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Abstract— Bearing faults are a major source of failure in 
induction motor and early detection of fault becomes 
necessary because of its industrial application. A range of 
analytical methods has been used to detect, identify, and 
diagnose bearing faults, including vibrational analysis. 
Most analyses have used pitting as the fault, whereas in 
industrial environments, scratches are a more common 
problem. The present study investigated such scratches, 
applying two types of fault analysis: fault progression and 
fault orientation. A Support Vector Machine (SVM) 
algorithm was used to classify and diagnose the different 
types of bearing fault. The frequency domain features 
obtained from a fast Fourier transform (FFT) of the load 
current were used to train the SVM algorithm. The 
proposed diagnostic method was tested experimentally 
using induced outer race faults under different load 
conditions. The method was shown to be successful in 
diagnosing faults, suggesting potential applications in real 
industrial settings.   

 
Index Terms— Bearings, fault diagnosis, induction 

motors, orientation, progression of scratches, spectral 
analysis, Support Vector Machine. 

I. INTRODUCTION 

LECTRIC motor plays a role in almost every area of modern 

life, and induction motors are widely used in both domestic 

and industrial applications. They play a central role in a range 

of industries because of their lower power consumption. The 

use of induction motors has therefore been increasing. If faults 

arising in such motors are not identified at an early stage, output 

may be seriously affected. Appropriate monitoring is therefore 

needed to ensure that the motor has a long life and to maintain 

reliability and efficiency.  

A defect in an electric motor is defined as a reduction in the 

capacity to perform a required function. If a defective motor is  

kept in operation for an extended period of time, it will exhibit  
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symptoms including increases in temperature, variation in the 

current harmonics, changes to the electromagnetic field, or 

vibration [1]. Failures in induction motors can be broadly 

divided into electrical and mechanical depending on their 

origin [2]. In the case of induction motors, bearings are the most 

common failure point (44%), followed by stators (26%) and 

rotors (8%) [3]. Faults arising in the bearings therefore play a 

key role in unplanned downtime [4]. They are the logical 

starting point in any attempt to increase reliability [5-7].  

A range of techniques has been developed to predict bearing 

failure in induction motors [8-10]. In most cases, the fault arises 

from surface damage, and failure analysis is performed [11-13]. 

Vibration analysis is the most commonly used technique for 

identifying bearing faults [14-16]. This approach requires 

careful selection and placement of the sensors that record the 

vibration signal, and the introduction of digital signal 

processing has extended its range of applications [17]. Digital 

systems mainly rely on the use of artificial intelligence tools 

such as artificial neural networks [18], fuzzy logic, or expert 

systems [19]. Stator current analysis has also been extended to 

the detection of bearing failure [20-21]. Widely used 

techniques include squared envelope analysis [22], spectral 

kurtosis analysis [23], and the wavelet kurtogram [24], root 

mean square [25] analysis, high-order statistical methods [26], 

and the short impulse method [27]. In most cases, the raw signal 

cannot be used to identify a failure, and features must be 

extracted from time domain or frequency domain analysis. 

Time domain analysis allows processing of both stationary and 

non-stationary signals. Frequency domain analysis has high 

process gain and is less sensitive to noise in the signal. It can 

detect faults only from a stationary signal and cannot be applied 

to non-stationary signals [28].  

In industrial applications, faults in induction motor bearings 

often arise from scratches. Few studies have investigated this 

phenomenon [29], and further research is required. The present 

study addresses scratching as a fault factor and analyzed two 

aspects of bearing failure: scratch progression and scratch 

orientation on the outer raceway of the bearing. The study is the 

first to investigate the frequency components of load current 

using fast Fourier transform (FFT) and to treat these as the main 

feature for analysis. A Support Vector Machine (SVM) 

algorithm, trained on the frequency domain features derived 
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from the FFT, was used to classify and diagnose the different 

types of bearing fault. The diagnosis did not require the rotating 

speed of the induction motor to be considered, making it 

appropriate for industrial environments. The progress of 

bearing faults and the orientation of scratches on the outer 

raceway of the bearing were studied in detail. The effectiveness 

of the proposed fault detection scheme in diagnosing faults at 

the outer race was investigated through experiments under 

different load conditions.  

The rest of the paper is organized as follows. Section II 

describes the experimental setup. Section III briefly reviews the 

types of bearing fault considered in the study and discusses the 

effect of scratching. Sections IV and V introduce FFT analysis 

and feature extraction, respectively. Section VI presents the 

SVM diagnosis, and Section VII presents conclusions and 

proposed future work. Fig. 1 provides a flow analysis of the 

proposed method. 

II. EXPERIMENTAL SETUP OF PROPOSED SYSTEM 

The experimental setup is shown in Fig. 2 (a). The present 

study was carried out by considering powder brake as a 

mechanical load and it was coupled to the induction motor 

through coupling brushes. This powder brake allows the 

rotational speed of the induction motor to be varied. Speeds 

from 1780 to 1765 min−1 were used in the experiments. Under 

these conditions, the instantaneous load current of the stator 

was between 8 and 12 A. The load current was measured using 

current probes (HIOKI 9695-02), and the voltage of the stator 

winding was measured using voltage probes (HIOKI 9666). 

The rotational speed was monitored using a speed indicator 

(ONOSOKKI HT-5500). The output signal from the sensors 

were transferred to a desktop computer (PC) and recorded 

simultaneously using a system (Fig. 2 (b)) developed by the 

authors with the tolerance error of ±2%. The full-scale 

measurement of current and voltages were 20 A and 300 V, 

respectively. The measurement system had seven input 

terminals and seven A/D converters. In the current study, the 

three-phase load currents, three line-to-line voltages, and 

rotational speed were recorded through the seven channels. 

Frequency analysis resolution is normally determined by the 

sampling time, and it is preferable to achieve high frequency 

resolution. The sampling time was therefore set at 

approximately 10 μs, giving a frequency resolution of 0.76 Hz 

and a data recording length of 217 per channel. Data were 

acquired at 30 s intervals, triggered by a timer. Data transfer 

across the seven channels took less than 20 s.  

A three-phase induction motor (2.2 kW, 200 V, 8.5 A, 1740 

min−1, 4 poles) was used in the experiments. The stator winding 

has a double-star configuration. The power source had a 

frequency of 60 Hz. The power supply to the induction motor 

was fed directly from the main system. The bearing failures in 

the outer raceway were artificially introduced. The motor was 

tested under normal operation to provide reference data and 

then retested after bearing failure had been induced. 

Only the U-phase load current of the stator was used in the 

failure analysis, but the phase voltage and load current of the V 

and W phases were recorded for reference. FFT analysis of the  

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Fig. 1.  Flowchart of bearing failure analysis. 

 

 

 

 

 

 

 

 

 

 

 

 
(a) Experimental setup 

 

 

 

 

 

 

 

 

 

 

 
(b) Measurement system 

Fig. 2.  Experimental setup and developed measurement system. 
 

U-phase load current was performed under all bearing 

conditions. 283 fundamental wavelengths were used in FFT. 

III. ARTIFICIAL SCRATCH DEFECTS CHARACTERIZATION 

Two factors were analyzed: progression of a scratch on the 

bearing and the orientation of scratches on the outer raceway. If 

a scratch appearing on a bearing is not detected at an early stage, 

it may increase in size as the motor runs. To simulate this and to 

allow the progression of a fault on the outer raceway of the 

bearing to be analyzed, scratches with lengths of 5, 10, and 15 

mm were induced. The depth and width of the scratches were 
held constant at 0.5 mm. Fault progression in one sample is 

shown in Fig. 3.  

As the direction that a scratch will take on the bearing is 

inherently unpredictable, scratches 10 mm in length were 

induced in four orientations: horizontal, vertical, left, and right. 

These are shown in Fig. 4. In the case of the 5 mm horizontal 

scratch, no change was observed in the performance of the  
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Fig. 3.  Progressive bearing failure prototype (a) horizontal scratch 5 mm 
(b) horizontal scratch 10 mm (c) horizontal scratch 15 mm.  

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4. Distinct orientation of 10 mm scratches (a) horizontal scratch (b) 
vertical scratch (c) right orientation scratch (d) left orientation scratch. 

 

motor, and this was excluded from the orientation analysis. The 

10 mm horizontal scratch produce large signal difference from 

the healthy condition and was selected for the orientation 

analysis.  

The following terminology is used in the paper. H, HS, VS, 

LS, and RS denote the healthy condition, horizontal scratch, 

vertical scratch, left orientation scratch, and right orientation 

scratch conditions, respectively. The code is followed by the 

scratch length in mm. Thus, for example, a 10 mm horizontal 

scratch is denoted HS10. 

IV. LOAD CURRENT FREQUENCY SPECTRUM ANALYSIS 

The load current of the stator is the main component of 

bearing failure detection using the frequency spectrum. In this 

section, we discuss this approach to frequency spectrum 

analysis, its use in analyzing fault progression, and the role of 

orientation in bearing failure.    

A. Spectral Analysis of Scratch Progression 

FFT analysis of the U-phase load current was performed 

under all four bearing conditions. Figs. 5 and 6 compare the 

frequency spectra plotted for H–HS10 and HS5–HS10–HS15, 

respectively, at a rotating speed of 1765 min−1. The amplitude 
on the vertical axis is normalized to a maximum frequency 

spectrum of 0 dB.  

A large amplitude difference can be observed between the 

healthy motor and all the three fault conditions (H–HS5, H–

HS10, and H–HS15). When the faults on the bearings were 

compared (HS5–HS10–HS15), the amplitude difference  

 

 

 

 

 

Fig. 5.  Spectral analysis of H-HS10 at 1765 min-1. 

 

 

 

 

 

 
Fig. 6.  Spectral analysis of HS5-HS10-HS15 at 1765 min-1. 

 

observed was sufficient to differentiate the cases. Amplitude 

differences in the frequency components were clearly visible at 

frequencies of 30, 90, 150, and 180 Hz. At 30 and 90 Hz, 

amplitude changes were observed at all rotating speeds (1780, 

1775, 1770, and 1765 min−1). At 150 and 180 Hz, in contrast, 

no significant amplitude change was observed when the speed 

was varied, under any of the four bearing conditions. 

Frequencies of 30 and 90 Hz were therefore used in the study. 

This allowed differences between the healthy and faulty 

conditions and between different fault conditions to be 

localized.  

When a pit is induced on a bearing, a shock wave with a 

characteristic frequency is generated. The frequency mainly 

depends on the point at which the fault is induced and the level 

of damage. The analysis performed in the present study 

assumed a scratch to be similar to a pit. Characteristic 

frequencies of 30 and 90 Hz were used to detect the bearing 

condition and were used to plot the feature distribution for more 

detailed study.  

B. Spectral Analysis of Distinct Orientation of Bearing 
Failure 

FFT analysis of the U-phase load current was performed for 

all bearing conditions (H, HS10, VS10, RS10, and LS10). 

Frequency spectra were plotted for H–VS10, LS10–RS10, and 

HS10–VS10 at a rotating speed of 1765 min−1, and they are 

shown in Figs. 7 to 9.  

If it is possible to differentiate the healthy motor from the 

four faulty motors, it should also be possible to localize the 

differences among the faulty motors. As with the progression  
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Fig. 7.  Spectral analysis of H-VS10 at 1765 min-1. 

 

 

 

Fig. 8.  Spectral analysis of LS10-RS10 at 1765 min-1. 

 

analysis, amplitude differences were observed at 30 and 90 Hz 

at all rotating speeds. This further confirmed the generation of a 

shock wave pulse, appearance of a characteristic frequency, 

and changes in the load current value of the stator, suggesting a 

relationship between scratching, load current, characteristic 

frequency, and shock wave pulse generation. To establish the 

precise relationship and derive the governing equations, a more 

detailed research will be needed. 

C. Justification for the changes at the 30 and 90 Hz 

Heretofore exploration was done to identify the reason for 

the magnitude changes at the 30 and 90 Hz. Coincidently, 

similar amplitude changes had been observed in the case of 

eccentricity fault. The frequencies monitored for detecting the 

eccentricity fault were 25 and 75 Hz (approximately) with the 

power supply frequency of 50 Hz [30]. Indeed, the analytical 

calculation was performed considering the power supply 

frequency to be 60 Hz, correspondingly the eccentricity fault 

detection frequencies are not observed at 30 and 90 Hz. 

Hence the frequency spectrum of bearing faults was no 

longer in relation with eccentricity fault and imperatively a 

brief study is required to find the reason why the amplitude 

changes are observed at the noticed frequency for all the 

rotating speed. There is a reason for the emergence of 

amplitude changes at the frequencies 30 and 90 Hz. In the case 

of a four-pole induction motor, the synchronous speed Ns is 

1800 min−1. Thus, the motor rotates at 30 revolutions per 

second with an associated frequency of 30 Hz. The 60 Hz 

frequency of the power supply is independent of the 30 and 90 

Hz frequencies. Since the power supply is fed directly from the  

 

 

 

 

Fig. 9.  Spectral analysis of HS10-VS10 at 1765 min-1. 

 

 

 

 

 

 

 
 
Fig. 10.  Spectral analysis of voltage (FFT). 

 

main system, harmonic distortion is likely to appear in the 

voltage. For clarification, horizontal scratch 10 mm bearing 

condition was selected and the spectral analysis (FFT) of 

voltage was accomplished. Fig. 10 clearly discloses the fact that 

no signals are observed at the frequencies 30 and 90 Hz and 

thus they do not affect the bearing failure analysis. The other 

bearing failure conditions also show similar observation (H, 

HS5, HS15, VS10, LS10, and RS10). The rotating speed of the 

induction motor and the two signals (30 and 90 Hz) that appear 

in the frequency spectrum of the stator load current as sideband 

fundamental frequency components play important roles. In the 

present study, for example, the motor rotated at 1765/60 

(revolutions/sec) had a value of 29.41 Hz. At this rotational 

speed, two signals will appear in the spectrum of the load 

current. The frequencies of these signals FB are given as 

follows: 

 

                          FB = FL ± FR                                         (1) 

 

where FL is the frequency of the power supply (60 Hz) and FR is 

the frequency calculated from the rotating speed. Thus, for 

example, rotating speeds of 1780, 1775, 1770, and 1765 min−1 

give values of 29.66, 29.58, 29.50, and 29.41 Hz, respectively. 

At 1765 min−1, the frequencies FB are 30.59 Hz (60−29.41 Hz) 

and 89.41 Hz (60 + 29.41 Hz).  

The frequency of the current spectrum is known to change 

with the rotating speed. However, in the present study, the 

changes in the amplitude of the load current always had 

frequencies of 30 and 90 Hz irrespective of the rotating speed. 

This was an artifact of the low frequency resolution (0.76 Hz) 
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Fig. 11.  Feature distribution of progressive bearing failure analysis at 
1770 min-1. 

 

 

 

Fig. 12.  Feature distribution of progressive bearing failure analysis at 
1765 min-1. 

 

of the measuring equipment and made it impossible to 

discriminate between the changes observed at the frequencies 

of the current spectrum. The 30 and 90 Hz frequency 

components therefore play a significant role in the spectral 

analysis.  

V. FEATURE DISTRIBUTION ANALYSIS 

In feature distribution analysis, the amplitude of 30 and 90 

Hz characteristic frequencies were plotted two-dimensionally 

for the analysis of both fault progression and orientation. 

A. Progressive Bearing Failure 

In both healthy and faulty motors, the contribution of each 

feature was evaluated from the load condition. In this section, 

we discuss four bearing conditions (H, HS5, HS10, and HS15). 

Under each condition, the location distinguishing behavior 

depends on the rotating speed of the motor and the bearing 

conditions. Figs. 11 and 12 show the feature distribution at 

rotating speeds of 1770 and 1765 min−1 for all bearing 

conditions, respectively. Even when overlaps occurred, the 

bearing conditions fell into distinctive classes, allowing them to 

be differentiated. When scratches of similar type with different 

dimensions were analyzed, their location corresponded to their 

class, suggesting that size plays an important role. Conditions 

HS10 and HS15 could be clearly distinguished from the healthy 

motor. In contrast, an overlap between HS5 and the healthy 

motor made it possible to derive only a partial evaluation of the 

condition. The proposed method could identify bearing failure 

while the motor was running. This allows a fault to be identified 

 

 

 

 

 
 
Fig. 13.  Feature distribution of distinct orientation failure analysis at 
1770 min-1. 

 

 

 

 

 

Fig. 14.  Feature distribution of distinct orientation failure analysis at 
1765 min-1. 

 

at any stage in the working life and demonstrates the significant 

role that feature distribution plays in the analysis of progressive 

bearing failure. 

B. Classification of Distinct Orientation 

In this section, we analyze the five bearing conditions (H, 

HS10, VS10, RS10, and LS10). These were again classified 

according to their class of location and distinguishing behavior. 

Figs. 13 and 14 show the feature distribution for all conditions 

at rotating speeds of 1770 and 1765 min−1, respectively. With 

the exception of HS10, the scratches were located adjacently. 

Even when overlaps occurred, it was possible to differentiate 

between scratch types. Scratches of the same size but with 

different orientations showed a distinctive behavior. The 

orientation was shown to play a significant role, allowing the 

orientation to be identified. To fully understand the relationship 

between factors, a more detailed research will be necessary. 

However, the study confirmed that feature distribution plays an 

important role in identifying the orientation of bearing failures. 

VI. PROPOSED METHOD FOR DIAGNOSING BEARING 

FAILURE 

In this section, we introduce the use of SVM for detecting the 

progression and orientation of bearing failures. SVM is a 

pattern recognition method that has been used to classify 

objects into categories [31]. SVM belongs to the group of linear 

classification methods but can also perform non-linear 

classification. This is done using a kernel function, mapping 

high input operators with high dimensional features. SVM  
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Fig. 15.  Accuracy rate function between cost parameter and gamma 

parameter. 

 
TABLE I 

SUPPORT VECTOR MACHINE DESCRIPTION 

 
Type of SVM Soft Margin SVM 

Kernel Radial Basis Function Kernel 

Cost parameter, C 1.0 

Gamma parameter, γ 0.333 

Number of support vectors 8 

Number of classes 2 

 

uses soft margins and hard margins. The SVM type and its 

usage are determined by the linearity condition. This study 

applied non-linear classification so that the soft margin 

matched the prescribed condition. In Soft Margin SVM, cost 

parameter C is introduced, which controls the trade-off between 

maximizing the margin and minimizing the training error. If the 

value of C is lower, it tends to emphasize the margin, ignoring 

the outliers in the training data. Contrarily, larger C value tends 

to overfit the training data. Besides, Radial Basis Function 

kernel is also used commonly as gamma parameter γ and the 

boundary decision is established. Smaller γ value leads to a 

simple decision boundary and vice-versa. Thus, both the cost 

parameter and gamma parameter play a significant role and 

their tuning are accomplished.  

In the present work, initially data were divided into eight 

groups, the first seven of which provided training data. Data 

from group eight were used for evaluation. By alternating the 

groups, seven group diagnosis accuracy rates were obtained, 

and the average was calculated. The process was repeated for 

the different values of C and γ. Fig. 15 shows the 

two-dimensional map plotted against the accuracy rate function 

involving cost parameter C and gamma parameter γ. The higher 

accuracy rate was obtained in the deep blue color portion by 

varying the values of C and γ. TABLE I summarizes the SVM 

specification handled for present study of bearing failure 

diagnosis. Programming was done using R language software. 

A. Diagnosis Scheme 

The SVM-based diagnosis was carried out for two various 

factors, namely, fault progression and orientation, using the 

amplitude of the 30 and 90 Hz characteristic frequency 

components. The accuracy rate was derived as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 16.  Integrated progressive analysis. 

   

     Accuracy rate (%) =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑒𝑑 𝑝𝑟𝑜𝑝𝑒𝑟𝑙𝑦

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑢𝑠𝑒𝑑 𝑓𝑜𝑟 𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑖𝑠
X100   (2) 

 

To mimic an industrial environment, the diagnosis was 

conducted without considering the rotating speed of the 

induction motor. 

B. Diagnosis of Progressive Bearing Failure 

The analysis considered four types of bearing condition. For 

conditions H–HS5, H–HS10, and H–HS15, 320 sets of load 

current data were used. Each dataset had both 30 and 90 Hz 

amplitude frequency components. From the 320 sets, 240 were 

used as training data, and the remaining 80 were used as 

evaluation data. For H–HS5–HS10–HS15, 640 sets of loads 

current data were used, with 480 used as training data and the 

remaining 160 used as evaluation data. Four rotating speeds 

(1780, 1775, 1770, and 1765 min−1) were considered.  

TABLE II shows the accuracy rate when diagnosing 

progressive bearing failure. The accuracy rates for H–HS10 and 

H–HS15 were sufficiently high to be considered acceptable in 

practical applications. In the case of H–HS5, the accuracy rate 

was lower because of a significant overlapping between the 

healthy and faulty conditions (Figs. 11 and 12). The tests 

confirmed that the method can predict bearing failure in a 

running motor. However, it is unsuitable to the detection of 

minor failures.  

In the analysis of H–HS5–HS10–HS15, Fig. 16 plots the four 

bearing conditions feature without considering the rotation 

speed. Significant overlaps were found between the different 

bearing conditions, making the diagnosis process tedious. 

However, the bearing condition was identified with an average 

accuracy rate of 83.13% and the proposed method was effective 

in localizing the difference between four conditions, 

demonstrating its ability to produce a diagnosis, even when 

overlapping was encountered. This is a significant advantage of 

the proposed method, making it suitable for use at different 

speeds and in industrial environments. overlapping was 

encountered. This is a significant advantage of the proposed 

method, making it suitable for use at different speeds and in 
industrial environments. 

C. Diagnosis of Orientation 

The diagnosis of orientation similarly took no account of 

rotational speed. For conditions H–HS10, H–VS10, H–LS10,  
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TABLE II 
SCRATCH PROGRESSION DIAGNOSIS RESULT 

 

Bearing Condition Accuracy Rate (%) 

H-HS5 73.75 

H-HS10 100 

H-HS15 92.5 

H-HS5-HS10-HS15 83.13 

 Average 87.35 

 

 
TABLE III 

DISTINCT ORIENTATION DIAGNOSIS RESULT  
 

Bearing Condition Accuracy Rate (%) 

H-HS10 100 

H-VS10 96.25 

H-LS10 90 

H-RS10 87.5 

H-HS10-VS10-LS10-RS10 74.75 

 Average 89.7 

 

 

 

 

Fig. 17.  Unified distinct orientation analysis. 

 

and H–RS10, 320 sets of load current data were used, each with 
amplitude frequency components of 30 and 90 Hz. Of these, 

240 were used as training data, and the remaining 80 were used 

as evaluation data. In the case of H–HS10–VS10–LS10–RS10, 

800 sets of load current data were obtained, with 600 used as 

training data and the remaining 200 used for evaluation. Four 

rotating speeds (1780, 1775, 1770, and 1765 min−1) were 

considered. 

Fig. 17 plots the five bearing conditions feature, without 

considering the rotation speed. TABLE III shows the accuracy 

rate of H–HS10, H–VS10, H–LS10, H–RS10, and H–HS10–

VS10–LS10–RS10. The average accuracy rate of 89.7% was 

considered acceptable for practical applications. The diagnosis 

rate was again high even when overlapping was encountered. 

Outer raceway scratches in all orientations were diagnosed 

satisfactorily, demonstrating the ability of this approach to 

investigate the orientation of a bearing failure. This suggests 

that the method can be applied in real industrial settings. 

D. Diagnosis Taking Account of the Rotating Speed 

An additional diagnosis was also performed for both fault 

progression and orientation, considering the rotating speed of 

the induction motor. An average accuracy rate of 95% was 

achieved across the four rotating speeds, demonstrating that the 

proposed method can yield satisfactory results when 

considering the rotation speed of the motor. 

VII. CONCLUSION 

The progression and orientation of outer raceway bearing 

scratches were investigated using FFT analysis. Further 

diagnosis was performed using an SVM. To mimic the use of 

motors in industrial environments, the diagnosis was performed 

without considering the rotating speed of the motor. The 

performance of the proposed system was verified in laboratory 

experiments.  

 A horizontal scratch 5 mm in length was partially 

diagnosed, and a full diagnosis was achieved with scratches 10 

mm in length. This demonstrated that the proposed method was 

able to monitor the progression of bearing failures of 10 mm or 

more. Test on the orientation of the fault demonstrated that 

scratches in all orientations could be detected. The proposed 

method was therefore shown to be suitable for industrial 

applications. Detection, diagnosis, and analysis could be 

carried out without taking into account the rotating speed of the 

induction motor.   

The proposed method was shown to have the following 

advantages:  

* The problem of overlapping is largely eliminated.  

* The proposed system can be applied at different speeds. 

* When the rotating speed of the induction motor was taken into 

account, a high level of diagnostic accuracy was obtained.  

  In a future work, we will apply this method to the damaged 

bearing available in the industry. We also intend to test the 

method for converter fed electrical machines and on the other 

types of industrial motor. 
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