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Abstract. We study a Rendezvous problem for 2 autonomous mobile
robots in asynchronous settings with persistent memory called light. It
is well known that Rendezvous is impossible when robots have no lights
in basic common models, even if the system is semi-synchronous. On the
other hand, Rendezvous is possible if robots have lights with a constant
number of colors in several types of lights[9, 21]. In asynchronous settings,
Rendezvous can be solved by robots with 3 colors of lights in non-rigid
movement and with 2 colors of lights in rigid movement, respectively[21],
if robots can use not only own light but also other robot’s light (full-light),
where non-rigid movement means robots may be stopped before reaching
the computed destination but can move a minimum distance δ > 0 and
rigid movement means robots can reach the computed destination. In
semi-synchronous settings, Rendezvous can be solved with 2 colors of
full-lights in non-rigid movement.
In this paper, we show that in asynchronous settings, Rendezvous can be
solved with 2 colors of full-lights in non-rigid movement if robots know
the value of the minimum distance δ. We also show that Rendezvous can
be solved with 2 colors of full-lights in general non-rigid movement if we
consider some reasonable restricted class of asynchronous settings.

1 Introduction

Background and Motivation
The computational issues of autonomous mobile robots have been research

object in distributed computing fields. In particular, a large amount of work
has been dedicated to the research of theoretical models of autonomous mobile
robots [1–3, 6, 12, 15, 18, 19]. In the basic common setting, a robot is modeled
as a point in a two dimensional plane and its capability is quite weak. We
usually assume that robots are oblivious (no memory to record past history),
anonymous and uniform (robots have no IDs and run identical algorithms)[8].



Robots operate in Look-Compute-Move (LCM) cycles in the model. In the Look
operation, robots obtain a snapshot of the environment and they execute the
same algorithm with the snapshot as an input in the Compute operation, and
move towards the computed destination in the Move operation. Repeating these
cycles, all robots perform a given task. It is difficult for these too weak robot
systems to accomplish the task to be completed. Revealing the weakest capability
of robots to attain a given task is one of the most interesting challenges in the
theoretical research of autonomous mobile robots.

The problem considered in this paper is Gathering, which is one of the most
fundamental tasks of autonomous mobile robots. Gathering is the process of n
mobile robots, initially located on arbitrary positions, meeting within finite time
at a location, not known a priori. When there are two robots in this setting, this
task is called Rendezvous. In this paper, we focus on Rendezvous in asynchronous
settings and we reveal the weakest additional assumptions for Rendezvous.

Since Gathering and Rendezvous are simple but essential problems, they have
been intensively studied and a number of possibility and/or impossibility results
have been shown under the different assumptions[1–3, 5–7, 10, 13–18]. The solv-
ability of Gathering and Rendezvous depends on the activation schedule and
the synchronization level. Usually three basic types of schedulers are identified,
the fully synchronous (FSYNC), the semi-synchronous (SSYNC) and the asyn-
chronous (ASYNC). Gathering and Rendezvous are trivially solvable in FSYNC
and the basic model. However, these problems can not be solved in SSYNC
without any additional assumptions [8].

In [4], persistent memory called light has been introduced to reveal relation-
ship between ASYNC and SSYNC and they show asynchronous robots with
lights equipped with a constant number of colors, are strictly more power-
ful than semi-synchronous robots without lights. In order to solve Rendezvous
without any other additional assumptions, robots with lights have been intro-
duced[4, 9, 21]. Table 1 shows results to solve Rendezvous by robots with lights
in each scheduler and movement restriction. In the table, full-light means that
robots can see not only lights of other robots but also their own light, and
external-light and internal-light mean that they can see only lights of other robots
and only own light, respectively. In the movement restriction, Rigid means that
robots can reach the computed destination. In Non-Rigid, robots may be stopped
before reaching the computed destination but move a minimum distance δ > 0.
Non-Rigid(+δ) means it is Non-Rigid and robots know the value δ. The Gath-
ering of robots with lights is discussed in [20].

Our Contribution

In this paper, we consider whether we can solve Rendezvous in ASYNC with
the optimal number of colors of light. In SSYNC, Rendezvous cannot be solved
with one color but can be solved with 2 colors in Non-Rigid and full-light. On the
other hand, Rendezvous in ASYNC can be solved with 3 colors in Non-Rigid and
full-light, with 3 colors in Non-Rigid(+δ) and external-light, or with 12 colors in
Rigid and internal-light, respectively.



Table 1. Rendezvous algorithms by robots with lights.

scheduler movement full-light[21] external-light[9] internal-light[9] no-light[8, 17]

FSYNC Non-Rigid ©

SSYNC
Non-Rigid 2 3 ?

×Rigid ? 6

Non-Rigid(+δ) ? 3

ASYNC
Non-Rigid 3 ? ? ×

Rigid 2 12 ?
Non-Rigid(+δ) ? 3 ?

Back slash indicates that this part has been solved in a weaker condition.
? means this part is not solved.

In this paper we consider Rendezvous algorithms in ASYNC with the optimal
number of colors of light and we show that Rendezvous in ASYNC can be solved
with 2 colors in Rigid and full-light, or in Non-Rigid(+δ) and full-light. We give
a basic Rendezvous algorithm with 2 colors of full-lights (A and B) and it can
solve Rendezvous in ASYNC and Rigid and its variant can also solve Rendezvous
in ASYNC and Non-Rigid(+δ). These two algorithms can behave correctly if the
initial color of each robot is A. However if the initial color of each robot is B,
the algorithm cannot solve Rendezvous in ASYNC and Rigid. It is still open
whether Rendezvous can be solved with 2 colors in ASYNC and Non-Rigid,
however we introduce some restricted class of ASYNC called LC-atomic and we
show that our basic algorithm can solve Rendezvous in this scheduler and Non-
Rigid with arbitrary initial color, where LC-atomic ASYNC means we consider
from the beginning of each Look operation to the end of the corresponding
Compute operation as an atomic one, that is, any robot cannot observe between
the beginning of each Look operation and the end of each Compute one in every
cycle. This is a reasonable sufficient condition Rendezvous is solved with the
optimal number of colors of light in ASYNC and No-Rigid.

2 Model and Preliminaries

We consider a set of n anonymous mobile robots R = {r1, . . . , rn} located in
IR2. Each robot ri has a persistent state `(ri) called light which may be taken
from a finite set of colors L.

We denote by `(ri, t) the color of light the robot ri has at time t and p(ri, t) ∈
IR2 the position occupied by ri at time t represented in some global coordinate
system. Given two points p, q ∈ IR2, dis(p, q) denotes the distance between p and
q.

Each robot ri has its own coordinate system where ri is located at its origin
at any time. These coordinate systems do not necessarily agree with those of
other robots. It means that there is no common unit of distance and no common
knowledge of directions of its coordinates and clockwise orientation (chirality).



At any point of time, a robot can be active or inactive. When a robot ri is
activated, it executes Look-Compute-Move operations:

– Look: The robot ri activates its sensors to obtain a snapshot which consists
of pairs of a light and a position for every robot with respect to its own
coordinate system. We assume robots can observe all other robots(unlimited
visibility).

– Compute: The robot ri executes its algorithm using the snapshot and its
own color of light (if it can be utilized) and returns a destination point desi
by its coordinate system and a light `i ∈ L to which its own color is set.

– Move: The robot ri moves to the computed destination desi. The robot
may be stopped by an adversary before reaching the computed destination.
If stopped before reaching its destination, a robot moves at least a minimum
distance δ > 0. If the distance to the destination is at most δ, the robot
can reach it. In this case, the movement is called Non-Rigid. Otherwise, it
is called Rigid. If the movement is Non-Rigid and robots know the value of
δ, it is called Non-Rigid(+δ).

A scheduler decides which subset of robots is activated for every configura-
tion. The schedulers we consider are asynchronous and semi-synchronous and it
is assumed that schedulers are fair, each robot is activated infinitely often.

– ASYNC: The asynchronous (ASYNC) scheduler, activates the robots inde-
pendently, and the duration of each Compute, Move and between successive
activities is finite and unpredictable. As a result, robots can be seen while
moving and the snapshot and its actual configuration are not the same and
so its computation may be done with the old configuration.

– SSYNC: The semi-synchronous(SSYNC) scheduler activates a subset of all
robots synchronously and their Look-Compute-Move cycles are performed
at the same time. We can assume that activated robots at the same time
obtain the same snapshot and their Compute and Move are executed instan-
taneously. In SSYNC, we can assume that each activation defines discrete
time called round and Look-Compute-Move is performed instantaneously in
one round.

As a special case of SSYNC, if all robots are activated in each round, the
scheduler is called full-synchronous (FSYNC).

In this paper, we consider ASYNC and we assume the followings;
In a Look operation, a snapshot of a time tL is taken and we say that Look

operation is performed at time tL. Each Compute operation of ri is assumed
to be done at an instant time tC and its color of light `i(t) and its destination
desi are assigned to the computed values at the time tC . In a Move operation,
when its movement begins at tB and ends at tE , we say that its movement is
performed during [tB .tE ], its beginning and ending of the movement are denoted
by MoveBEGIN and MoveEND, and its MoveBEGIN and MoveEND occur at tB
and tE , respectively. In the following, Compute, MoveBEGIN and MoveEND are
abbreviated as Comp, MoveB and MoveE , respectively. When some cycle has



no movement (robots change only colors of lights, or their destinations are the
current positions), we can assume the Move operation in this cycle is omitted,
since we can consider the Move operation can be performed just before the next
Look operation.

Also we consider the following restricted classes of ASYNC;

Let a robot execute a cycle. If any other robot cannot execute any Look
operation between the Look operation and the following Compute one in the cy-
cle, its ASYNC is said to be LC-atomic. Thus we can assume that in LC-atomic
ASYNC, Look and Compute operations in every cycle are performed at the same
time. If any other robot cannot execute any Look operation between the MoveB
and the following MoveE , its ASYNC is said to be Move-atomic. In this case
Move operations in all cycles can be considered to be performed instantaneously
and at time tM . In Move-atomic ASYNC, when a robot r observes another robot
r′ performing a Move operation at time tM , r observes the snapshot after the
moving of r′.

In our settings, robots have persistent lights and can change their colors at
an instant time in each Compute operation. We consider the following robot
models according to visibility of lights.

– full-light, the robot can recognize not only colors of lights of other robots
but also its own color of light.

– external-light, the robot can recognize only colors of lights of other robots
but cannot see its own color of light. Note robot can change its own color.

– internal-light, the robot can recognize only its own color of light but cannot
see colors of lights of other robots.

An n-Gathering problem is defined that given n(≥ 2) robots initially placed
in arbitrary positions in IR2, they congregate at a single location which is not
predefined in finite time. In the following, we consider the case that n = 2 and
the 2-Gathering problem is called Rendezvous.

3 Previous Results for Rendezvous

Theorem 1. [8] Rendezvous is deterministically unsolvable in SSYNC even if
chirality is assumed.

If robots have a constant number of colors in their lights, Rendezvous can be
solved shown in Table 1.

It is still an open problem that Rendezvous is solved in ASYNC with 2 colors.
In the following, we will show that Rendezvous is solved in ASYNC and full-light
with 2 colors, if we assume (1) Rigid movement, (2) Non-Rigid movement and
knowledge of the minimum distance δ robots move, (3) LC-atomic. In these cases,
we can construct optimal Rendezvous algorithms with respect to the number of
colors in ASYNC.



4 Asynchronous Rendezvous Algorithms for Robots with
Lights

4.1 Basic Rendezvous Algorithm

In this section, two robots are denoted as r and s. Let t0 be the starting time of
the algorithm.

Given a robot robot, an operation op(∈ {Look,Comp,MoveB ,MoveE}), and
a time t, t+(robot, op) denotes the time robot performs op immediately after t if
there exists such operation, and t−(robot, op) denotes the time robot performs op
immediately before t if there exists such operation. If t is the time the algorithm
terminates, t+(robot, op) is not defined for any op. When robot does not perform
op before t and t−(robot, op) does not exist, t−(robot, op) is defined to be t0.

A time tc is called a cycle start time, if the next performed operations of
both r and s after t are Look ones, or otherwise, the robots performing the
operations neither change their colors of lights nor move. In the latter case, we
can consider that these operations can be performed before tc and the subsequent
Look operation can be performed as the first operation after tc.

Algorithm 1 Rendezvous (scheduler, movement, initial-light)

Parameters: scheduler, movement-restriction, Initial-light
Assumptions: full-light, two colors (A and B)
1: case me.light of
2: A:
3: if other.light =A then
4: me.light← B
5: me.des← the midpoint of me.position and other.position
6: else me.des← other.position
7: B:
8: if other.light = A then
9: me.des← me.position // stay
10: else me.light← A
11: endcase

Algorithm 1 is used as a basic Rendezvous algorithm which has three param-
eters, schedulers, movement restriction and an initial color of light and assumes
full-light and uses two colors A and B.

We will show that Rendezvous(ASYNC, Rigid, A) and Rendezvous(LC-atomic
ASYNC, Non-Rigid, any) solve Rendezvous and some variant of Rendezvous(ASYNC,
Non-Rigid(+δ), A) also solves Rendezvous.

Lemma 1. Assume that time tc is a cycle start time and `(r, tc) = `(s, tc) = B
in Rendezvous(ASYNC, Non-Rigid, any). If dis(p(r, tc)), p(s, tc)) = 0, then two
robots r and s do not move after tc.



Lemma 2. Let robot r perform Look operation at time t in Rendezvous(ASYNC,
Non-Rigid, any). If t−(s, Comp) ≤ t and `(r, t) 6= `(s, t), then there exists
a time t∗(> t) such that r and s succeed in rendezvous at time t∗ by Ren-
dezvous(ASYNC, Non-Rigid, any).

ASYNC and Rigid movement
If Rigid movement is assumed, asynchronous Rendezvous can be done with 2

colors.

Theorem 2. Rendezvous(ASYNC, Rigid, A) solves Rendezvous.

Lemma 3. Rendezvous(LC-atomic ASYNC, Rigid, B) solves Rendezvous.

Since it is easily verified that there is a cycle start time tc(≥ t0) such that
`(r, tc) = `(s, tc) = B in an execution of Rendezvous(Async, Non-Rigid, A), it
cannot solve Rendezvous even if both initial colors of lights are A. In the next
subsection, we will show if ASYNC is restricted to LC-atomic one, Rendezvous
can be solved in Non-Rigid with two colors from any initial colors of lights.

LC-atomic ASYNC and Non-Rigid movement
Let tc be a cycle start time of the algorithm. There are three cases according

to the colors of lights of two robots r and s, (I) `(r, tc) 6= `(s, tc), (II) `(r, tc) =
`(s, tc) = A, and (III) `(r, tc) = `(s, tc) = B

Lemma 4. If `(r, tc) 6= `(s, tc) and the algorithm starts at tc, then there ex-
ists a time t∗(≥ t) such that r and s succeed in rendezvous at time t∗ by
Rendezvous(LC-atomic ASYNC, Non-Rigid, any).

Lemma 5. If `(r, tc) = `(s, tc) = B and the algorithm starts at tc, then there
exists a time t∗(≥ t) such that r and s succeed in rendezvous at time t∗ by
Rendezvous(LC-atomic ASYNC, Non-Rigid, any) or t∗ is a cycle start time and
`(r, t∗) = `(s, t∗) = A.

Lemma 6. If `(r, tc) = `(s, tc) = A and the algorithm starts at tc, then there
exists a time t∗(≥ tc) such that r and s succeed in rendezvous at time t∗ by
Rendezvous(LC-atomic ASYNC, Non-Rigid, any) or t∗ is a cycle start time,
`(r, t∗) = `(s, t∗) = A and dis(p(r, t∗), p(s, t∗)) ≤ dis(p(r, tc), p(s, tc))− 2δ.

Lemmas 3-5 is followed by the next theorem.

Theorem 3. Rendezvous(LC-atomic ASYNC, Non-Rigid, any) solves Rendezvous.

ASYNC and Non-Rigid movement(+δ)
Although it is still open whether asynchronous Rendezvous can not be solved

in Non-rigid with two colors of lights, if we assume Non-Rigid(+δ), we can solve
Rendezvous modifying Rendezvous(ASYNC, Non-Rigid(+δ), A) and using the
minimum moving value δ in it.



Algorithm 2 RendezvousWithDelta (ASYNC, Non-Rigid(+δ), A)

Assumptions: full-light, two colors (A and B)

1: case dis(me.position, other.position)(= DIST ) of
2: DIST > 2δ:
3: if me.light =other.light =B then
4: me.des← the point moving by δ/2 from me.position to other.position
5: else me.light← B
6: 2δ ≥ DIST ≥ δ:
7: if me.light = other.light = A then
8: me.light← B
9: me.des← the midpoint of me.position and other.position
10: else me.light← A
11: δ > DIST : //Rendezvous(ASYNC, Rigid, A)
12: case me.light of
13: A:
14: if other.light =A then
15: me.light← B
16: me.des← the midpoint of me.position and other.position
17: else me.des← other.position
18: B:
19: if other.light = A then me.des← me.position // stay
20: else me.light← A
21: endcase
22: endcase

Let dist0 = dis(p(r, t0), p(s, t0)) and let RendezvousWithDelta (Algorithm 2)
begin with `(r, t0) = `(s, t0) = A. If dist0 > 2δ, both robots do not move until
both colors of lights become B(lines 3-5) and there exists a cycle start time t1(>
t0) such that `(r, t1) = `(s, t1) = B. After `(r, t1) = `(s, t1) = B, the distance be-
tween r and s is reduced by δ/2 without changing the colors of lights(line 4) and
the distance falls in [2δ, δ] and both colors of lights become A at a cycle starting
time t2. After `(r, t2) = `(s, t2) = A, we can use Rendezvous(ASYNC, Rigid, A)
since 2δ ≥ dis(p(r, t2), p(s, t2)) ≥ δ. Therefore, rendezvous is succeeded. Note
that in Algorithm 2, the initial pair of colors of r and s is (`(r, t0), `(s, t0)) =
(A,A) and it is changed into (`(r, t1), `(s, t1)) = (B,B) without changing the
distance of r and s. And it is changed into (`(r, t2), `(s, t2)) = (A,A) when the
distance becomes between δ and 2δ. These mode changes are necessary and our
algorithm does not work correctly, if these mode changes are not incorporated
in the algorithm.

Lemma 7. If dist0 > 2δ, in any execution of RedezvousWithDelta(ASYNC,
Non-Rigid(+δ), A),

(1) there exists a cycle start time t1(> t0) such that `(r, t1) = `(s, t1) = B and
dis(p(r, t1), p(s, t1)) = dist0, and



(2) there exists a cycle start time t2(> t1) such that `(r, t2) = `(s, t2) = A and
2δ ≥ dis(p(r, t2), p(s, t2)) ≥ δ.

Lemma 8. If 2δ ≥ dist0 ≥ δ, then RedezvousWithDelta(ASYNC, Non-Rigid(+δ),
A) solves Rendezvous.

Lemma 9. If dist0 > δ, then RedezvousWithDelta(ASYNC, Non-Rigid(+δ), A)
solves Rendezvous.

Theorem 4. RedezvousWithDelta(ASYNC, Non-Rigid(+δ), A) solves Rendezvous.

5 Concluding Remarks

We have shown that Rendezvous can be solved in ASYNC with the optimal
number of colors of lights if Non-Rigid(+δ) movement is assumed. We have
also shown that Rendezvous can be solved by an L-algorithm in ASYNC and
Non-Rigid with the optimal number of colors of lights if ASYNC is LC-atomic.
Interesting open problems are whether can Rendezvous be solved in ASYNC and
Non-Rigid with 2 colors or not4, and what condition of ASYNC can L-algorithms
be solved in Non-Rigid with 2 colors?
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