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Abstract – This paper focuses on the localization of the near-
field sources by using compress sensing with array antenna.
A novel step-by-step method is proposed for estimating the
angle and distance of near-field source. Estimation accuracy
of source location by the proposed method is evaluated by
computer simulation.

Index Terms — Array antenna, near-field source, compressed
sensing, source-location estimation.

1. Introduction

It is important to know the locations of radio sources
or reflection points in mobile communications and radio
sensing. For localization of the near-field sources, a sig-
nal model must be constructed based on the feature that
the incident wave fronts are spherical [1], [2]. In addition,
multiple snapshots of array antenna are generally required
to employ high-resolution algorithms such as MUSIC [2].
On the other hand, it is known that compressed sensing
can estimate the DOA (Direction-Of-Arrival) of radio waves
with one snapshot of array antenna [3]. In this paper, we
introduce compressed sensing into localization of the near-
field sources, and we propose a method to obtain estimates
of angle and distance of each source step by step. By
computer simulation, the estimation performance of the
proposed method is examined.

2. Signal Model

The array configuration is a uniform linear array of K
elements as shown in Fig. 1. In this figure, the element
spacing is d, and the first element of the array is the
phase reference point. We have L near-field sources, and
the position of the lth source (l = 1, 2, · · · , L) is represented
by the distance r1,l from the reference point and the angle θ1,l
at the reference point measured from the broadside direction
of the array. Then, array input vector x(t), mode matrix A0
and mode vector a

(
θ1,l, r1,l

)
of the lth source are expressed

θ1,l rk,l
#k#1

l th source

K#

r1,l
θk,l

Fig. 1. Signal model (uniform linear array of K elements).

as follows:

x(t) = A0s0(t) + n(t) ∈ CK×1 (1)
A0 =

[
a
(
θ1,1, r1,1

)
, · · · , a (

θ1,L, r1,L
)] ∈ CK×L (2)

a
(
θ1,l, r1,l

)
=

[
1,

r1,l

r2,l
exp

(− jτ2,l
)
, · · · , r1,l

rK,l
exp

(− jτK,l
)]T

(3)

rk,l = r1,l

√
1 +

(
kd
r1,l

)2

− 2kd sin θ1,l
r1,l

(4)

τk,l =
2π
λ

(
rk,l − r1,l

)
(k = 1, · · · ,K) (5)

where s0(t) ∈ CL×1 is a signal waveform vector, and n(t) is
an internal noise vector. Also, rk,l is the distance between the
lth source and the kth element, τk,l is the phase difference of
the lth source at the kth element from the reference point,
and λ is wavelength. In this paper, we assume the number
of sources is 1 (L = 1) for simplicity.

3. Principle of Compressed Sensing

(1) Sparse Reconstruction of Input Vector
In compressed sensing, one snapshot of the array input

vector is reconstructed as follows [3]:

x = As + n (6)

where A is an extended mode matrix, s is an extended
signal waveform vector. A and s have forms of A ∈ CK×N1

and s ∈ CN1×1 respectively for angle estimation, and have
forms of A ∈ CK×N2 and s ∈ CN2×1 respectively for
distance estimation. Here, N1 is the number of divisions
(bins) of the estimated angle range, and N2 is the number
of divisions (bins) of the estimated distance range. When
N1,N2 � L, the vector s becomes a sparse vector in which
only L elements are nonzero and the others are zero. When
determining this unknown vector s by compressed sensing,
we normally attach a sparsity condition to the vector s.

(2) FISTA
The problem of obtaining the unknown vector s with a

sparsity condition is expressed as follows [3]:

ŝ = arg min
s

(
1
2
‖As − x‖22 + α‖s‖1

)
(7)

where ‖ · ‖p is lp norm, and α is a constant. In this
paper, α is equal to 1. FISTA (Fast Iterative Shrinkage-
Thresholding Algorithm) [4] is one of compressed sensing
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algorithms solving (7). Specifically, FISTA can be iteratively
represented by the following equations:

sm+1 = S α/P

(
vm+1 − 1

P
AH(Avm+1 − x)

)
(8)

vm+1 = sm +

(
tm − 1
tm+1

)
(sm − sm−1) (9)

tm+1 =
1 +

√
1 + 4t2

m

2
(10)

S α/P(x) =

⎧⎪⎪⎨⎪⎪⎩
( |x|−α/P
|x|

)
x |x| ≥ α/P

0 otherwise
(11)

where sm is the estimated value of s at the mth iteration
and P is Lipschitz constant equal to maximum eigenvalue
of AH A [3].

4. Localization of Near-Field Sources Using Com-
pressed Sensing

In creating the near-field mode matrix A, source distance
information is required for angle estimation, and source
angle information is required for distance estimation. There-
fore, angle and distance of the lth source are estimated by
the following step-by-step procedure.
Step 1: We set the phase reference at the array center
p = (K + 1)/2. Using the far-field mode matrix, the angle
θp,l at the array center is estimated by compressed sensing
with N1 angle bins.
Step 2: The phase reference is changed to the first element,
and the distance r1,l is estimated by compressed sensing
using the near-field mode matrix. In this case, the angle
of the reference element θ1,l is calculated from the angle at
the array center estimated at Step 1, and distance range in
the obtained angle is divided into N2 distance bins.
Step 3: The angle θ1,l is estimated again by compressed
sensing using the near-field mode matrix with the distance
estimated in Step 2.
Step 4: The distance r1,l is estimated again by compressed
sensing using the near-field mode matrix with the angle
estimated in Step 3.

By estimating angle and distance again in Step 3 and
Step 4 respectively, we aim at reducing estimation errors
generated in Step 1 and Step 2.

5. Performance Analysis by Computer Simulation

Computer simulation of near-field source localization is
carried out under the conditions described in Table I. We
examine the change of the estimation accuracy from Step 1
to Step 4 of the proposed method. RMSE (Root Mean
Square Error) is used for evaluation of estimation accuracy.

Figs. 2 and 3 show RMSEs of angle estimate and distance
estimate, respectively, with change of source distance. It is
seen from Fig. 2 that the estimation accuracy of angle in
Step 3 is improved over that in Step 1. This means that the
estimation error caused by using the far-field mode matrix in
Step 1 is reduced in Step 3. In addition, the closer to array
antenna the source is, the larger the error reduction effect
is. For distance estimation, there is no appreciable difference
between Step 2 and Step 4 as found from Fig. 3.

6. Conclusion

We have evaluated the localization performance of near-
field source using the proposed method based on compressed
sensing. As a result of computer simulation, it is shown
that our step-by-step procedure can improve significantly
the estimation accuracy of source angle while the estimation
accuracy of source distance is unchanged. As a future work,
we will try to enhance the estimation accuracy of source
distance.
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TABLE I
Simulation Conditions

Array configuration Uniform linear array
Number of elements 11

Element spacing 0.5λ
Number of sources 1

Source angle 30◦
Source distance 10λ ∼ 40λ

Number of snapshots 1
Number of trials 500

Input SNR 30dB
Division number of angle region 361 (−90◦ ∼ 90◦)

Division number of distance region 44 (7λ ∼ 50λ)
Upper limit of iteration 1000 (angle), 10000 (distance)
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Fig. 2. RMSE of angle estimate vs. source distance.
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Fig. 3. RMSE of distance estimate vs. source distance.
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