boundary conditions. Similarly,

one can also obtain

d

dt

∫
1

2
w2dV =0, (2.7)

d

dt

∫
1

2
θ2dV =0, (2.8)

with conditions of fwi = 0, α = 0, and f θ = 0, κ = 0, similarly under the

statistical homogeneous. The kinetic energy, energy of passive vector and passive

scalar per unit mass are defined as:

Eu =

〈
u2

2

〉
=

1

V

∫
u2

2
dV, (2.9)

Ew =

〈
w2

2

〉
=

1

V

∫
w2

2
dV, (2.10)

Eθ =

〈
θ2

2

〉
=

1

V

∫
θ2

2
dV, (2.11)

respectively, where 〈 〉 denotes the ensemble average. Then one can write

d

dt
Eu =

d

dt

1

V

∫
u2

2
dV = 0,

d

dt
Ew =

d

dt

1

V

∫
w2

2
dV = 0,

d

dt
Eθ =

d

dt

1

V

∫
θ2

2
dV = 0,

12



2.3 Fourier Transform, Energy spectral, Lin’s Equation and Enstropy

for the three fields respectively, which means that the kinetic energy, energy

of passive vector and passive scalar variance are conversed by the nonlinear or

convective terms.

When ν, α and κ are nonzero, one can obtain the mean energy dissipation

rate per unit mass εu, εw, εθ for u, w and θ, as

− d

dt
Eu =εu = ν〈(∇u)2〉 = 2ν〈(Su)2〉 = ν〈ω2〉, (2.12)

− d

dt
Ew =εw = α〈(∇w)2〉 = 2α〈(Sw)2〉 = α〈ζ2〉, (2.13)

− d

dt
Eθ =εθ = κ〈(∇θ)2〉 = κ〈g2〉, (2.14)

respectively, where ω is the vorticity, ζ the pseudo vorticity, and g the scalar

gradient, which are defined as

ω =∇× u, (2.15)

ζ =∇×w, (2.16)

g =∇θ, (2.17)

and strain tensor SA ( A is u or w) is defined as

SAij =
1

2

(
∂Aj
∂xi

+
∂Ai
∂xj

)
. (2.18)

The last equalities of Eq. (2.12) and Eq. (2.13) are due to the statistical isotropy.

In what follows, we simply call Eu, Ew, Eθ as the energy and εu, εw, εθ as the

dissipation rate, except stated explicitly.

2.3 Fourier Transform, Energy spectral, Lin’s

Equation and Enstropy

Here, Fourier transform of A(x, t) is defined as

A(k, t) = F [A(,t)] =
1

V

∫
A(,t)eik·xdx (2.19)

and the inverse Fourier transform as

A(x, t) = F−1 [A(k, t)] =

∫
A(k, t)eik·xdk, (2.20)

13



2. THEORY OF TURBULENCE

respectively. The evolution equations of u, w, θ can be transformed as

∂

∂t
u(k, t) + νk2u =Pij(k) : Nu(k, t), (2.21)

Nu(k, t) =F [(u× ω)] , (2.22)

∂

∂t
w(k, t) + αk2w =Pij(k) : Nw(k, t), (2.23)

Nw(k, t) =F [−(u · ∇)w] , (2.24)

∂

∂t
θ(k, t) + κk2θ − κk2θ(k, t) =N θ(k, t), (2.25)

N θ(k, t) =F [−(u · ∇)θ] , (2.26)

where Pij(k) = δij− kikj
k2

is the projection operator and the pressure term (pseudo-

pressure term) is elimated by using the continuous equation.

The averaged energy density Q(k, t) is defined as

Qu(k, t) = 〈u(k, t) · u∗(k, t)〉 (2.27)

= Qu(k, t) (2.28)

where A∗ denotes the conjugation of complex number A, and the statistical

isotropy is used in the second line. Then the kinetic energy spectrum is defined

as

Eu(t) =
1

2
〈u2〉 =

3

2
u20 =

∫ ∞
0

Eu(k, t)dk =

∫ ∞
0

2πk2Qu(k, t)dk, (2.29)

so that

Eu(k, t) = 2πk2Qu(k, t). (2.30)

Similar to this, the spectra of the pseudo kinetic energy and the scalar variance

are defined as

Ew(t) =
1

2
〈w2〉 =

3

2
w2

0 =

∫ ∞
0

Ew(k, t)dk =

∫ ∞
0

2πk2Qw(k, t)dk, (2.31)

Eθ(t) =
1

2
〈θ2〉 =

1

2
θ20 =

∫ ∞
0

Eθ(k, t)dk =

∫ ∞
0

2πk2Qθ(k, t)dk, (2.32)

Ew(k, t) = 2πk2Qw(k, t) = 2πk2〈w(k, t) ·w∗(k, t)〉, (2.33)

Eθ(k, t) = 2πk2Qθ(k, t) = 2πk2〈θ(k, t)θ∗(k, t)〉. (2.34)

14



2.3 Fourier Transform, Energy spectral, Lin’s Equation and Enstropy

Substituting to Eq. (2.30), one can write the time evolution equation of the

spectra, as

d

dt
Eu(k, t) + 2νk2Eu =Tu(k, t), (2.35)

d

dt
Ew(k, t) + 2αk2Ew =Tw(k, t), (2.36)

d

dt
Eθ(k, t) + 2κk2Eθ =Tθ(k, t), (2.37)

which is so-called the Lin’s equation for the energy spectra, and the energy trans-

fer function TA(k) is defined as

Tu(k, t) =R

[∫
|k|=k
{P(k) : Nu(k, t)} · u∗(k, t)dS

]
, (2.38)

Tw(k, t) =R

[∫
|k|=k
{P(k) : Nw(k, t)} ·w∗(k, t)dS

]
, (2.39)

Tθ(k, t) =R

[∫
|k|=k

Nθ(k, t)θ
∗(k, t)dS

]
, (2.40)

where R denotes the real part of a complex number. The TA(k) denotes nonlinear

transfer for EA(k) from shell to shell via the nonlinear action and pressure.

The transfer flux Πu(k, t) which is the total amount of the kinetic energy

transferred to the wave numbers k′ larger than k ,

Πu(k, t) =

∫ ∞
k

Tu(k
′, t)dk′. (2.41)

The conversation of the kinetic energy by the convective and pressure term yields∫ ∞
0

Tu(k
′, t)dk′ = 0, (2.42)

therefore,

Πu(k, t) = −
∫ k

0

Tu(k
′, t)dk′ =

∫ ∞
k

Tu(k
′, t)dk′. (2.43)

Integrating Eq. (2.35), one can write

εu(t) = − d

dt
Eu(t) = − d

dt

∫ ∞
0

Eu(k, t)dk =

∫ ∞
0

2νk2Eu(k, t)dk. (2.44)
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2. THEORY OF TURBULENCE

Similarly,

Πw(k, t) =

∫ ∞
k

Tw(k′, t)dk′ = −
∫ k

0

Tw(k′, t)dk′, (2.45)

Πθ(k, t) =

∫ ∞
k

Tθ(k
′, t)dk′ = −

∫ k

0

Tθ(k
′, t)dk′, (2.46)

εw(t) =

∫ ∞
0

2αk2Ew(k, t)dk, (2.47)

εθ(t) =

∫ ∞
0

2κk2Eθ(k, t)dk. (2.48)

For later argument, we define the enstropy in three dimensional turbulence as

Ωu = 〈|ω|2〉 =
ε̄u
ν
, (2.49)

which is not conserved for the case ν = 0 and fui = 0, and evolves according to

d

dt
Ωu = 2〈ωiSijωj〉 − 2ν〈(∇ω)2〉. (2.50)

The first term of the r.h.s. is the source term which illustrates that vorticity is

excite by the shear strain.

The definition of w-enstropy and θ-enstropy are written as

Ωθ =〈|g|2〉 =
ε̄θ
κ
, (2.51)

Ωw = 〈|ζ|2〉 =
ε̄w
α
, (2.52)

the evolution equations can be derivated as

d

dt
Ωθ =− 2〈giSijgj〉 − 2κ〈(∇g)2〉, (2.53)

d

dt
Ωw =2〈ζiSijζj〉+ 2〈εijkζi(∂jul)(∂kwl)〉 − 2α〈(∇ζ)2〉, (2.54)

εijk is the Levi-Civita symbol, and the first term of r.h.s. of Eq. (2.53) and

Eq. (2.50) are similar to that in Eq. (2.50) illustrating the excitation by the shear

strain, the second term of the r.h.s of Eq. (2.54) represent the disaligment of ζ

vector with respect to the straining motion of fluid.
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2.4 von Kárman-Howarth Equations and Kolmogorov’s 4/5 Laws

2.4 von Kárman-Howarth Equations and Kol-

mogorov’s 4/5 Laws

In this section, von Kárman-Howarth theory and Kolmogorov’s theory for tur-

bulence which are fundamental and milestone in the turbulence reseach are ex-

plained, then the application of the theories to passive scalar by Yaglom and

Obukhov-Corrison is described. Further extension to the passive vector made by

the present study is given later.

The longitudinal correlations of the velocity in the homogenuous isotropic

turbulence are defined as

u20f
uu(r) =〈uL(x+ r)uL(x)〉, (2.55)

u30h
uuu(r) =〈uL(x+ r)uL(x+ r)uL(x)〉, (2.56)

where uL is the parallel components of u to r, and u0 is the root mean square

values of u. With the assumption of the statistical homogeneity and isotropy

(see Appendix A for the derivations), the von Kárman-Howarth equations can be

derived as follows:36

∂

∂t
u20f

uu(r) =

(
∂

∂r
+

4

r

)
u30h

uuu(r) + 2ν

(
∂2

∂r2
+

4

r

∂

∂r

)
u20f

uu(r), (2.57)

which is considered as the most import analytical result on homogenuous isotropic

turbulence.

Considering the velocity increment δui(x, r) which is defined by

δui(x, r) = ui(x+ r)− ui(x), (2.58)

one can write the relation between increment and correlation function,

〈δui(r)δui(r)〉 = 2 (Qii(0)−Qii(r)) , (2.59)

〈δui(r)δuj(r)δui(r)〉 = 2Qiij(r) + 4Qiji(r), (2.60)

where

Qij(r) = 〈ui(x)uj(x+ r)〉 = u20

[
fuu(r)δij +

r

2

dfuu

dr
Pij(r)

]
, (2.61)

Qijk(r) = 〈ui(x)uj(x)uk(x+ r)〉

= u30

{
h− r∂rh

2

rirjrk
r3

+
2h+ r∂rh

4

(ri
r
δjk +

ri
r
δik

)
− h

2

rk
r
δij

}
. (2.62)
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2. THEORY OF TURBULENCE

Substituting Eqs. (2.59) to (2.62), we can obtain

−2

3
εu −

1

2

∂

∂t
Su2 (r, t) =

1

6r4
∂

∂r
(r4Su3 )− ν

r4
∂

∂r
(r4

∂

∂r
Su2 ) (2.63)

where

Sun(r) = 〈(δruL)n〉 (2.64)

is the n-th order longitudinal structure function. For statistical stationary state
∂
∂t

= 0, and in the inertial range r � η, the last term at the right hand side can

be ignored, then the Kolmogorov’s 4/5 Laws is obtained as follows

−4

5
εur = 〈(δuL)3〉. (2.65)

The von Kármán-Howarth type equation for the passive scalar θ and the

passive vector w can also be derivated in the same way and,

∂

∂t
w2

0f
ww(r) =

2

r
u0w

2
0 [huww(r) + 2quww(r)] + 2α

(
∂2

∂r2
+

4

r

∂

∂r

)
w2

0f
ww(r),

(2.66)

∂

∂t
θ20f

θ(r) =2u0θ
2
0

(
∂

∂r
+

2

r

)
huθθ(r) + 2κ

(
∂2

∂r2
+

2

r

∂

∂r

)
θ20f

θ(r), (2.67)

respectively. The correlation functions are defined as

w2
0f

ww(r) =〈wL(x+ r)wL(x)〉, (2.68)

θ20f
θθ(r) =〈θ(x+ r)θ(x)〉, (2.69)

u0w
2
0h

uww(r) =〈uL(x+ r)wL(x+ r)wL(x)〉, (2.70)

u0w
2
0q
uww(r) =〈uL(x+ r)wT (x+ r)wT (x)〉, (2.71)

u0θ
2
0h

uθθ(r) =〈uL(x+ r)θ(x+ r)θ(x)〉, (2.72)

where wT is one of the transverse components to r of w. Then using the structure

functions of increment, Yaglom’s 4/3 law7 can be written as follows,

−4

3
εwr =〈(δuL)|δw|2〉, (2.73)

−4

3
εθr =〈(δuL)(δθ)2〉. (2.74)
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2.5 Kolmogorov’s Phenomenology on Turbulence

The Eq. (2.66) was newly derivated in present study. Kolmogorov’s 4/5 law is

generalized to

−4

3
εur = 〈(δuL)|δu|2〉. (2.75)

which is similar to Eq. (2.65). Conveniently, the r.h.s of Eqs. (2.73) to (2.75) are

related to the energy transfer flux in the real space ,

ΠA = 〈(δuL)|δA|2〉, (2.76)

where A could be u, w or θ, respectively.

2.5 Kolmogorov’s Phenomenology on Turbulence

In 1941, A. N. Kolmogorov2 presented a universal theory (K41 for short) for the

statistical law on small scales in fully developed turbulence. This theory is based

on two hypotheses for high Reynolds number turbulence as:

1. There are small spatial scales r at which the turbulence is statistically ho-

mogenuous and isotropic. At these scales, the PDFs (Pn) of n-points cor-

relations for increment of velocity δru are only determined by the averaged

energy dissipation rate εu and kinetic viscosity ν.

2. When distance of points |rα|, |rα|− |rβ| (α 6= β) are sufficiently larger than

the viscous length scale η, Pn is only determined εu and independent on ν.

On the first hypothesis, the dimensional analysis yields the scales of length, ve-

locity and time as

η = ν3/4ε−1/4, uη = ν1/4ε1/4, τu = ν1/2ε−1/2, (2.77)

which are so-called Kolmogorov’s length, velocity and time. When the Reynolds

number is formed in terms of the Kolmogorov’s variables, we obtain

Reη =
uηη

ν
= 1, (2.78)

meaning that at the Kolmogorov’s scales the effect of viscosity balances with the

nonlinear effect.
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2. THEORY OF TURBULENCE

On the second hypothesis, there exists the range η � r � L, which is called

the inertial range such that

〈|δru|2〉 = C2(εr)
2/3, 〈|δru|p〉 ∝ (εr)p/3. (2.79)

In the inertial range the energy transfer betweens scales is only via the non-

linear terms. On the other hand, the range of scales which are smaller than

Kolmogorov’s length scale, is so-called dissipation range, and fluctuations are

dominated by the viscosity term. The kinetic energy spectrum in the inertial

range is written as

Eu(k) = CKε
2/3
u k−5/3. (2.80)

Eq. (2.80) is also called as Kolmogorov’s spectrum, and is checked by experiments

and simulations.

This phenomenology is also extended on the passive scalars, by Obukhov,

Corrsin and Batchelor, with Batchelor’s microscale scales for the first assumption

of K41,

ηθ = Sc−1/2κ η, θη = ε
1/2
θ τ

1/2
θ , τθ = τu, (2.81)

where Scκ = ν/κ and energy spectrum of passive scalar variance at inertial-

convective range such that max(η, ηθ)� r � min(Lu, Lθ) can be written

Eθ(k) = COCε
−1/3
u εθk

−5/3. (2.82)

Eq. (2.82) is also checked by experiments and simulations.

The present study also extends them to the case of the passive vector as

ηw = Sc−1/2α η, wη = ε1/2w τ 1/2w , τw = τu, (2.83)

where Scα = ν/α. The energy spectrum of the pseudo kinetic energy at inertial-

convective range can be written as

Ew(k) = CPV ε
−1/3
u εwk

−5/3, (2.84)

which will be checked with result of DNSs.
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2.6 Intermittency in Turbulences

2.6 Intermittency in Turbulences

After K41 was published, it was criticized by Landau37 on that the energy dissi-

pation rate of turbulence in reality is not constant but fluctuates. Therefore, εα

should be replaced by 〈εα〉. This requires another statistical law of ε. In turbu-

lence, it is well known that the small scale quantities such as ∂ui
∂xi

, ∂ui
∂t

and so on

fluctuate strongly. That extreme events occur suddenly after long time low level

fluctuations, which is called as Intermittency. These phenomena also applies to

the dissipation rate.

On response to Landau’s criticism, Kolmogorov proposed a modification of his

theory,38 now known as K62, which includes the effect of the fluctuation effect of

the dissipation rate. The detail of the theory can be found in standard text books

of turbulence, e.g. Frisch,39 Gotoh,40 and here we describe the most relevant parts

of the theory in the present study. On K41, the n-th order moments follow the

nomal power law 〈|δruL|p〉 ∝ rn/3, but in K62, 〈|δruL|p〉 ∝ rξp , and ξp is not

a linear fluctuation of p but a non-decreasing fluctuation p as seen in Fig. 1.2.

Many experiments and large scale numerical simulations show that the exponents

are smaller than p/3, indeed, a non-decreasing fluctuation of n.

With different assumptions of distribution function of energy dissipation rate,

several models of scaling exponents was suggested, e.g. P (lnε) ∝ eA(lnε)−2
by

Kolmogorov leads to

ξu(n) =
n

3
− χ

18
n(n− 3), (2.85)

where χ is a universal constant and discribes the spatial correlation of energy dis-

sipation rate. Another well-known model was given by Z. S. She and E. Lévêque41

in 1994, written as

ξu(n) =
n

9
+ 2

[
1−

(
2

3

)n/3]
(2.86)

It is known that passive scalar is more intermittent than velocity field, and the

scaling exponents more scatter, as shown in Fig. 1.3. And it will be investigated

the case of passive vector, and discussed why passive scalar is more intermittent

than velocity field with comparisons of them in present study.
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3

Numerical Simulations

3.1 Schemes, Initial Conditions and Forcing

On the calculation of spatial derivatives, the pseudo-spectral method using the

3D Fast Fourier Transform (FFT) with two dimensional domain decompositon

parallelized was used. As it is known that when direct sum for the convolution

(F [A(x)B(x)]) takes O[N2D] operations so that it is very inefficient. To compute

the convolution sum effciently, A(k) and B(k) are transformed back into the

real space, multiplying them and again Fourier transformed to the k-space. This

requires O[NDlog2N ], in D-dimensional space operation, i.e.

[AB](k) = F
[
F−1 [A(k)]F−1 [B(k)]

]
. (3.1)

To avoid the aliasing error, Fourier modes at k > kcut in k-space are truncated,

and we chose kcut = 2
√

2/3 in this study.

The simulation code was written with FORTRAN language, and parallelized

with MPI and openMP. The computations were mostly carried out on the Plasma

Simulator at the National Institute of Fusion Science (NIFS), Toki, Japan. Pseudo-

spectral method for spatial derivatives and 4th order Runge-Kutta-Gill Scheme

for time integration were applied and visualizations were performed with Par-

aView.

The initial conditions are chosen as to be Gaussian random multivariate for

all of u, w and θ with the energy spectrum as

EA(k, t = 0) = NAk
−5
0 k4e−2(k/k0)

2

, (3.2)
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where NA denotes the normalization constant and k0 for the wave number of the

spectrum peak.

Two types of forcing are used. One is the white Gaussian random forcing with

zero mean values. Their correlation functions are given as

〈
fui (k, t)fuj (−k, s)

〉
=
F u
0 (k)

2πk2
Pij(k)δ(t− s), (3.3)〈

fwi (k, t)fwj (−k, s)
〉

=
Fw
0 (k)

2πk2
Pij(k)δ(t− s), (3.4)〈

f θ(k, t)f θ(−k, s)
〉

=
F θ
0 (k)

2πk2
δ(t− s), (3.5)

FA
0 (k) =


εAinj

kfmax − kfmin

, for kfmin
≤ k < kfmax

0, otherwise

, (3.6)

where A denotes for u, w or θ, repsectively. In the stationary state εAinj is equal

to the value of the mean energy dissipation rate εA. Another type of forcing is

the negative-viscous forcing, which is proportional to the fields at low band as

fu(k, t) =cu(t)G(k)u(k, t), (3.7)

fw(k, t) =cw(t)G(k)w(k, t), (3.8)

f θ(k, t) =cθ(t)G(k)θ(k, t), (3.9)

G(k) =

{
1, for kfmin

≤ k < kfmax

0, otherwise
(3.10)

cA(t) =
εAinj∫

G(k)EA(k, t)dk
. (3.11)
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3.2 Parameters and Characteristic Statistical Prop-

erties

All simulation runs are started from the Gaussian random intial fields with low

Reynolds number and of the resolution of 2563 grid points and integrated until a

statistically steady state is attained. The decision whether or not the steady state

is achieved is made by observing that the energy spectra do not change in time

and that the evolution of the energy dissipation rates stay around the energy

injection rates. When the Reynolds number is increased, the number of grid

points is increased to 5123, and the same operations are repeated to attain the

steady state on the 10243 grid points. It takes longer time to attain stationary

for higher Reynolds number, e.g. for Run C about 5 TE (large eddy time) is

required, and all the data in the transient period of each run is not taken into

account in the present study.

The averages are taken as the volume average over the domain and/or time

average only at the steady state. Their definitions are given below, and the results

are listed in Table 3.1, together with the simulation parameters. Caculations of

the Kolmogorov’s length η is as,

η = ν3/4ε−1/4u (3.12)

the integral length Lu, Lw, Lθ,

Lu =
3π

4

∫∞
0
k−1Eu(k)dk∫∞

0
Eu(k)dk

, (3.13)

Lw =
3π

4

∫∞
0
k−1Ew(k)dk∫∞

0
Ew(k)dk

, (3.14)

Lθ =
π

2

∫∞
0
k−1Eθ(k)dk∫∞

0
Eθ(k)dk

, (3.15)

the large eddy turnover time TE,

TE = Lu/u0 (3.16)
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Taylor’s microscale lengths λu, λw, λθ,

λu =

√
〈u21〉

〈(∂u1/∂x1)2〉
=

√
15u20

ν

εu
, (3.17)

λw =

√
〈w2

1〉
〈(∂w1/∂x1)2〉

=

√
15w2

0

α

εw
, (3.18)

λθ =

√
〈θ2〉

〈(∂θ/∂x1)2〉
=

√
3θ20

κ

εθ
, (3.19)

and the Taylor microscale Reynolds number Rλ:

Rλ =
u0λu
ν

, (3.20)

respectively. Skewness of derivatives SuK , SwK , SθK are measures of generating of

th small scales and defined as

SuK =
〈(∂u1/∂x1)3〉
〈(∂u1/∂x1)2〉3/2

, (3.21)

SwK =
〈(∂u1/∂x1)[(∂w1/∂x1)

2 + (∂w2/∂x1)
2 + (∂w1/∂x1)

2]〉
〈(∂u1/∂x1)2〉1/2 〈(∂w1/∂x1)2 + (∂w2/∂x1)2 + (∂w1/∂x1)2〉

, (3.22)

SθK =
〈(∂u1/∂x1)(∂θ/∂x1)2〉

〈(∂u1/∂x1)2〉1/2 〈(∂θ/∂x1)2〉
. (3.23)

When the turbulence is isotropic, the skewnesses are related to the transfer func-

tions as ∫ ∞
0

k2Tu(k)dk =− 35

2

〈(
∂u1
∂x1

)3
〉
, (3.24)∫ ∞

0

k2Tw(k)dl =− 15

2
SwK , (3.25)∫ ∞

0

k2Tθ(k)dl =− 9

2
SθK . (3.26)

It is argued that the spatial resolution in DNS requires kmaxη > 1.5 for the

velocity, where kmax is the maxium wave number in DNS, but the resolution for

the passive scalar is more demanding because of the effcient transfer of the scalar

variance to high wavenumbers and strong intermittency.15,42,43,44 Esepecially

the accurate computation of the extreme values or high order moments of the
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scalar gradient requires large values of kmaxηθ, say greater than 5 or more,45,44

where ηθ = ηSc
−1/2
κ is the Batchelor length. In the present DNS runs ηθ = η

because Scθ = 1, and the spatial resolution is kmaxη = 2.25, 1.14, 0.80, 1.22 and

2.24. Run A and E meet the requirement of velocity field and all runs don’t meet

the requirement for the passive scalar and the passive vector. However, in this

study, the concern is mostly on the statistical behavior in the inertial-convective

range, therefore it is considered that as far as the scale of interests lies in the

inertial-convective range, the spatial resolution in the present DNS study does

not affect the analysis. Indeed it has been studied the inertial range statistics are

insensitive to the dissipation range.42

Run E in which the forcing range is set at higher wave numbers. The purpose

of the Run E is to check the statistical convergence of the one point probability

density functions (PDFs). It is necessary to simulate turbulence fields which are

exiceted by many Fourier modes for the forcing in order to obtain well converged

PDFs.

27



3. NUMERICAL SIMULATIONS

Table 3.1: DNS parameters and characteristic statistics.

Run A Run B Run C Run D Run E

N 1024 1024 1024 1024 1024

Rλ 194.2 300.9 397.1 300.9 87.1

kmaxη 2.25 1.14 0.80 1.22 2.24

[kflow , kfhigh ] [2, 3] [2, 3] [2, 3] [2, 3] [6, 10]

∆t 2× 10−4 10−4 5× 10−5 10−4 5× 10−4

ν 5× 10−4 2× 10−4 1.2× 10−4 2× 10−4 5× 10−4

TE 0.92 0.79 0.82 0.88 0.43

Tav/TE 10.31 10.58 10.29 10.02 11.68

Eu 0.88 0.94 0.91 0.82 0.44

Ew 0.67 0.60 0.67 0.60 0.29

Eθ 0.18 0.15 0.15 0.13 0.08

εuinj 0.3 0.3 0.3 0.3 0.3

εwinj 0.3 0.3 0.3 0.3 0.3

εθinj 0.1 0.1 0.1 0.1 0.1

εu 0.34 0.32 0.29 0.25 0.34

εw 0.32 0.30 0.33 0.26 0.34

εθ 0.10 0.10 0.10 0.09 0.11

Lu 0.69 0.62 0.64 0.65 0.23

Lw 0.65 0.65 0.64 0.67 0.23

Lθ 0.43 0.44 0.43 0.42 0.15

λu 0.120 0.076 0.061 0.081 0.080

λw 0.097 0.063 0.050 0.068 0.065

λθ 0.055 0.035 0.027 0.035 0.046

CK 1.57 1.55 1.57 1.59 n / a

Cw 0.93 1.00 1.00 1.06 n / a

COC 0.65 0.69 0.68 0.69 n / a

SuK -0.54 -0.54 -0.47 -0.54 -0.51

SwK -0.46 -0.41 -0.31 -0.40 -0.47

SuK -0.51 -0.44 -0.34 -0.45 -0.51
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Results

The results are presented regarding three aspects:

1. Visualization of turbulent fields. Field visualization gives an intuitive image

on the three fields which help our understanding and interpretation of the

statistical quantities discussed later. The geometry of Ωu = (∇ × u)2

and Ωθ = (∇θ)2 is one of the distinctive differences between turbulence

velocity u and turbulent passive scalar θ. The comparison of geometry

for Ωw = (∇ × w)2 to others brings knowledge about the generation of

tube/sheet-like structures, e.g. whether it is due to pressure (continuity)

or others. The visualization for pressure p, pseudo-pressure q and their

derivatives are also given.

2. Low order statistics as the second and third order moments. The time

variation of the energy and dissipation rate, the spectra of the mean energy,

the transfer flux, the pressure, the production of enstropy, and the 4/5 and

4/3 laws are given. The Kolmogorov constant CK for the velocity, CPV for

the passive vector, and the Obukhov-Cossin constant COC for the passive

scalar are computed via the compensated spectra. Band-to-band transfer

are also studied to see the bottleneck effect in the energy spectrum.

3. High order statistics. The statistical properties are mainly studied via two

points of view: PDFs and scaling exponents of the moments. It is known
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4. RESULTS

that the long tails of PDFs and the anomalous scaling exponents are mani-

fests of the intermittency, which is one of features of the turbulence in three

dimensional space.

In Section 4.1, data of Run A is mainly used, because of the fine resolution of

kmaxη = 2.25, and a domain with size of L/8 is used to see the small scale

structures. In Section 4.2 and Section 4.3, data of Run B are mainly used,

because of larger Reynolds number, while satisfying kmaxη ∼ 1.5. Run C is

chosen to examine the scaling exponents in the inertial-convective range, because

that Reynolds number of Run C is highest in present study. Run D is used to

check the effects of forcing method on the intermittency. Run E is used to study

the one point PDFs and to compare with other runs.

4.1 Visualization

For visualization, a snapshot at an instantaneous time in the steady state and in

the sub domain x, y, z ∈ [0, L/8] is used. Quantities that are positive definite are

normalized by the average value over the entire volume of current snapshot, and

the quantities that are not positive definite are normalized by the root of mean

square at the entire volume.

4.1.1 Enstropy, Pseudo-enstropy and Squares of Scalar

Gradient

First, it is checked the spatial structure of the enstropy Ωu (Fig. 4.1), the pseudo-

enstropy Ωw (Fig. 4.3) and squares of scalar gradient Ωθ (Fig. 4.2), which are

defined as

Ω/ast
u (x, t) =

(∇× u)2

〈(∇× u)2〉
, (4.1)

Ω/ast
w (x, t) =

(∇×w)2

〈(∇×w)2〉
, (4.2)

Ω
/ast
θ (x, t) =

(∇θ)2

〈(∇θ)2〉
, (4.3)

respectively.
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4.1 Visualization

Figure 4.1: Iso-surface of square of vorticity for Run A, with level at Ω
/ast
u (x) > 8

in a cubic box with size of L/8.

Figure 4.2: Iso-surface of square of gradient of passive scalar for run A, with level

at Ω
/ast
θ (x) > 8 in a cubic box with size of L/8.
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4. RESULTS

Figure 4.3: Iso-surface of square of pseudo-vorticity for run A, with level at

Ω
/ast
w (x) > 8 in a cubic box with size of L/8.

The geometry of Ωw is sheet-like. This is dissimilar to the tube-like geometry

of Ωu,
19 but similar to the sheet-like geometry of Ωθ.

46,47,48 In the tube-like

structure, the vortex lines are bundled in a circle, while in the sheet-like structure

of pseudo-vortex, the vortex lines are bundled into a sheet.

The charactistic lengths for the velocity listed in Table 3.1 for Run A are:

η = 2.25/512 = 0.0044, λu = 0.12, Lu = 0.69. (4.4)

It could be observed that, the radius of vortex tube for Ωu is of the order of η, and

length of order λu, the thickness of the vortex-sheet for Ωw and gradient-sheet

for Ωθ is smaller than η.
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4.1 Visualization

Figure 4.4: Isosurface of pressure for Run A with level of−2prms (left) for negative

and prms (right) for positive.

Figure 4.5: Isosurface of pseudopressure for Run A with level of −2prms (left) for negative

and 2prms (right) for positive.
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4. RESULTS

Figure 4.6: Iso-surface of Ωp(left) and Ωq(right) for run A, with level at Ω
/ast
A (x) >

8 in a cubic box with size of L/8.

4.1.2 Pressure and Pseudo-pressure

Pressure p (Fig. 4.4), pseudo-pressure q (Fig. 4.5) and squares of their gradient

(Fig. 4.6) are also shown by the isosurfaces, with definition:

Ω/ast
p (x, t) =

(∇p)2

〈(∇p)2〉
, (4.5)

Ω/ast
q (x, t) =

(∇q)2

〈(∇q)2〉
, (4.6)

respectively.

It can be found that the geometry of the pressure for the negative part and

the positive part are different to each other. The negative part is tube-like, while

the positive part is blob-like. On the other hand, the isosurfaces of both the

positive part and negative part of pseudo-pressure are blob-like. It is found that

| pmin
pmax
| > | qmin

qmax
|, indicating that the pressure PDF is negatively skewed, which will

be discussed in Section 4.3. On the geometry Ωp and Ωq which are shown in

Fig. 4.6, both of them are tube-like, but radii of the tubes are larger than vortex

tubes in Fig. 4.1.

34



4.2 Low Order Statistics
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Figure 4.8: Time variation of εu + 0.2, εw and εθ. Line style configuration for

runs is same as Fig. 4.7.

4.2 Low Order Statistics

4.2.1 Time Histories of Simulations

The time variation of the normalized energy are shown in Fig. 4.7. For ease of

visibility, the curves of Eu(t)/Eu are shifted by 0.5, the curves of Eθ(t)/Eθ are
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4. RESULTS

shifted by -0.5. The time variation of the energy dissipation rates are shown in

Fig. 4.8, the curves of εu(t) are shifted by 0.2, and the energy injection rates are

illustrated with straight lines. The oscillations period of the normalized energies

for Run D and Run E are longer than that of Run A-C. Fluctuations of the energy

dissipation rate are smaller than those of normalized energies, because that the

dissipation rate reflects small scale properties and less correlates the fast variance

external forcing than large scale.

4.2.2 Energy Spectra and Fluxes

Using the Kolmogorov variables, we normalize the spectra as

E∗u(kη) =ε−1/4u ν−5/4Eu(k), (4.7)

E∗w(kη) =ε−2w ε3/4u α−2ν3/4Ew(k), (4.8)

E∗θ (kη) =ε−2θ ε3/4u κ−2ν3/4Eθ(k), (4.9)

The normalized spectra are plotted in Fig. 4.9.

For ease of visibility, the curves of E∗u(kη) and E∗w(kη) are shifted by 100 and

10, respectively. All curves, including E∗w, collapse excellently onto a single curve

for kη ∈ [0.01, 0.1], which indicates that an approximate -5/3 power law holds, as

expected based on Kolmogorov-Obukhov-Corrsin theory. For kη > 0.3, E∗w and

E∗θ decay slower than E∗u meaning that Ew and Eθ are excited more strongly than

Eu at large wave numbers in the dissipative range.

To compute the non-dimensional constants CK , CPV and COC , the compen-

sated spectra for Run B

ψu(kη) =ε−2/3u k5/3Eu(k), (4.10)

ψw(kη) =ε1/3u ε−1w k5/3Ew(k), (4.11)

ψθ(kη) =ε1/3u ε−1θ k5/3Eθ(k), (4.12)

are plotted in Fig. 4.10. The mean values of curves at plateau for 0.025 < kη <

0.03545 are found to be

CK = 1.55, CPV = 1.00, COC = 0.69, (4.13)

respectively.
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Figure 4.10: Averaged compensated spectra over the steady state for Run B.

Thin black lines indicate the Kolmogorov-Obukhov-Corrsin constants calculated

by the compensated spectra.

The Kolmogorov and Obukhov-Corrsin constants, CK = 1.55 and COC =

0.69, are consistent with those in the literature.5,15,49,50,45 In agreement with

the previous studies, we observe that the spectral bump of the passive scalar

is strongest and attains at higher wave numbers than the kinetic energy. The

compensated spectrum of Ew shows a similar trend, but is between those of the
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4. RESULTS

kinetic energy and the passive scalar. We examine the spectral bump in more

detail below.

The spectra of the energy transfer fluxes normalized by the energy dissipation

rates are plotted in Fig. 4.11. All of the curves are close to unity for 0.005 <

kη < 0.03, but the curves of Πθ decays more slowly than Πu, followed by Πw in

the far dissipation range. These trend are consistent with strong excitation of Ew

and Eθ at high wave numbers.

4.2.3 4/5 Law and 4/3 Laws

The normalized structure functions S∗u(r), S
∗
w(r) and S∗θ (r) are defined as

S∗u(r) =− 〈(δuL)3〉
4
5
εur

, (4.14)

S∗w(r) =− 〈(δuL)|δw|2〉
4
3
εwr

, (4.15)

S∗θ (r) =− 〈(δuL)(δθ)2〉
4
3
εθr

, (4.16)

respectively, and shown in Fig. 4.12.

The plateaus of the three curves approach unity from below at round r/η ∼
100, indicating that Kolmogorov’s 4/5 and 4/3 laws hold for S∗u and S∗w, and

Yaglom’s 4/3 law for S∗θ , respectively. The fact that all of the S∗A (A = u,w, θ)

curves are smaller than unity is consistent with previous studies.5,15 Careful

examination reveals that the plateau of S∗θ appears roughly in the range 20 <

r/η < 80 and that of S∗u occurs at larger scales as 60 < r/η < 200, while the

plateau of S∗w is in the range 40 < r/η < 200, which is wider than that of the two

curves. Moreover, the S∗w curves collapses to S∗θ in the dissipation range r/η < 10.

These trends are consistent with the high excitations of Ew(k) and Eθ(k) shown

in Fig. 4.9, and collapse of Πw(k) and Πθ(k) at high wave numbers in Fig. 4.11.
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4.2.4 Spectra of Pressure and Pseudo-pressure

The spectra of the pressure and pseudo-pressure are defined as

〈p2〉 =

∫ ∞
0

Ep(k)dk, (4.17)

〈q2〉 =

∫ ∞
0

Eq(k)dk, (4.18)

respectively, and normalized in terms of the Kolmogorov variables as

E∗p(kη) =u−4η η−1Ep(k), (4.19)

E∗q (kη) =(uηwη)
−2η−1w Eq(k), (4.20)

respectively. They are shown in Fig. 4.13 for Run B. It is observed that Eq(k) <

Ep(k) at all wave numbers, but the overall functional forms are very similar

to each other. Both of two curves approach to the power law Ep,q(k) ∝ k−β

in the range 0.01 < kη < 0.1, with the slope β ' 2, which slightly shallower

than the k−7/3 Kolmogorov scaling. This is due to the relatively lower Reynolds

number.51,52

To compareEp and Eq more closely, the compensated spectra of Ep(kη)/Ep(k
∗η)

and Eq(kη)/Eq(k
∗η) (k∗η = 0.03) are shown in Fig. 4.14 and Ep(k)/Eq(k) is shown
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Eq(k
∗) respectively, with k∗η = 0.03.

in the inset of Fig. 4.14, respectively. One can see that two curves collapse well

in the range 0.015 < kη < 1. The ratio is about 2 at small wavenumbers and

increases quickly, reaches the maximum at round kη = 0.7, and finally falls off

quickly at high wave numbers.

4.2.5 Spectra of Production of Gradients of Velocity, Pas-

sive vector and Scalar

The vorticity is enhanced by the stretching action of the turbulent flow as seen in

Eqs. (2.50), (2.53) and (2.54). However, the pseudo-vorticity is not only excited

by the stretching action, but also affected by the second term of right hand side

of Eq. (2.54).

It is interesting to compare their strength and examine the wave number

ranges that contribute to the production of vorticity, pseudo-vorticity and the
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scalar gradient. For this purpose, following spectra are investigated:

σ∗ω(k) =
1

〈ω2〉3/2η

∫
|k|=k
〈ω(−k) · F[S : ω]〉dS(k), (4.21)

σ∗ζ,str(k) =
1

〈ζ2〉〈ω2〉1/2η

∫
|k|=k
〈ζ(−k) · F[S : ζ]〉dS(k), (4.22)

σ∗ζ,crs(k) =
1

〈ζ2〉〈ω2〉1/2η

∫
|k|=k
〈ζ(−k) · F[(∇u)T × (∇w)T ]〉dS(k), (4.23)

σ∗ζ (k) =σ∗ζ,str(k) + σ∗ζ,crs(k), (4.24)

σ∗g(k) =− 1

〈g2〉〈ω2〉1/2η

∫
|k|=k
〈g(−k) · F[S : g]〉dS(k), (4.25)

where ATij = Aji denotes the transpose, and S is the surface element in the k-

space with radius of k, and the result for Run B is plotted in Fig. 4.15. One could

see that σζ,str is positive at all the wavenumbers just like σω, meaning that the

production of pseudo-vorticity is due to the stretching effects by the turbulence,

but σζ,crs is negative and attenates the production by destroying the geometrical

coherency between ∇u and ∇w. Therefore, the total production of the pseudo-

vorticity is positive, but less intensive than the vorticity production, when taking

account of the normalization 〈ω2〉/〈ζ2〉 ∼ εu/εw ∼ εuinj/ε
w
inj = 1 in this study.
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4.2 Low Order Statistics

The σ∗ω, σ∗ζ and σ∗g are positive at all wave numbers and have peaks at kη ∼ 0.2.

When the wave number decreases, σ∗ω and σ∗ζ decay quickly for kη < 0.1 and van-

ish at kη < 0.01, but σ∗g remains finite. Although we are not successful to explain

why σg is finite at low wavenumbers, it is noted that in DNSs and experiments

the ramp-cliff or masa-canyon structure of the scalar field accompanied with large

scalar gradients is found to have very large scale structures of integral length or

larger scales.53,15,20,24,54,55

4.2.6 Bottleneck Effects and Band-to-Band Transfer

One way to compare the amplitudes of the spectral bumps of Eu(k), Ew(k) and

Eθ(k) on an equal footing is to divide the compensated spectra by their plateau

values, the Kolmogorov constants CK , CPV , and the Obukhov-Corrsin constant

COC , respectively. The resulting curves are plotted in Fig. 4.16. The peak values

indicate the bump amplitude with respect to the plateau level. The wave numbers

and values of the bump maximum of the curve are denoted kup , kwp , kθp and Aup ,

Awp , Aθp, respectively. The results from Run B are:

kup = 0.12, kwp = 0.18, kθp = 0.21, (4.26)

Aup ∼ Awp = 1.35, Aθp = 1.85, (4.27)

respectively. It can readily be seen that the spectral bump of the passive scalar is

the largest, and that of the velocity is lowest, while that of the passive vector lies

between. Thus, the bottleneck effect is strongest for the passive scalar, weakest

for the velocity, and intermediate for the passive vector.

Donzis and Sreenivasan45 showed that the spectral bump decreases with in-

creasing Reynolds number, and suggested nonlocalness in the spectral transfer as

a possible mechanism for generating the spectral bump. The spectral bump has

been explained as a manifestation of the bottleneck effect.56 When one or two

components in the triad interaction are only weaky excited due to the dissipa-

tion, the spectral transfer becomes less efficient, so the spectrum piles up at wave

numbers just below the dissipation range. If the spectral transfer is dominated by

nonlocal interactions, the lack of excitation of one or two components at distant

wave numbers would result in a larger pile up of spectral excitation before the
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arrows point to the peak of the compensated energy spectrum.

beginning of the spectrum roll off that occurs in the dissipation range. In other

words, the stronger the nonlocalness, the larger the spectral bump appears.

To determine whether this is the case, it is studied the nonlocalness of the

spectral transfer of the scalar variance by comparing it to that of the kinetic

energy and passive vector variance. Using the Lagrangian renormalized approx-

imation (LRA),57,58,59 Gotoh and Watanabe60 showed that in the inertial range

at very high Reynolds numbers,

Wu(ξ) ∼C2
KIuξ

−4/3(
4

9
ln ξ +

16

45
), (4.28)

Wθ(ξ) ∼CKCOCIθξ−4/3(
4

3
ln ξ +

22

45
ξ−4/3), (4.29)

Iu =0.7896, Iθ = 1.202, (4.30)

where ξ = max(k, p, q)/min(k, p, q) denotes the nonlocalness metric in the triad

interaction, and WA (A = u, θ ) represent the fractional contributions to the total

mean transfer flux from the interactions in the range [ξ, ξ + dξ], defined as

ΠA

εA
=

∫ ∞
1

WA(ξ, k)
dξ

ξ
. (4.31)

They found that Wθ decays more slowly than Wu for large ξ, which means that

the energy transfer of the passive scalar is less local than that of velocity field,

and leads to the stronger bottleneck effect of variance of the passive scalar.
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4.2 Low Order Statistics

Since the above results are for an infinite Reynolds number and within the

LRA, we examine the cases of finite Reynolds number by using DNS. A sharp

band filter G for quantity A(x, t) at band K is defined as

AK(x, t) =F−1 [A(k, t)GK(k)] , (4.32)

GK(k) =

{
1, if K − 0.5 ≤ |k| < K + 0.5,

0, otherwise.
. (4.33)

Then, the spectral transfer functions between band K and Q are defined in the

same form as in:61

TuK,Q =− 1

εu

∫
uK · [(u · ∇)uQ] dx, (4.34)

TwK,Q =− 1

εw

∫
wK · [(u · ∇)wQ] dx, (4.35)

TθK,Q =− 1

εθ

∫
θK [(u · ∇)θQ] dx, (4.36)

respectively. TAK,Q represents the amount of the energy (variance) in the band Q

that is transferred to the band K under the action of the turbulent velocity u.

Results for Run B are shown in Fig. 4.17 and their absolute values in the

logarithm scale are in Fig. 4.18. Three common features are observed:

1. T
u,w,θ
K,Q are mainly negative for K/Q < 1, and positive for K/Q > 1, meaning

that the energy transfer is forward cascaded,

2. the absolute value of Tu,w,θK,Q attains the local maximum atK/Q ∼ 1, meaning

that local transfers are dominant,

3. the ratio of the local transfer to nonlocal ones decreases with increasing Q.

These results agree with previous studies.61,62

To study the nonlocal transfers, the plot in the logarithm scales in Fig. 4.18

is easier for visibility. It can be seen that the degree of the nonlocal transfer for

K � Q or K � Q is in the order of |TθK,Q| > |TwK,Q| > |TuK,Q| for investigated Q

in the present study. For small band Qη = 0.02 and intermediate band Qη = 0.06

Q, the right tails show a power law as |TθK,Q| ∼ K−2. At near dissipative scales

(k/Q ≥ 16 and Kη ∼ 0.4), the transfer of the kinetic energy TuK,Q turns to
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be negative, which is significantly different from the cases of passive vector and

passive scalar. To authors’ best knowledge, no explanation for this negative

transfer has been found. The fact that the nonlocal transfer to small scales is

most intense for the passive scalar and most mild for the velocity, is consistent

with the trend for the strength of bottleneck effect on the energy spectral bump.

It needs more work to clarify whether the nonlocal transfer is the reason for the

bottleneck effects.

4.2.7 Discussion

The observation for low order statistics can be summarized as follows:

1. Energy spectra of Eu(k), Ew(k) and Eθ(k) show the Kolmogorov-Obukhov-

Corrsin power law in the inertial-convective range, and the decay at dissipa-

tive range of the passive scalar and the passive vector are slower than that

of the velocity, in other words, Ew(k) and Eθ(k) are excited at high wave

numbers when compared to Eu(k). The Kolmogorov-Obukhov-Corrsin con-

stants are CK(= 1.57) > CPV (= 1.00) > COC(= 0.67), meaning that the

spectral transfer efficiency of the passive scalar is highest, and lowest for

the velocity, intermediate for the passive vector.

2. As for the strength of the bottleneck effects, the passive scalar has the

largest bump, the velocity has the smallest, and that of the passive vector

in between. The wave number and amplitude for the peak of the bumps

are in the order kup < kwp < kθp and Aup ∼ Awp < Aθp.

3. the spectra of transfer fluxes Πu(k), Πw(k) and Πθ(k), show plateaus in the

inertial-convective range, and decay to zero at low and high wavenumbers.

The decays of Πw(k) and Πθ(k) in the dissipative range are slower than

Πu(k), similar to the behaviors of the energy spectra.

4. the spectrum of the pseudo-pressure Eq(k) shows the same power law of

k−2 as that of pressure Ep(k), and the magnitude of Eq(k) in the inertial-

convective range is around 1/5 ∼ 1/4 of Ep(k) at the same wave numbers.
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4.2 Low Order Statistics

5. the cubic moment 〈δruL(δw)2〉 = −4
3
εwr in the inertial-convective range

is analytically obtained, and it has been checked numerically. It is found

that the plateau value of −〈δruL(δw)2〉 /(εwr) is close to but smaller than

the theoritical value 4/3 which is also similar to that of 〈(δruL)3〉 and

〈δruL(δrθ)
2〉. Again, the similarity between the curves for the passive scalar

and the passive vector in the dissipative range is observed.

From observations described above, it is concluded that for the Reynolds

numbers investigated in the present study, the behavior of w resembles θ at

small scales, and that the energy transfer efficiency of w is intermediate between

u and θ. As seen in the visualization Section 4.1, the spatial structure of the

passive vector is sheet-like which is similar to that of the passive scalar, and

different from the tube-like structure of velocity. As these structures are of the

length scale [η, λ], the above observation is consistent with the properties found

in comparison of the energy spectra, the spectra of the transfer fluxes, the 3rd

order structure functions at small scales.

The pressure determined by p(x, t) = −∇−2(∇u : ∇uT ) and the pseudo-

pressure by q(x, t) = −∇−2(∇u : ∇wT ) are considered as the nonlocal quantities

via the Poisson kernel. The difference between p and q arises from the difference

between the source terms Sp = ∇u : (∇u)T and Sq = ∇u : (∇w)T . On the

amplitudes, roughly speaking |Sp| > |Sq| at all scales but when integrated them

over the domain with the Poisson kernel weight, the difference at large scale

between p and q is negligible except the amplitudes which can be absorbed into

the uniform background that does not contribute their gradient ∇p and ∇q. The

differences in the spatial structure between Sp(x, t) and Sq(x, t) could emerge at

small scales.

On the bottleneck effects near the dissipative ranges, it is checked the scenario

suggested by Falkovich that the nonlocal transfers cause the bump of the energy

spectra via band-to-band transfers. It is found that the strength of the nonlocal

transfer of the passive scalar is strongest, with 1.5 ∼ 2 times of that of the velocity,

and that of passive vector is in between the passive scalar and the velocity. The

trend is consistent with that the strength of bottleneck effect is in the order of
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Aup ∼ Awp (= 1.2) < Aθp(= 1.9), although it is necessary to check the relation

between the nonlocal transfers and the bottleneck effect deeper.

It is useful to recall the behavior of turbulence in D dimensions.63 When the

spatial dimension D increases, the incompressibilty constraint weakens, because

the number of terms such that ∂ui/∂xi = 0 increases with D, thus dimishing

the contributions of the pressure. In this case, the relative importance of the

convective action increases, meaning that the nonlinearity dominates the small

scale dynamics. One implication of this arguement is that the incompressibilty

condition for the passive vector, which is assured by the pseudo-pressure, is of

secondary importance to the small scale dynamics of the passive vector, and the

convective term is a main player. Therefore, whether the convective term is linear

or nonlinear make differences at small scales, while the pseudo-pressure becomes

appreciable for large-scale statistics.

4.3 High Order Statistics

4.3.1 One Point Probability Density Functions

Normalized one point probability density functions (PDFs) of one component of

vectors and scalar for Run B and E are shown in Fig. 4.19. Slight asymmetry of

PDFs is observed and we consider it is due to the finite length of the time average

and the forcing at low wave number band. Since Run E is forced at high wave

number band, which means that the number of forcing Fourier mode is much

larger than that of Run B, so that the better statistical convergence is expected.

Indeed, the asymmetry of P (u1), P (w1) and P (θ) is weaker than Run B. The

curve of P (u1) is close to Gaussian distribution and P (θ) decays faster, which is

consistent with the observation in Refs.15,24,49 There are studies reporting that

P (θ) is Gaussian, exponential, or stretched exponential,64,65,66,67 depending on

conditions. It is also noted that P (w1) is wider than Gaussian at large amplitude.

It is not known how this trend is caused, which is one of subjects in the future

study.
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Figure 4.19: Normalized probability density functions of u1, w1 and θ. A =

u1, w1, θ, and σA denotes the standard deviation. Left: for Run B (Rλ ∼ 300,

low-k forcing); Right: for Run E (Rλ ∼ 90, high-k forcing).

The normalized PDF of the pressure and the pseudo-pressure for Run B and

Run E are shown in Fig. 4.20. P (p) is negatively skewed and has a long left tail,

consistent with previous studies.68,69 The left tail of P (q) for Run B is slightly

longer than the right tail but symmetry is stronger than that of P (p). It is not

known whether the asymmetry of P (q) remains finite or vanishes when the time

average is extened or whether it depends on the method of external injection.

But it can be observed that P (q) for Run E is more symmetric than Run B.

As discussed in Section 4.1.1, there are strong vortex tubes in turbulences.

For fluid particles to rotate around the centeral line of the thin vortex cube, the

pressure inside the tube must be much lower than outside pressure. Therefore,

the long left negative tail of P (p) prevails. On the other hand, the structure

of Ωθ is sheet-like, so as that of Ωw for the passive vector . For the sheet-like

structure, a volume adjoined to one side of the surface almost equals to the volume

adjoined to the opposite side, and the sheet could be formed by the difference in

δq between the both sides irrespective of sign of δq, so that the distribution of

pseudo-pressure is more symmetric than pressure.
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Figure 4.20: Normalized probability density functions of p and q. A = p, q, and

σA denotes the standard deviation. Left: for Run B (Rλ ∼ 300, low-k forcing);

right: for Run E (Rλ ∼ 90, high-k forcing).

4.3.2 Probability Density Functions of Derivatives

The PDFs of the fields gradient for Run A are shown in Fig. 4.21. The obser-

vations are as follows: (1) P (∂u1/∂x1) is negatively skewed which is linked to

the energy transfer from larger scales to smaller scales.49 On the other hand,

P (∂w1/∂x1) is symmetric and has a long tail than that of P (∂u1/∂x1). (2) the

PDFs of the transverse gradient of the velocity and the passive vector are symmet-

ric, and wider than that of the longitudinal gradient. The PDFs of the gradient of

the passive scalar P (∂θ/∂x1) is widest and has longest tails. The normalized PDF

of the gradients of the pressure P (∂p/∂x1) and the pseudo-pressure P (∂q/∂x1)

for Run A are shown in Fig. 4.22. The PDFs are symmetric and almost collapse

onto each other.69,70

4.3.3 Probability Density Functions of Energy Dissipative

Rate and Enstropy

The PDFs of log10(εA/εA) are shown in top panel of Fig. 4.23, where the energy

dissipation rate for u, w, θ here are computed as

εu =ν(∇u)2, (4.37)

εw =α(∇w)2, (4.38)

εθ =κ(∇θ)2, (4.39)

respectively.
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Figure 4.21: Normalized probability density functions of ∂u1/∂x1, ∂u1/∂x2,

∂w1/∂x1, ∂w1/∂x2 and ∂θ/∂x1 for Run A.
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Figure 4.22: Normalized probability density functions of ∂p/∂x1 and ∂q/∂x1 for

Run A.

The right tail of PDFs of log10(εu/εu) and log10(εw/εw) collapse very well

and close to the log-normal distribution.38 In the case of incompressible HIT

turbulence, energy dissipation rate for u, w can also be represented by

ε∗u =2ν(Suij)
2, (4.40)

ε∗w =2α(Swij)
2, (4.41)

respectively, and it is defined as β∗ = log10(ε
∗
A/ε

∗
A), and shown in bottom panel
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of Fig. 4.23.

On the other hand, the left tail of PDF decays linearly with slope nθ = 3/2,

nu,w = 4, n∗u,w = 5/2, which means that

P (lnεA)d lnεA ∝ exp(nA|ln(εA/εA)|)d lnεA ∝ (εA)nA−1dεA,

so that

P (εu) ∝ε3u, (4.42)

P (εw) ∝ε3w, (4.43)

P (ε∗u) ∝ε∗u
3/2, (4.44)

P (ε∗w) ∝ε∗w
3/2, (4.45)

P (εθ) ∝ε1/2θ , (4.46)

for small εθ.

P. K. Yeung studied the PDFs for x = ε/(νΩ), the ratio of the kinetic energy

dissipation rate to the enstropy, and found that the PDF tails obey the power

law as P (x) ∝ x3/2 and x−5/2 for small and large x, respectively. The enssence of

the argument is that the weak dissipation or weak enstropy corresponds to the

nearly Gaussian velocity field and obeys the chi-square distribution,

χk(z) =
1

Γ(k/2)
zk/2−1e−z/2, (4.47)

with the degree of freedom k, where Γ is the Gamma function.
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Figure 4.23: Probability density functions of βA = log10(εA/εA) (A denotes u, w

or θ) for Run A. Top panel: energy dissipation rates caculated by εA = νA(∇A)2;

bottom panel: energy dissipation rates caculated by ε′A = 2νA

(
SAij

)2
.

If the same argument is applied to the scalar destruction rate εθ, we obtain

χ3(εθ) ∝ ε
1/2
θ with k = 3, because εθ is the sum of the three squared terms,

which agrees well with Eq. (4.46). Under the incompressibility constraints, εu =

ν(∂iuj)
2 has freedom degree of eight, because ∂u3/∂x3 = −∂u2/∂x2 − ∂u1/∂x1,

and χ8(εu) ∝ ε4u agrees with Eq. (4.42), so as to distribution of εw for small values.

Moreover, ε∗u = (ν/2)(∂iuj+∂jui)
2 has freedom degree of five (S11, S22, S12, S23, S31),

because that

S21 = S12, S13 = S31, S32 = S23, S33 = −S11 − S22,
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Figure 4.24: Probability density functions of εu, εw, |Suij |2, |Swij |2, and εθ for Run

A.

and χ5(ε
∗
u) ∝ ε∗u

3/2 agrees with Eq. (4.44), so as to distribution of ε∗w for small

values. This suggests that for weak amplititudes of the dissipations, the statistics

Eq. (4.47) dominates the dynamics.

The PDFs normalized by the average value of energy dissipation rate P (εu/εu),

P (εw/εw) , P (εθ/εθ) and enstropy P (ω2/ω2), P (ζ2/ζ2) are shown in Fig. 4.24.

The PDF tail of P (ω2) is longer than that of P (εu), which is consistent with

result of Ref,71 on the other hand, the PDF tails of P (ζ2) and P (εw) are close to

each other.
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Figure 4.25: Probability density functions of increments for Run B. (a), (b), (c):

PDF of δuL, δuT , δwL, δwT and δθ with r of 4∆x, 16∆x, 64∆x respectively
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4.3.4 Two Points Probability Density Functions

Increment of field at two points separated by the distance r is written as

δrAB = [A(x+ r)−A(x)] · eB (4.48)

for vector where A denotes u or w and B stands for the longitudinal (L) or

transverse(T ) component to the direction of r, and

δrC = C(x+ r)− C(x) (4.49)

for scalars where C stands for θ, p or q. P (δuL, r), P (δuT , r), P (δwL, r), P (δwT , r),

P (δθ, r) and P (δp, r), P (δq, r) with r = (4, 16, 64)∆x for Run B are shown

in Fig. 4.25, Fig. 4.26, respectively. The PDFs become narrow as the separa-

tion distance increases, and their tails change from concave to convex, which

are consistent with Refs.49,15 The PDF tails at large amplitudes as a mea-

sure of the wideness of the PDF are in the order of P (δuL, r), P (δwL, r), and

P (δuT , r) ∼ P (δwT , r) for all separation distance studied. P (δuL, r) is also nega-

tively skewed like behavior in Fig. 4.21. P (δp, r) and P (δq, r) are symmetric and

close to each other at a small separation distance, but P (δq, r) become slightly

narrower than P (δp, r) when separation distance increases.
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4.3.5 Scaling Exponents of Field Increment Moments

It is expected the moments of the increment of fields in turbulence obey a power

law in the inertial-convective range, which are defined as

SuLp (r) =〈|δruL|p〉 ∝ rξ
uL
p , (4.50)

SuTp (r) =〈|δruT |p〉 ∝ rξ
uT
p , (4.51)

SwLp (r) =〈|δrwL|p〉 ∝ rξ
wL
p , (4.52)

SwTp (r) =〈|δrwT |p〉 ∝ rξ
wT
p , (4.53)

Sθp(r) =〈|δrθ|p〉 ∝ rξ
θ
p , (4.54)

respectively.

To evaluate how the scaling behavior varies with respect to the separation

distance r, following functions of r are examined first,

ξAp (r) =
d ln SAp (r)

d ln r
, (4.55)

A denotes for uL, uT , wL, wT , or θ and results for Run C are shown in Fig. 4.27.

Since the most of interest is in the scaling behavior in the inertial-convective range

at high Reynolds number which is expected to be insensitive to the dissipation

range,42 the curves of the local scaling exponents for Run C which has the highest

Reynolds number and the broadest inertial-convective range in present study are

chosen to examine.

The observation is as follows:

1. General trend of the curves is that when r/η increases from the dissipation

range, the curves decrease from value close to the analytical value p for p-th

order moments, then become nearly horizontal at around r/η ∼ 100 where

the power law scaling is expected, and finally decay at large separation

distances.

2. The width of horizontal range becomes wider approximately in the order of

δruL, δruT , δrwL and δrwT .

3. On the low end of the horizontal part of the curve rA,B∗,p where A is u, w

and B is L and T , it is found that rA,T∗,p < rA,L∗,p , (consistent with Ref.49 for

A = u), and that rw,B∗,p < ru,B∗,p both B = L and T .
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4. The curves of the local scaling exponents of ξθp(r) do not have a plateau

but have local minimum values at r/η ∼ 60, linearly increase with r in the

range 70 < r/η < 300 , and arrive at local maximum values at r/η ∼ 600,

which are consistent with Refs.15,27

5. the local scaling exponents ξwLp and ξwTp show similar behavior to ξθp that

linearly increase when p = 8, which suggests that the scaling exponents of

the passive vector are not universal as predicted in Refs.31,33

Since the Reynolds numbers in present DNS runs are not high enough and the

plateau width of the curves are still short, it is difficult to determine the scaling

exponents in the inertial-convective range. In present study, the ranges where

the scaling exponents are computed are determined by the following method. It

is considered,

ϕA(r∗) =
d ξA4 (r)

d ln r∗
, (4.56)

where r∗ = r/η, and choose the range that |ϕA| < 0.3 for ξuLp , |ϕA| < 0.1 for

ξuTp , ξwLp , ξwTp , ϕA > 0 for ξθ by considering the fact that the peak of ϕuL(r∗)

is much smaller than others, ϕθ(r∗) has the widest range of positive values and

the highest peak. Within this range, the mean value ξ
A

p , the minimum value

ξAp,min and the maximum value ξAp,max are calculated. The results for Run C

are shown in top panel Fig. 4.29 with error bars which are computed as the

deviation of the minimum and maximum values from the mean. It is found

that ξθp < ξwTp < ξwLp < ξuTp < ξuLp < p/3 when p > 4, which means that the

intermittency of the passive vector lies between the velocity field and the passive

scalar, and the scaling of the passive vector is anomalous.
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Figure 4.27: Scaling exponents of moments of fields increment for Run C. (a),

(b), (c): ξuLp (rη−1), ξuTp (rη−1), ξwLp (rη−1), ξwTp (rη−1) and ξθp(rη−1) with p of 4, 6

and 8 respectively.
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Figure 4.28: Scaling exponents of fluxes for Run C for p = 3, 6.

4.3.6 Scaling Exponents of Energy Flux Moments

The transfer fluxes of the kinetic energy, the pseudo-kinetic energy and the vari-

ance of passive scalar as functions of the separation distance ∆, are defined in

terms of the product of the filterized rate of strain tensor, the Reynolds stress

with filter width ∆, but it requires a large number of computations. To avoid

this, in this study the moments of 3rd order structure functions as surrogates of

the transfer fluxes is used and defined as

Qu
p(r) =rp/3Πu

p/3(r) = −
〈[
δruL(δru)2

]p/3〉 ∝ rµ
u
p , (4.57)

Qw
p (r) =rp/3Πw

p/3(r) = −
〈[
δruL(δrw)2

]p/3〉 ∝ rµ
w
p , (4.58)

Qθ
p(r) =rp/3Πθ

p/3(r) = −
〈[
δruL(δrθ)

2
]p/3〉 ∝ rµ

θ
p , (4.59)

respectively. As far as the scaling arguments are concerned, the above moments

are expected to provide equivalent knowledge of the scaling behavior of the trans-

fer fluxes. Similar to the processes in Section 4.3.5, we examined the local scaling

exponents defined by

µAp (r) =
d ln QA

p (r)

d ln r
, (4.60)

where A denotes for u, w, or θ. Results for Run C are shown in Fig. 4.28.
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Figure 4.29: Scaling exponents of moments of increments and fluxes for Run C.

Top panel: average, minimal and maximum value of ξuLp , ξuTp , ξwLp , ξwTp , and ξθp in

the inertial range ; bottom panel: average, minimal and maximum value of µup , µwp
and µθp in the inertial range.

The observations are:

1. the range of the plateaus for µup(r), µ
w
p (r), µθp(r) for fixed p is not so different

as that of ξAp (r).

2. µθp(r), µ
u
p(r) and µwp (r) are close to one another.

3. the low end and high end distance of plateaus rµ
A

∗,3 is smaller than those of

rµ
A

∗,6 .

The values of the scaling exponents are determined in the same way as that

for ξAp . The rmin is chosen as r satisfied dµu3/dlnr∗ > −0.3, and rmax satisfied
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dµu6/dlnr∗ > −0.3, the mean value µAp , minimum value µAp,min and maximum

value µAp,max are calculated and the results for Run C are shown in bottom panel

of Fig. 4.29 with error bars. It is found that:

1. the amplitudes of fluctuation of µAp in the inertial-convective range, µAp,max−
µAp,min is smaller than those of ξAp when n > 4.

2. the offset from n/3 of µAp for A = w or θ is smaller than those of ξAp when

n > 4, and again the order is µθp < µwp < µup when n > 4, meaning that

the intermittency of the passive vector transfer flux is between that of the

velocity and the passive scalar.

4.3.7 Effects of Reynolds Number and Forcing Method

The effects of the Reynolds number and large-scale forcing on the scaling expo-

nents are examined in Section 4.3.7. Run E is not included as Reynolds number is

too small to find plateau ranges. The effects of Reynolds number can be checked

by comparing Runs A, B and C for the same forcing method, and large-scale forc-

ing effects can be checked by comparing Run B and D at almost same Reynolds

numbers. Althogh the Reynolds numbers in the present computations are not

enough to fully determined the trend, and the scaling exponents are slightly

scattered, the general trend is that the scaling exponents are insensitive to the

variation of the Reynolds numbers and large-scale forcing in the present study.
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4.3 High Order Statistics

Table 4.1: Scaling exponents of moments of increments and transfer fluxes in

the inertial range. Mean, standard deviation, maximaum and minimum values are

computed in the range [rmin/η, rmax/η] in which the absolute value of the local

slope is smaller than specific values. For Run A, ξuLp and µAp are not computed

because of short range.

Run A Run B Run C Run D

range / p mean std min max mean std min max mean std min max mean std min max

ξuLp range n/a [80, 233] [82, 310] [85, 199]

4 1.28 0.02 1.24 1.33 1.30 0.02 1.25 1.34 1.26 0.03 1.21 1.30

6 1.76 0.04 1.69 1.83 1.79 0.03 1.72 1.85 1.72 0.04 1.64 1.79

8 2.15 0.05 2.00 2.24 2.19 0.03 2.00 2.26 2.08 0.06 1.99 2.18

ξuTp range [56, 126] [52, 159] [55, 204] [52, 120]

4 1.21 0.00 1.21 1.22 1.24 0.01 1.22 1.25 1.26 0.01 1.24 1.27 1.23 0.01 1.21 1.25

6 1.60 0.03 1.57 1.65 1.64 0.00 1.62 1.65 1.67 0.02 1.64 1.70 1.64 0.02 1.60 1.66

8 1.88 0.07 1.79 2.01 1.92 0.01 1.89 1.93 1.95 0.03 1.91 1.99 1.91 0.03 1.86 1.94

ξwLp range [70, 146] [74, 307] [78, 424] [80, 217]

4 1.22 0.01 1.20 1.23 1.19 0.01 1.17 1.21 1.19 0.01 1.18 1.21 1.19 0.02 1.17 1.22

6 1.60 0.00 1.60 1.61 1.55 0.02 1.53 1.58 1.55 0.01 1.54 1.58 1.57 0.02 1.53 1.61

8 1.88 0.03 1.85 1.92 1.79 0.03 1.76 1.86 1.81 0.04 1.77 1.89 1.81 0.03 1.78 1.87

ξwTp range [36, 125] [41, 239] [43, 350] [46, 191]

4 1.20 0.01 1.19 1.21 1.17 0.01 1.16 1.18 1.17 0.01 1.16 1.19 1.14 0.01 1.12 1.16

6 1.54 0.03 1.51 1.58 1.49 0.01 1.47 1.51 1.50 0.03 1.46 1.54 1.44 0.01 1.43 1.46

8 1.77 0.06 1.71 1.90 1.68 0.02 1.65 1.73 1.71 0.06 1.64 1.79 1.59 0.05 1.53 1.69

ξθp range [47, 146] [54, 294] [59, 412] [57, 196]

4 1.03 0.05 0.96 1.11 1.00 0.07 0.90 1.10 1.01 0.08 0.90 1.13 0.94 0.03 0.90 0.98

6 1.29 0.09 1.17 1.45 1.23 0.11 1.09 1.42 1.25 0.13 1.07 1.50 1.15 0.04 1.09 1.21

8 1.50 0.13 1.33 1.73 1.41 0.14 1.22 1.68 1.44 0.20 1.19 1.84 1.29 0.05 1.23 1.36

range n/a [52, 186] [47, 275] [54, 165]

µup 3 0.94 0.07 0.79 1.04 0.97 0.07 0.80 1.06 0.95 0.06 0.83 1.03

6 1.77 0.04 1.70 1.86 1.79 0.06 1.72 1.93 1.75 0.05 1.67 1.85

µwp 3 0.95 0.06 0.81 1.02 0.96 0.07 0.79 1.04 0.94 0.05 0.83 1.01

6 1.72 0.03 1.66 1.79 1.72 0.04 1.66 1.83 1.72 0.04 1.66 1.79

µθp 3 0.93 0.06 0.78 1.00 0.95 0.06 0.79 1.02 0.94 0.05 0.83 1.00

6 1.58 0.01 1.56 1.62 1.60 0.02 1.58 1.67 1.54 0.03 1.49 1.60
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4.3.8 Discussion

The observations for the high order statistics are following:

1. P (w1) is wider than P (u1) which is approximately Gaussianly distributed,

and P (θ) is convex at extreme values.

2. P (log10(εu/ε)u) and P (log10(εw/ε)w) are close to each other, P (εu) and

P (εw) are approximately log-normal distributed. The right tail of P (ln(εθ/ε)θ)

is similar to the above two PDFs, but the left tail shows a power law

slope nθ ∼ 3/2 and nu,w ∼ 4, meaning that P (εθ) ∼ ε
1/2
θ , P (εu) ∼ ε3u

and P (εw) ∼ ε3w for small values.

3. P (p) is clearly negatively skewed, while P (q) is approximately symmetric.

4. P (εu) is longer tail than P (ω2), but P (ζ2) and P (εw) have similar tail.

5. On the local scaling exponents of increment moments, the small curves

of ξA,Bp (r)(A is u or w, B is L or T ) have plateau and rA,T∗,p < rA,L∗,p and

rw,B∗,p < ru,B∗,p , while the curve of ξθp(r) shows a linear function of ln(r/η).

Moreover, ξwLp (r) and ξwTp (r) for p = 8 become to linearly increase with

ln(r/η), meaning that the scaling exponents at high order of the passive

vector increment moments are not universal.

6. The curves of µup(r), µ
w
p (r) and µθp(r) are close to one another.

7. The scaling exponents in the inertial-convective range are in the order of

p/3 > ξuLp > ξuTp > ξwLp > ξwTp > ξθp and p/3 > µup > µwp > µθp, meaning that

the passive scalar is the most intermittent, the velocity is least intermittent,

and the passive vector is intermediate between them.

The PDFs of the dissipation rate of the kinetic energy and pseudo kinetic en-

ergy are close to log-normal distribution as suggested by K62. It should be noted

that the scaling exponents at high order of the passive vector is non-universal and

anomalous, which differs from the prediction based on the Kraichnan velocity en-

semble or the numerical study by the shell models. From the arguements in the

previous and the present sections, although the kinetic constraints of ∇ ·w = 0
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and the pseudo-pressure are common features with those of the Navier-Stokes

velocity field, they are not enough to acheive the same degree of the intermit-

tency behavior for w as that for u. Rather the linearity of w in the convective

terms tends to generate the stronger intermittency of w. The solenodal condition

through the pseudo-pressure tends to relax the intermittency of w.

67



4. RESULTS

68



5

Summary

To explore the physical mechanism underlying the similarities and differences

in the statistical properties of velocity and passive scalar fluctuations, we in-

troduced an incompressible passive vector incorporating pseudopressure, which

shares many common properties with both the Navier-Stokes and passive scalar

equations. Statistical data obtained from DNSs showed that the passive vector

shares common statistical properties with the velocity and passive scalars, espe-

cially for low order statistics, such as the power law of the energy spectra, the

transfer fluxes in k-space, and the 4/5 and 4/3 laws for third-order structure func-

tions. Unexpectedly, the geometry of the pseudo-enstrophy Ωw(x, t) = (∇×w)2

is sheetlike, described similarly as Ωθ(x, t) = (∇θ)2 for passive scalar, and unlike

the tubelike structure of velocity. Since the equations for u and w both incor-

porate the (pseudo) pressure term to ensure incompressibility, we argue that the

tubelike structure is not caused by pressure, but rather by the local nonlinear dy-

namics, while the sheetlike structure is considered a result of the linear convective

effect (recall the sheetlike structure of the current sheet in the MHD turbulence).

The properties of passive vectors, such as the transfer efficiency, strength of

the bottleneck effect, ratio of nonlocal to local transport, and scaling exponents

of the increments and flux moments, are intermediate between those of velocity

and passive scalars. At small scales, the properties of passive vectors are similar

to those of passive scalars comparing to those of velocity. We interpret this as

follows: firstly, the term ωj∂jui of Eq.(2.50) is nonlinear in the velocity gradients

and causes self-stretching of the vorticity, yielding a vortex tube. On the other
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5. SUMMARY

hand, ζj∂jui + εijk∂jwl∂kul of Eq. (2.54) is bilinear and the alignment between

ζ and the eigenvector of the rate of strain tensor Suij is disturbed by the second

term. Then no tubelike structure is generated; instead, a sheetlike structure is

formed. Secondly, the pressure p and pseudopressure q are determined through

an integral weighted by the Poisson kernel. The differences between p and q arise

from the small-scale structures of the source term of the Poisson equation. At

large scales of p and q, the differences of the source terms at small scales are

burried due to spatial integration, causing the amplitudes of p and q to appear

nearly uniform in space. This means that the difference between ∇p and ∇q is

very small, i.e., they act similarly. However, at small scales, ∇p and ∇q behave

differently because of the difference in the source terms, leading to formation

of thin sheetlike structure for the passive fields. The scaling exponents of the

velocity are anomalous and universal, while those of the passive vector and scalar

are anomalous, non-universal for high orders, and smaller than the velocity, and

the strength of the intermittency is intermediate between that for velocity and

passive scalars.

From the above observation and arguments we conclude that as for the low

order statistics the fluctuations of the turbulent velocity and the passive fields

convected by it are similar, but differ for the high order statistics. The nonlinear-

ity of the Navier-Stokes equation leads anomalous but universal scaling exponents

and the linearity of the quations of the passive fields bears nonuniversal scaling

exponents and stronger intermittency than the velocity.
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Appendix A

Derivation of von

Kárman-Howarth Equations

The von Karman Howarth equation is said as that the unique analytical statement

on turbulence. The original version was derived for the longitudinal velocity

correlation in NS turbulence by T. von Kármán and L. Howarth at 1938. Based

on it, Kolmogorov’s 4/5 law2 and Yaglom’s 4/3 law7 were given, which are related

with most of work on statistical theory on turbulence. The idea was extended

to more generic cases, especially MHD,72 Hall MHD73 and turbulent dynamo

problem in sub-viscous range.74

A.1 Statistics in Homogeneous Isotropic Fields

Before deriving the von Kárman-Howarth equation, we brieftly describe the statis-

tical expressions for several correlation functions for the statistically homogeneous

isotropic random fields.

From the symmetry argument, first, second and third order isotropic tensor

Fi, Fij and Fijk are of the form of:

Fi(r) =Ari (A.1)

Fij(r) =Arirj +Bδij (A.2)

Fijk(r) =Arirjrk +Bδjkri + Cδkirj +Dδijrk (A.3)

73



A. DERIVATION OF VON KÁRMAN-HOWARTH EQUATIONS

where A, B, C and D are scalar functions of r only.

For the later argument, we consider first the 〈ukϕ′〉 where ϕ′ = ϕ(x′) is a

scalar funtion. Taking the divergence, we hace

∂rk〈ukϕ′〉 = r1−D∂r(r
D−1K), (A.4)

Where D is the spatial dimensionality. From the continuous equation, ∂rk〈ukϕ′〉 =

∂xk〈ukϕ′〉 = 0, so that

∂r(r
D−1K) = 0,

K = Cr1−D,

but the finiteness of k(r) at r = 0 requires C = 0, then

〈ukϕ′〉 = 0. (A.5)

We define the two point velocity correlation function as

Qij(r) = 〈ui(x)uj(x + r)〉 = 〈uiu′j〉 = Qji(−r), (A.6)

where u′j = uj(x
′) = uj(x+ r), and Qij(r) can be written by the isotropy as

Qij(r) = rirjF (r) + δijG(r), (A.7)

where F (r) and G(r) are scalar function of r alone. We define the operators

Pij(r) = δij −
rirj
r2

, Πij(r) =
rirj
r2

, (A.8)

then the longitudinal and transverse correlation functions are defined as

u20f(r) ≡〈uLu′L〉 = Πij(r)Qij(r) = r2F +G, (A.9)

u20g(r) ≡〈uTu′T 〉 =
1

D− 1
Pij(r)Qij(r) = G, (A.10)

where uL and uT are components parallel and perpendicular to r, respectively,

and

Qij(r) = u20{Pij(r)g(r) + Πij(r)f(r)}, u20 =
1

D
|u|2. (A.11)

The incompressibility implies

∂riQij = ∂i 〈ui(x)uj(x
′)〉 =

〈
(∂iui)u

′
j

〉
= 0, (A.12)
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and applying to Eq. (A.11) yields

2

r
g =

(
2

r
+

d

dr

)
f (A.13)

Finally, we arrive at

Qij(r) =u20

[
f(r)δij +

r

2

df

dr
Pij(r)

]
. (A.14)

Similarly, we consider the third order correlation as

Qijk(r) = 〈uiuju′k〉. (A.15)

From the incompressibility condition,

∂kQijk(r) = 0. (A.16)

Substituting into Eq. (A.3), we obtain

r∂rA+ 5A+ r−1∂rB + r−1∂rC =0, (A.17)

r∂rD + 3D +B + C =0. (A.18)

Since

Qijk(r) = Qjik(r), (A.19)

we have

B = C. (A.20)

From Eq. (A.15), we have ∂kQiik(r) = 0, meaning that Qiik(r) = 0 because of

the regularity at r = 0, so that

Ar2 + 2B + 3D = 0 (A.21)

From the above equations A,B,C are expressed in terms of D alone as

A =
∂r
r
D, (A.22)

B =C = −1

2
(r∂r + 3)D. (A.23)
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A. DERIVATION OF VON KÁRMAN-HOWARTH EQUATIONS

The longitudinal third order correlation function h(r) is defined by

u30h(r) = 〈uLuLu′L〉, (A.24)

and we arrive at

u30h(r) =− 2rD, (A.25)

Qijk(r) =u30

{
h− r∂rh

2

rirjrk
r3

+
2h+ r∂rh

4

(ri
r
δjk +

ri
r
δik

)
− h

2

rk
r
δij

}
. (A.26)

A.2 von Kárman-Howarth Equations and Kol-

mogorov’s 4/5 Law

Incompressible Navier-Stokes equation and continuous equation are given as

∂tui + ul∂lui =− ∂ip+ ν∂2llui, (A.27)

∂iui =0. (A.28)

By writing ∂′i = ∂i′ , u
′
i = ui(x

′), we obtain the evolution of uj(x
′) as,

∂tu
′
j + u′l∂

′
lu
′
i = −∂′ip′ + ν∂′2ll u

′
i. (A.29)

Multiplying Eq. (A.27) by u′j and Eq. (A.29) by ui, and adding them yield

u′j∂tui + ui∂tu
′
j =− u′jul∂lui − uiu′l∂′lu′i − 〈∂ipu′i〉 − 〈ui∂′jp′〉

+ u′jν∂
2
llui + uiν∂

′2
ll u
′
i, (A.30)

By noting that u′jul∂lui = ul∂l(uiu
′
j) = ∂l(uluiu

′
j) and taking the ensemble aver-

aging, we obtain

∂t〈uiu′j〉 = −∂l〈uluiu′j〉 − ∂′l〈u′luiu′j〉+ ν∂2ll〈uiu′j〉+ ν∂′2ll 〈uiu′j〉 (A.31)

The pressure term in Eq. (A.31) vanishes by Eq. (A.5), then Eq. (A.31) is written

as as

∂tQij = −∂lQlij + ∂′lQlji + ν∂2llQij + ν∂′2llQij, (A.32)
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Noting that the derivative on ∂
∂xi

could be rewritten as ∂
∂ri

form, as

∂l′Qlji =∂rlQlji, (A.33)

∂lQlij =− ∂rlQlij, (A.34)

and taking the trace, namely i = j, we have

∂tQii = 2∂lQlii + 2ν∂2llQii. (A.35)

Substitution of Eq. (A.14) and Eq. (A.26) gives

∂tu
2
0[3f + r∂rf ] =2∂rlu

3
0X1 + 2νX2, (A.36)

X1 =
1

2

rl
r

(4h+ rh′),

X2 =(3 + r∂r)(
4∂r
r

+ ∂2rr)f.

Using operator LA = r−2∂r(r
3A) = 3A+ rA′, the above Eq. (A.36) is written as

L

{
∂tu

2
0f −

(
∂r +

4∂r
r

)
u30h− 2ν

(
4

r
+ ∂2rr

)
u20f

}
= 0,

∂tu
2
0f −

(
∂r +

4

r

)
u30h− 2ν

(
4∂r
r

+ ∂2rr

)
u20f = Cr−3.

Regularity at r = 0 requires C = 0, then the above equation becomes

∂tu
2
0f =

(
∂r +

4

r

)
u30h+ 2ν

(
4∂r
r

+ ∂2rr

)
u20f. (A.37)

Importing structure functions as Sn(r) = 〈(u′L − uL)n〉 = 〈(δuL)n〉, applying

homogeneity and isotropy, we have

S2 =QL′L′ − 2QL′L +QLL = 2u20(1− f), (A.38)

S3 =QL′L′L′ − 3QL′L′L + 3QLLL′ −QLLL = 6QLLL′ = 6u30h, (A.39)

where QLL′ ≡ 〈uL(x)uL(x′)〉 and QLLL′〈≡ uL(x)uL(x)uL(x′)〉, respectively. Sub-

stituting Eq. (A.38) and Eq. (A.39) into Eq. (A.37), leads

∂tu
2
0 −

1

2
∂tS2(r, t) =

(
∂r +

4

r

)
S3

6
− ν

r4
∂

∂r

(
r4
∂S2

∂r

)
. (A.40)
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In the inertial range the viscous term can be dropped and in statistically steady

state the term ∂tS2 = 0

∂tu
2
0 =

(
∂r +

4

r

)
S3

6
.

By the definition of the mean kinetic energy dissipation rate per mass ε̄ =

−∂t〈|u|2/2〉 = −3
2
∂tu

2
0, it yields

−4ε̄ =r−4∂r(r
4S3),

S3 =− 4

5
rε̄+ Cr−4,

The regularity at r = 0 requires,

〈(δuL)3〉 = −4

5
ε̄r, (A.41)

which is the Kolmogorov’s 4/5 law.

A.3 vKH Equations for Passive Fields and 4/3

Law

Applying the similar procedure to the velocity to the equation for the passive

scalar:

∂tθ + u · ∇θ = κ∇2θ, (A.42)

it leads to,

∂tQ
θ = 2∂iQ

θ
i + 2κ∂2rQ

θ, (A.43)

where the correlation functions fθ and hθ are defined as,

Qθ(r) =〈θθ′〉 = θ20fθ(r), (A.44)

Qθ
i (r) =〈uiθθ′〉 = u0θ

2
0rih

θ(r). (A.45)

Substituting Eqs. (A.44) and (A.45) into Eq. (A.43), we obtain the von Kárman-

Howarth equation from the passive scalar as

∂tθ
2
0fθ =

(
4

r
+ 2∂r

)
u0θ

2
0hθ + 2κ(

2

r
+ ∂2rr)θ

2
0fθ. (A.46)
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The moments of the increments are related to the correlation functions as

Sθ2 = 〈(δθ)2〉 = 2θ20(1− fθ), (A.47)

Πθ = 〈(δuL)(δθ)2〉 = 4u0θ
2
0hθ, (A.48)

where 〈θ2u′L〉 = 0 and 〈θ2uL〉 = 〈θ′2u′L〉 are used. Substituting Eq. (A.47) and

Eq. (A.48) into Eq. (A.46), we obtain that

−2εθ −
1

2
∂tS

θ
2 =

1

2
(
2

r
+ ∂r)Π

θ − κ(
2

r
∂r + ∂2rr)S

θ
2 , (A.49)

since εθ = − d
dt
〈θ2/2〉 = −1

2
∂tθ

2
0, at the statistically steady steady the second term

of L.H.S vanishes, and the diffusive term is negligible in the inertial-convective

range. Integrating the above equation and taking into regularity at r = 0, we

obtain the Yaglom’s 4/3 law,

〈(δuL)(δθ)2〉 = −4

3
εθr. (A.50)

An imcompressible passive vector is governed by

∂twi + uj∂jwi = −∂iq + α∂2jjwi, ∂iwi = 0. (A.51)

The equation for the correlation function Qw
ij is given by,

∂tQ
w
ij = −2∂kQ

w
ijk + 2α∂2rrQ

w
ij, (A.52)

Similarly as Before, we have the following expressions,

Qw
ij =〈wiwj〉 = w2

0

[
δijf

w(r) + Pij
r

2

df

dr

]
, (A.53)

Qw
ijk =〈uiwjwk〉 = u0w

2
0

{
rirjrk
r3

hw − r ∂hw
∂r

2
+
riδjk
r

qw (A.54)

+

[
rjδik
r

(
hw + r

∂hw

∂r
− qw

)]
− rk

r
δij
h

2

}
, (A.55)

where the scalar functions fw(r), hw(r) and qw(r) are defined as

w2
0f

w(r) = 〈wL(x)wL(x′)〉, (A.56)

u0w
2
0h

w(r) = 〈uL(x)wL(x)wL(x′)〉, (A.57)

u0w
2
0q
w(r) = 〈uL(x)wT (x)wT (x′)〉. (A.58)
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A. DERIVATION OF VON KÁRMAN-HOWARTH EQUATIONS

Substituting Eqs. (A.53) and (A.55) into Eq. (A.52), we obtain the von Kárman-

Howarth equation for the passive vector,

∂

∂t
fw(r) =

2

r
u0w

2
0[h

w(r) + 2qw(r)] + 2α

(
∂2

∂r2
+

4

r

∂

∂r

)
w2

0f
w(r). (A.59)

Then defining the moments of increments similar to the passive scalar as

Sw2 (r) =〈(w′L − wL)2〉, (A.60)

Πw(r) =〈(u′L − uL)(w′ −w)2〉. (A.61)

Performing same procedures and conditions from Eq. (A.46) to Eq. (A.50), we

arrive the 4/3 law for the passive vector

−4

3
εwr = 〈δuL|δw|2〉. (A.62)

In this context, it is worthwhile to consider the similar relation to the MHD

turbulence. The MHD equation is usually used in studies of the electric conduc-

tive fluid, as(
∂

∂t
+ u · ∇

)
u = −∇p+ (∇× b)× b+ ν∇2u, ∇ · u = 0, (A.63)

∂

∂t
b = ∇× (u× b) + λ∇2b, ∇ ·w = 0, (A.64)

where b(x, t) denotes for the normalized magnetic field, and λ for the normal-

ized diffusive coefficient of magnetic field, respectively. The Elsässer varibles are

defined as

z± = u± b, (A.65)

then Eqs. (A.63) and (A.64) are simplified as(
∂

∂t
+ z∓ · ∇

)
z± = −∇pb + ν+∇2z± + ν−∇2z∓, ∇ · z± = 0, (A.66)

where pb = p + b2

2
, ν+ = ν+λ

2
and ν− = ν−λ

2
. In the case both Prm = ν

λ
= 1 ,

Eq. (A.66) is equivalent to Eq. (A.51), von Kárman-Howarth equation and 4/3

law for Elsässer varibles can be easily derived, replacing w with z+, u with z−

and q with pb, or replacing w with z−, u with z+,

∂

∂t
f z
±

(r) =
2

r
z∓0 (z±0 )2[h±(r) + 2q±(r)] + 2ν

(
∂2

∂r2
+

4

r

∂

∂r

)
(z±0 )2f z

±
(r), (A.67)

−4

3
ε±z r =〈δz∓L |δz

±|2〉. (A.68)
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