User-Side Updating of Third-Party Libraries for
Android Applications

Hiroki Ogawa
Nagoya Institute of Technology
Aichi, Japan
h.ogawa.334 @nitech.jp

Eiji Takimoto
Ritsumeikan University
Siga, Japan

Abstract—A Third-Party Library(TPL) is often used in de-
veloping Android applications, however older TPLs may have
vulnerabilities. Hence developers need to keep them in their
applications the latest version. Nevertheless, there is a lot of
applications using older TPLs.

In this paper, we propose a new method which users enable to
update TPLs in Android applications. An Android application
and TPLs can be converted to smali file which is more of an
assembly based language. A smali file can be replaced with
another smali file on the same class. Our method takes advantage
of its properties and exchanges a vulnerable TPL for an security
fixed one. Moreover, we apply it to real applications and evaluate
feasibility of it.

Index Terms—Library update, Third Party Library, Android,
Android security

I. INTRODUCTION

In developing Android applications, Third-Party Li-
braries(TPL) are essential parts. Developers can improve de-
velopment efficiency and speed using TPL. Purposes of TPLs
are, for instance, displaying advertisement, implementing an
authentication function of a social networking service, and en-
hancing convenience. In this way, TPL has many advantages.

On the other hand, TPLs can be a security threat. Some
TPLs are vulnerable depending on versions. For instance,
versions of a facebook’s TPL older than 3.16 have account
hijacking vulnerability [1]. In addition, Dropbox’s TPL [2] and
Apache CC’s TPL [3] also have versions with vulnerabilities.
There are a lot of TPL which have vulnerable versions. Using
older versions of TPLs are dangerous, and developers should
keep TPLs in applications up to date. However, there are
applications without the latest TPL because developers forgot
to update or completed development [4]. Meanwhile, users
are not provided a method to update applications. Therefore,
if users want to update them, they cannot do it. In this paper,
we propose a method for them to update TPLs used by their
applications.

Our method identifies TPLs in applications by cooperating
with an external server and updates TPLs if applications are
linked with older versions of TPLs. Herewith, users can update
TPLs in applications and fix vulnerabilities included in older
versions of TPLs.

An Android application includes some TPLs, and both an
Android application and TPLs can be converted to smali files.
A smali file is more of an assembly based language, and can be

takimoto@asl.cs.ritsumei.ac.jp mouri@cs.ritsumei.ac.jp

Koichi Mouri Shoichi Saito
Ritsumeikan University Nagoya Institute of Technology
Siga, Japan Aichi, Japan
shoichi @nitech.ac.jp

replaced with another smali file on the same class. Our method
takes advantage of its properties and exchanges a vulnerable
TPL for an security fixed one.

The rest of paper is organized as follows: Section 2 gives
related works survey. Section 3 explains about the proposed
method and details of it. Section 4 talks about implementation
of it and Section 5 shows evaluation of it. And we discuss the
future works in Section 6. The paper is summarized in Section
7.

II. RELATED WORKS

This section describes related works. Firstly we describe
techniques to identify TPLs used by applications and update
applications. Lastly we discuss a problem of application up-
dating methods.

A. Techniques of identifying TPL used by applications

Techniques to identify TPLs used by applications are mainly
classified into a whitelist method [5] [6] [7], a machine
learning method [8] [9] [10] and a clustering method [11]
[12].

In the whitelist method, a TPL can be identified by its
package name. This method has advantages of being fast and
applying easily to any applications but cannot identify TPLs
if their package’s names are obfuscated.

In the machine learning method, TPLs for advertisement
can be identified with high accuracy. However, this method is
aimed at identifying TPLs for advertisement [13]. Thus, it is
difficult for this method to recognize other types of TPLs.

In the clustering method, various TPLs are clustered to
collect some information about API before identifying TPL
used by applications and then can be identified based on them.
This method can identify TPLs with high accuracy like the
machine learning method. In addition, this method can identify
TPLs other than TPLs for advertisement unlike the machine
learning method [13]. However, it is difficult for this method
to identify TPLs that are used by fewer applications because
of little information.

There are two other methods except for the above. The
first is LibScout [4] which extracts class hierarchy information
from a TPL, stores it in the LibScout’s database, and identifies
TPLs in applications using it. The second is LibRadar [14]
which is a method that extends the clustering method. It

extracts Android API call frequency from a TPL and classifies
TPLs based on the frequencies.

B. Techniques of updating application

There is an update method for Android applications called
Hotfix [15]. Hotfix is a method for developers to quickly
provide a bug fixed applications to user. Developers prepare
scripts to fix bugs in the application, and then users download
and execute it.

There is a method to check TPLs updatability for Android
applications [16]. It uses two data sets to determine whether
and to which extent TPLs in applications can be updated. They
are for evaluating robustness and usage of library APIs. The
robustness data set can evaluate how many APIs are remaining
in the successor version. The usage data set can evaluate
what parts of TPLs are used in applications. The paper [16]
combines them and checks whether TPLs in applications can
be replaced to another versions.

C. Problem about method of updating application

The existing methods have a problem that users cannot
update their applications alone. Even if any vulnerabilities in
TPLs or APIs are disclosed, users cannot update them. From
a developers point of view, their burden is heavy because
they are constantly concerned about the vulnerabilities of
TPLs and need to update their applications quickly. Therefore,
new method for users to update their applications without
developers is necessary.

III. PROPOSAL

This section describes overview of a method to update TPLs
used by applications on Android devices by cooperating with
an external server and details of it.

A. Overview of proposal

We propose a method to update TPLs used by applications
on a user-side Android device. This proposed method enables
users to update their applications by cooperating with an
external server. The behavior of the proposed method is shown
in Fig.1.

The updating steps is shown below.

(1) User’s Android device sends an original apk file of
the application an user wants to update to the external
server.

(2) The external server analyzes the original apk file and
identifies TPLs and their versions.

3) The external server updates TPLs and creates an
updated apk file.

(4) The external server informs the Android device that
updating is completed.

(5) The external server sends the updated apk file to the
Android device.

(6) The Android device uninstalls the original apk file.

(7) The Android device installs the updated one.

If updating is not necessary, our method executes just steps
1,2, and 4. This behavior is shown below.

(1) User’s Android device sends an original apk file of
the application an user wants to update to the external
server.

(2) The external server analyzes the original apk file and
identifies TPLs and their versions.

(4) The external server informs the Android device that
updating is unnecessary.

B. Techniques of identifying TPL

The proposed method uses LibScout, which is described in
Section II-A, to identify TPLs and their versions. There are
three reasons for using LibScout and they are shown in below.

o Source code is published on github,

e LibScout can add TPL information to a database,

o LibScout can distinguish whether a TPL version could be
identified or not.

C. Library update

Android applications are executed on Dalvik VM. Thus,
a program of Android application is compiled into dex file
which is bytecode of Dalvik VM. It is converted to smali
file by disassembling. Smali file is more of assembly based
language and more understandable form than dex file. TPLs
can be converted to smali file as well. Smali file in an Android
application can be replaced with another smali file on the
same class. Therefore, the whole smali files of a TPL in an
application can be replaced for another TPL which has the
same classes. The proposed method updates the versions of
TPL based on this character.

An overview of the proposed updating procedure is as
follows. In advance the external server converts the latest
version of TPLs to smali files and stores them in the database.
When a user updates TPLs, the external server decompiles an
apk file and replaces old smali files with pre-prepared smali
files. Finally, it recompiles the apk file and signs it.

D. Structure of the proposed method

The proposed method needs to analyze an apk file. However,
it is difficult to analyze an apk file in an Android device
because there are few analysis tools for an Android device.
In addition, the proposed method uses a database that has
information of TPLs and latest or security-fixed TPLs. Thus, it
is difficult for an Android device to have the database because
the size of it is large. Therefore, we use an external server. The
proposed method consists of an Android application and an
external server. In this paper, we call the Android application
and the external server as Updater Application(UpApp) and
Updater Server(UpSrv) respectively. UpApp mainly interacts
with user and communicates with UpSrv. UpSrv mainly ana-
lyzes apk files.

IV. IMPLEMENTATION

This section describes implementation of the proposed
method. The proposed method cooperates with the server
to update TPLs. We describe implementation of UpApp and
implementation of UpSrv.

Android device

Original
apk file

(6) Uninstall apk file

Updated
apk file

(7) Install updated apk
file

(1) Send original apk file

|

(4) Inform results

(5) Send updated apk file

Server

LibScout
Original
p apk file
(2) Analyze apk file

Updated
apk file

(3) Create updated
apk file

Fig. 1. Overviwe of proposal

A. Implementation of updating application in Updater Appli-
cation

We create UpApp which performs the necessary operations
on Android devices. Users need to install and use it to update
TPLs in their applications. The functions of it are shown
below.

o Sending an original apk file installed on an Android

device to UpSrv,

« Receiving an updated apk file,

o Uninstalling the original apk file,

« Installing the updated apk file.

UpApp performs the steps (1), (6), and (7) in Fig.1. It
sends an original apk file and receives an updated apk file.
In addition, it uninstalls the original apk file and installs the
updated apk file if TPLs were updated.

1) Send and receive apk file: A user selects an application
and enters it’s name into UpApp. UpApp gets path of the
apk file of the selected application using the entered name
from the Package Manager in Android system. After that, (1)it
sends the apk file to UpSrv and receives the updated apk file.
UpApp determines whether to receive the updated apk file
based on a notification from UpSrv. If UpSrv informs that
there is no necessary for updating, it disconnects a connection
with UpSrv. And it waits for input from user again. If UpSrv
informs that there is need for updating, it receives the updated
apk file from UpSrv.

2) Uninstall and install apk file: If UpApp receives an
updated apk file, (6)It uninstalls the original apk file on
Android device because only one apk file with the same
package name can exist on one Android device. The proposed
method doesn’t change package name. Thus, there is necessary
for uninstalling the original apk file to install the updated apk
file. After uninstallation, (7)it installs the updated apk file on
Android device. Uninstalling and installing apk files are done
by issuing intent. After installation, it waits for input from
user again.

B. Implementation of Updater Server

Functions that need to be implemented in UpSrv are shown
below. We use Ubuntu 14.04LTS for UpSrv.

« Sending and receiving apk files,

« Identifying TPLs,
o Updating TPLs,
o Preparing latest TPLs.

UpSrv performs the steps (2)-(5) in Fig.1. It receives the
original apk file which user wants to update from UpApp.
After that, it analyzes the apk file by calling Smali Replacer
LibScout which is a tool adding a function of updating TPLs
to LibScout. It updates TPLs in the received apk file from the
old version to the security-fixed version by replacing smali
file.

Thus, We describe 1)Update TPL, 2)Prepare latest TPLs,
and 3)Support Multidex below.

1) Update TPLs: (2)UpSrv analyzes an original apk file
and (4)informs whether it has been updated or not to UpApp.
If update is needed, (3)UpSrv creates an updated apk file.
First of all, it calls Smali Replacer LibScout, which replaces
old smali files to new smali files and creates an updated apk
file. Then, Smali Replacer LibScout decompiles the apk file
when it detects an older TPL and replaces smali files in the
decompiled apk file to the security-fixed version. After that, it
recompiles the replaced apk file. Here the recompiled apk file
is not signed. However, an apk file are signed in order to insall
to an Android device. Therefore, Smali Replacer LibScout
signs the recompiled apk file with a signature file prepared by
the user or the developer of this system in advance. We uses
apktool to decompile and recompile apk files and jarsigner to
sign recompiled apk files.

2) Prepare security-fixed TPLs: We target TPLs whose
versions can be identified because LibScout has the function
to distinguish whether TPL version could be identified. UpSrv
uses this function to add information about new TPL to
database for identifying TPL. We prepare smali files of a
security-fixed version by obtaining jar files and converting it.
However, it cannot be directly converted to smali files. Thus,
we convert it to smali files via dex files.

3) Support Multidex: Our proposed method supports a
multidex apk file, which can refer to more methods than
the upper limit from a single dex file. When an application
uses multidex, the application has multiple dex. Therefore,
the proposed method analyzes all dex files and searches smali
files of the target TPLs from them.

V. EVALUATION

This section describes the evaluation of the proposed
method. We examine influence of the proposed method on
applications and check whether the proposed method can fix
vulnerability or not. Then, we summarize results and consider
them.

A. How to evaluate

We evaluate the following two items.

1) effects of our proposed method on applications,
2) whether it can fix vulnerabilities.

In investigation on influence of the proposed method, we
confirm whether applications to which the proposed method
is applied works properly by using 19 applications that
are published at Fossdroid [17] or Google Play. They are
shown in Table I. This table contains application names,
its classifications, TPLs, original versions, and updated(latest
or security-fixed) versions. In the evaluation of vulnerability
mending, we make a test application that has vulnerability
and confirm whether the proposed method can fix it. The
evaluation environment is shown in Table II.

B. Evaluation of influence of the proposed method on appli-
cations

Influence of the proposed method on the 19 applications is
shown in Table III. This table shows results of recompiling,
launching, and behavior of applications. From that results,
we confirmed that some applications succeed in updating, but
others failed. Thus, we investigated the cause of failure in
updating.

We selected 12 target applications which failed to recompile,
launch, or operate in Table III. We analyzed an apk file if
recompiling was failed and searched log files, and if launching
or operating was failed. As a result, we found four patterns
for update failure. Update failure patterns are shown in Table
V.

In the Pattern 1, a missing method and class causes re-
compiled applications to crash. In this pattern, “NoClass-
DefFoundError ” and “ NoSuchMethodError ” occur when
the applications crashed. Because the method or class of the
version before updating is deleted in the updated version.
Therefore, they crash when the applications use the deleted
method or class. If there are many changes between versions
before and after the updating, this pattern often occurs.

In the Pattern 2, source code obfuscating causes recompila-
tion to fail. In this pattern, as a result of analyzing applications
by apktool, a smali file name, class names and method names
were obfuscated. Thus, obfuscation makes it difficult that
the proposed method identifies the target smali file. In order
to solve this pattern, the proposed method needs to decode
obfuscation.

In the Pattern 3, applications did not work properly due to
signature verification. In this pattern, messages that a server
refused a connection are outputted in a log file. Thus, signature
verification to prevent tempering an application causes execu-
tion failure of the updated application. The proposed method

.f’- -\\
{"ig":124,
"vul": ["java.util.logging.FileHandler",
"/data/data/s.hiro.jsoncve/test.log"]1}

\ y,

Fig. 2. Malicious code

ASUS /@1KD 1:/data/data/s.hiro. jsoncve }
code_cache test.log test. log. Lck

cache

Fig. 3. Storage before applying the proposed method

changes an application’s signature because it does not have the
correct signature and has to sign an updated application by its
own signature. In order to solve this pattern, it is necessary
to update the applications without changing the signature. We
think solving this pattern is very difficult.

The Pattern 4 is that recompilation fails due to the limi-
tation of Multidex. In this pattern, as a result of analyzing
applications by apktool, there were multiple directories that
have smali files of a target TPL. Thus, the cause is that
the proposed method cannot identify the correct smali file
replacement directory because the code of a TPL exists in
multiple dex. Because a code of applications is divided into
multiple dex if applications have methods above the upper
limit of Multidex. Thus, the code of a TPL may be divided.
In order to solve this pattern, the proposed method needs to
identify the replacement destination of the smali file.

C. Evaluation of vulnerability fix

We evaluate whether the proposed method can fix
vulnerability. We made two test applications for eval-
vation. The first application has Jackson-databind’s [30]
vulnerability(CVE-2017-7525) [31]. The second application
has ZeroTurnaround’s [32] vulnerability(CVE-2018-1002201)
[33]. Jackson-databind and ZeroTurnaround are TPLs. We
describe the evaluations of amending two vulnerabilities.

1) Amending Jackson-databind’s vulnerability: Jackson-
databind’s vulnerability allows unauthenticated remote code
execution because of deserialization flaws which can be
deserialized into a class that enables code execution. This
vulnerability exists in versions less than 2.6.7.1, 2.7.9.1 and
2.8.9, hence we updated Jackson-databind from version 2.8.8
to version 2.8.11.2 by the proposed method for evaluation.
The test application, which we made for this evaluation, reads
a JSON code and deserializes it by Jackson-databind library.
We attacked the vulnerability and made it create a log file
which is designated in the JSON code by using a vulnerable
Jackson-databind library and a malicious one. JSON is shown
in Fig.2.

Files named “testlog” and “test.loglck” were created
by the test application without the proposed method. The stor-
age after executing the test application without the proposed

TABLE I
APPLICATIONS

Application name [Classification

TPL used by application

| Original version [Updated version

PDF Creator | PDF Creator itextpdf [18] 5.5.10 5.5.11

Kinolog | Movie acquisition parceler [19] 1.1.8 1.1.9

Fill | Game appsflyer [20] 473 4.7.4

Stationary | Game retrofit [21] 2.2.0 2.3.0

okio [22] 1.11.0 1.14.1

30nitidesikkusupakku® | Health care Joda-Time [23] 2.9.3 299

Sekainosinbun* | Newspaper jsoup [24] 1.9.2 1.11.3

Podcast Addict | Radio Twitter4] [25] 4.04 4.0.6

Okusuritetyo* | Health care Calligraphy [26] 2.1.0 2.3.0

Capitole du Libre | Event okhttp [27] 342 3.5.0

Konohanahanandesuka?* | Flower dictionary retrofit 2.1.0 2.3.0

Spirit Fanfiction | Book okhttp 39.1 3.10.0

LUCRA | Information for women | okhttp 3.8.1 3.84

Insight Timer | Timer Joda-time 293 299

Sing! | Karaoke Twitter4J 4.0.3 4.0.7

Tsuridamasi* | Fishing Twitter4] 4.04 4.0.7

Color by Number | Game Android-GIF-Drawable [28] 1.2.10 1.2.11

Night Filter | Health care retrofit 2.1.0 2.3.0

Himatyatto* | Chat EventBus [29] 3.0.0 3.1.1

Koukou/Daigakujuken*® | Study okio 1.13.0 1.14.1

*:These application names are originally in Japanese.

TABLE II TABLE IV

EVALUATION ENVIRONMENT

Server OS | Ubuntu 14.04LTS
Android device | Zenfone4
Android OS | 8.0.0
TABLE III

INFLUENCE OF PROPOSED METHOD ON APPLICATIONS

App name | Recompile [Launch [Behavior

PDF Creator success success correct

Kinolog success success correct

Fill success success correct

Stationary success success correct

30nitidesikkusupakku* success success correct

Sekainosinbun*® success success correct

Podcast Addict success success correct
Okusuritetyo™ success failure -

Capitole du Libre success success crash
Konohanahanandesuka?* success failure -
Spirit Fanfiction success failure -
LUCRA failure - -
Insight Timer failure - -
Sing! success success
from server

Tsuridamasi* failure - -
Color by Number failure - -
Night Filter failure - -
Himatyatto* failure - -
Koukou/Daigakujuken* failure - -

*:These application names are originally in Japanese.

method is shown in Fig.3. Next, we applied the proposed
method to it and did the same attack. As a result, the files
were not created. The storage after executing it with the
proposed method is shown in Fig.4. In addition, messages that

UPDATE FAILURE PATTERN

App name [Pattern

Okusuritetyo*

Capitole du Libre
Konohanahanandesuka?*
Spirit Fanfiction
LUCRA

Insight Timer

Sing!

Tsuridamasi*

Color by Number

Night Filter

Himatyatto*
Koukou/Daigakujuken*
*:These application names are originally in Japanese.

PN VNS I VY] NG [N N

.hiro. jsoncve $ Ls

‘data/data/

ASUS_Z01KD 1

che code

Fig. 4. Storage after applying the proposed method

connection refused deserialization was not done because of security reasons was

outputted in a log. The log is shown in Fig.5. Therefore, we
confirmed that the proposed method can fix Jackson-databind’s
vulnerability.

2) Amending ZeroTurnaround’s vulnerability:
ZeroTurnaround’s vulnerability is a kind of zip slip that is a
critical archive extraction vulnerability and allows attackers
to write arbitrary files on the system. The vulnerability exists
in versions less than 1.13, hence we updated ZeroTurnaround
from version 1.12 to version 1.13 by the proposed method
for evaluation. The test application, which we made for this
evaluation, extracts a zip file in an SD Card to the “workdir”
directory for ZeroTurnaround. We attacked the vulnerability

ASUS." s.hiro.jscn n (@-jacksor) [Ed Regex Showonll

10-05 13:15:27.746 11010-11010/? W/System.err:

com. fasterxml.jackson.databind.JsonMappingException:
Illegal type (java.util.logging.FileHandler) to
deserialize: prevented for security reasons

Fig. 5. Messages that deserialization was not done because of security reasons

ASUS.n s.hiro.zzln nl) [Regex | Show onl

Caused by: org.zeroturnaround.zip.ZipException:
The file ../zipmal is trying to leave the target
output directory of /sdcard/workdir. Ignoring this
file.

Fig. 6. Log after applying the proposed method

4

and made it create files in the parent directory of “workdir’
by using a vulnerable ZeroTurnaround and a malicious zip
file. The malicious zip file is shown in Fig.7. The file was
created in the parent directory of “ workdir” by the test
application without the proposed method, and the result is
shown in Fig.8. Next, we apply the proposed method to it and
did the same attack. As a result, The file was not created. In
addition, a log in Fig.6 was outputted. From this log, we saw
that creation of a file in the parent directory was prevented.
Therefore, we confirmed that the proposed method can fix
ZeroTurnaround’s vulnerability.

VI. FUTURE WORK

Improvement of library update accuracy will be a future
work. There are four patterns of failure as explained in section
V-B. It is difficult to solve the Pattern 2, 3, and 4 because
of system and security reasons. Therefore, the future work
is to solve Pattern 1. The cause of Pattern 1 is that there
are many differences between versions of TPLs before and
after updating. However, the purpose of the proposed method
is to fix vulnerabilities. Thus, we think that we can reduce
the failure of the proposed method by updating to a version
immediate after fixing vulnerability or a version fixing only
the vulnerability.

The another future work is to add a function to take over the
data of an application before updating. The proposed method
needs to uninstall it to update temporarily. Hence, the data of
it before updating lose. The proposed method needs to save
the data of it before updating.

VII. CONCLUSION

In this paper, we proposed a method to update TPLs by
users. They can fix vulnerability of TPLs in an application by
updating them by cooperating with the external server. From
the evaluation result of applying the proposed method to appli-
cations, we confirmed that updating by smali file replacement
succeeded and vulnerability of TPLs was fixed by the proposed
method. In the future, we will enable the proposed method
to update using the vulnerability fixed version closest to the
current version to reduce update failures. In addition, we will

malzip.zip
Date

Archive:
Name

Time

0 2018-07-12 04:51
0 2018-07-04 05:12

ipmal

SilentCamera
SixPa
SixPackTTS

zipmal

Alarms

Android

DCIM

ASUS_Z01KD_1
testfile

ASUS Z01KD 1:/ $ I

wlan_logs
workdir

Fig. 8. Extracting result before applying the proposed method

implement a function to save the data of application before
updating.

REFERENCES

[1] News,T, H,:Facebook SDK Vulnerability Puts Millions of Smart-
phone Users’Accounts at Risk, http://thehackernews.com/2014/07/
facebook-sdk-vulnerability-puts.html, Accessed 19 July 2018.

[2] Blog,D,D,:Security bug resolved in the Dropbox SDKs for Android,
https://blogs.dropbox.com/developers/2015/03/security-bug-resolved-in-
the-dropbox-sdks-for-android/, Accessed 19 July 2018.

[3] Database, V, N,: Apache Commons Collections Java library insecurely
deserializes data, http://www.kb.cert.org/vuls/id/576313, Accessed 19
July 2018.

[4] Backes, M, Bugiel, S, and Derr, E,: Reliable third-party library detection
in Android and its security applications, Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security,
pp-356-367 (2016).

[5] Grace, M, C, Zhou, W, Jiang, X, and Sadeghi, A.R.: Unsafe exposure
analysis of mobile in-app advertisements, Proceedings of the fifth ACM
conference on Security and Privacy in Wireless and Mobile Networks,pp.
101-112 (2012).

[6] Book, T, Pridgen, A, and Wallach, D, S,: Longitudinal analysis of
android ad library permissions, arXivpreprint arXiv:1303.0857 (2013).

[7]1 Chen, K, Liu, P, and Zhang, Y,: Achieving accuracy and scalability
simultaneously in detecting application clones on android markets, Pro-
ceedings of the 36th International Conference on Software Engineering,
pp. 175-186 (2014).

[8] Narayanan, A, Chen, L, and Chan, C, K,: Addetect: Automated detection
of android ad libraries using semantic analysis, Intelligent Sensors,
Sensor Networks and Information Processing (ISSNIP), 2014 IEEE
Ninth International Conference on, pp. 1-6 (2014).

[9] Liu, B, Liu, B, Jin, H, and Govindan, R,: Efficient privilege de-

escalation for ad libraries in mobile apps, Proceedings of the 13th

Annual International Conference on Mobile Systems, Applications, and

Services, pp. 89-103 (2015).

Gibler, C, Stevens, R, Crussell, J, Chen, H, Zang,H, and Choi, H,:

Adrob: Examining the landscape and impact of android application

plagiarism, Proceeding of the 11th annual international conference on

Mobile systems, applications, and services, pp. 431-444 (2013).

Crussell, J, Gibler, C, and Chen, H,: Andarwin: Scalable detection

of semantically similar android applications, European Symposium on

Research in Computer Security, pp. 182-199 (2013).

Wang, H, Guo, Y, Ma, Z, and Chen, X,: Wukong: A scalable and

accurate two-phase approach to android app clone detection, Proceedings

of the 2015 International Symposium on Software Testing and Analysis,

pp. 71-82 (2015).

Li, M, Wang, W, Wang, P, Wang, S, Wu, D, Liu, J,Xue, R, and Huo,

W,: LibD: scalable and precise third-party library detection in android

markets, 2017 IEEE/ACM 39th International Conference on Software

Engineering(ICSE), IEEE, pp. 335-346 (2017).

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]
[18]

[19]
[20]
[21]
[22]
[23]

[24
[25]

[26

[27]
[28]

[29]
[30]

[31]

[33]

Ma, Z, Wang, H, Guo, Y, and Chen, X,: Libradar:Fast and accurate
detection of third-party libraries in android apps, Proceedings of the
38th International Conference on Software Engineering Companion, pp.
653-656 (2016).

Mindorks: Android-HotFix, https:/github.com/MindorksOpenSource/
Android-HotFix, Accessed 19 July 2018.

Derr, Erik and Bugiel, Sven and Fahl, Sascha and Acar, Yasemin and
Backes, Michael: Keep me updated: An empirical study of third-party
library updatability on Android, Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, pp. 2187-2200
(2017).

Simonin, D,: Fossdroid, https://fossdroid.com/, Accessed 19 July 2018.
iText Software:ITEXT Developers, http://developers.itextpdf.com/, Ac-
cessed 19 July 2018.

Ericksen, J,:Parceler, https://github.com/johncarl81/parceler, Accessed
19 July 2018.

Appsflyer: Appsflyer, https://www.appsflyer.com/, Accessed 19 July
2018.

Square:Retrofit, http://square.github.io/retrofit/, Accessed 19 July 2018.
Square: okio, https://github.com/square/okio, Accessed 19 July 2018.
jodastephen: Joda-Time, http://www.joda.org/joda-time/, Accessed 19
July 2018.

jhy: jsoup, https://jsoup.org/, Accessed 19 July 2018.

Twitter4]: Twitter4], http://twitterdj.org/en/index.html, Accessed 19 July
2018.

chrisjenx:Calligraphy, https://github.com/chrisjenx/Calligraphy,
Accessed 19 July 2018.

Square: OkHttp, http://square.github.io/okhttp/, Accessed 19 July 2018.
Karol: android-gif-drawable, https://github.com/koral-/android-gif-
drawable, Accessed 29 August 2018.

greenrobot: EventBus, http://greenrobot.org/eventbus, Accessed 29 Au-
gust 2018.

cowtowncoder: Jackson-databind, https://github.com/FasterXML/jackson-
databind, Accessed 19 July 2018.

Common Vulnerabilities and Exposures:CVE-2017-7525,
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-7525,
Accessed 19 July 2018.
ZeroTurnaround:ZeroTurnaround,https://zeroturnaround.com/, Accessed
19 July 2018.

Snyk: Zip Slip Vulnerability,https://snyk.io/research/zip-slip-
vulnerability, Accessed 19 July 2018.

