
Study of a method of supporting IP routing
for MPTCP by SDN

*

Koki Izumi
Graduate School of Engineering
Nagoya Institute of Technology

Nagoya, Japan
izumi@en.nitech.ac.jp

Yoshihiro Ito
Graduate School of Engineering
Nagoya Institute of Technology

Nagoya, Japan
yoshi@nitech.ac.jp

Abstract—This paper proposed a method of improving QoS
for MPTCP, which is one of the next generation transport layer
protocols. Although MPTCP can realize high speed and stable
communication by using multiple paths simultaneously. Paths
selected by IP are not always appropriate to MPTCP. Thus,
this method supports IP routing for MPTCP using SDN. The
authors implement the method and evaluate its effectiveness by
experiment.

I. INTRODUCTION

In these days, with the diversification of communication
environments, one terminal has been able to use plural access
networks simultaneously. For example, many devices such as
home appliances and tablet PCs often have more than one
network interfaces, such as 4G(LTE) and Wi-Fi.

In order to utilize plural access networks efficiently,
MPTCP(MultiPath TCP)[1] has been standardized as a next
generation transport layer protocol. MPTCP can realize high
speed and stable communication by simultaneously using
multiple paths via plural network interfaces.

Here we should discuss paths used by MPTCP. Each
MPTCP’s path can only select one of existing paths because
MPTCP is a transport layer protocol. A network layer protocol
must play a role in deciding a end-to-end path; thus IP(Internet
Protocol)[2] is responsible for routing. In other words, the path
selection of MPTCP and IP routing operate independently
to each other. Therefore, when MPTCP selects some paths,
MPTCP is not notified what kind of path to select and the
selected paths are not always appropriate to MPTCP.

On the other hand, to solve various problems of the current
IP based architecture including the above problem, some
new generation networking technologies have being studied.
SDN(Software Defined Networking)[3] is one of the tech-
nologies that is drawing attention in the framework of the
new generation network. In SDN, the forwarding process of
packets is separated from the routing process. This can realize
flexible communication by dynamically controlling equipment
that only performs data transfer processing by software.

OpenFlow[4] is an implementation of SDN. The best feature
of OpenFlow is that the control function which defines network

functions is separated from the forwarding function which
performs processes such as packet transfer. Traditionally, in
order to manage a network equipment, network operators
could only control a user interface in a software developed
by a vendor of the equipment. Therefore, it was possible for
nobody except the vendor to define the network requirement
of network function. However, by using OpenFlow, it becomes
possible for any users to program a control function freely.

OpenFlow consists of a controller and switches. A Open-
Flow controller can perform routing based on the route infor-
mation that is notified by OpenFlow switches in real time. For
example, suppression of congestion can be expected by select-
ing routes so that congested routes are avoided. Inevitably, by
utilizing OpenFlow, we can perform routing which is suitable
for MPTCP without changing any IP mechanism.

In this research, we propose a method to support IP for
MPTCP by routing using SDN for the purpose of improving
QoS. Especially, we target QoS of Web service. Moreover,
we implement our method and evaluate its effectiveness by
experiment.

II. PROPOSAL

Web client Web server

OpenFlow switch

path

OpenFlow controller

Fig. 1. An example of simple network

This method utilizes some OpenFlow switches and one
OpenFlow controller between a Web client and a Web server.
A path used by MPTCP diverges according to commands
of the OpenFlow controller. Each OpenFlow switch assign



packets over a MPTCP’s path into diverged paths based on
the traffic amount of them.

Let us explain an outline of our method with a simple net-
work example shown in Fig. 1. In this network, the Web client
and the Web server are connected with each other via some
OpenFlow switches; they communicate to each other with
MPTCP. There are some paths between pairs of OpenFlow
switches. Each OpenFlow switch forwards incoming packets
from/to a port which is determined according to the rules
notified by the OpenFlow controller.

IP routing is assisted by switching among diverged paths
between two OpenFlow switches to improve QoS of MPTCP.
For the QoS improvement, the assignment of packets is
performed so that loads between paths are balanced. To do
this, each OpenFlow switch measures the amount of traffic of
each path. When the amount of traffic of any path exceeds a
threshold value, each switch sends packets to the path whose
amount of traffic is the smallest.

III. EXPERIMENTS

DC

Evaluation
Web client

Evaluation
Web server

Load client1

Load client2

Load server1

Load server2

Network
emulator2

OpenFlow switch

A B

Network
Emulator1

Network
Emulator3

Network
Emulator4

Path1

Path2

Network
Emulator5

Path3Path4

Fig. 2. The structure of the experiment

Our experimental environment is shown in Fig. 2. Specifi-
cation of each machine are shown in Table I through Table
VIII.

TABLE I
SPECIFICATION OF EVALUATION WEB CLIENT

Product Dell Vostro 200
OS Ubuntu 16.04

CPU Intel(R) Core(TM)2 Duo CPU E7200@2.53GHz
memory 2.0GB

Congestion control LIA
Path manager full-mesh

Scheduler round robin

TABLE II
SPECIFICATION OF EVALUATION WEB SERVER

Product Dell Vostro 230
OS Ubuntu 16.04

CPU Pentium(R)Dual-Core CPU E5700@3.00GHz
Memory 3.0GB

Congestion control LIA
Path manager full-mesh

Scheduler round robin

TABLE III
SPECIFICATION OF OPENFLOW CONTROLLER

Product Dell Latitude E6530
OS Ubuntu 16.04

CPU Intel(R)Core(TM)i7-3540M CPU@3.00GHz x4
Memory 4.0GB

TABLE IV
SPECIFICATION OF OPENFLOW SWITCH

Product Raspberry Pi 3 Model B
OS Rasbian Stretch 9.1

CPU ARM Cortex-A53 (1.2GHz)
Memory 1GB

TABLE V
SPECIFICATION OF LOAD CLIENT1

Product Dell Vostro 270s
OS Ubuntu 12.10

CPU Intel(R) Pentium(R) CPU G2030@3.0GHz ʷ 2
Memory 4.0GB

TABLE VI
SPECIFICATION OF LOAD CLIENT2

Product Dell Vostro 270s
OS Ubuntu 12.04 LTS

CPU Intel(R) Core(TM)i3-3240 CPU @3.40GHz ʷ 4
Memory 4.0GB

TABLE VII
SPECIFICATION OF LOAD SERVER1

Product Dell Vostro 270s
OS Ubuntu 12.04 LTS

CPU Intel(R) Core(TM)i3-3240 CPU @3.40GHz ʷ 4
Memory 4.0GB

TABLE VIII
SPECIFICATION OF LOAD SERVER2

Product Dell Vostro 270s
OS Ubuntu 12.04 LTS

CPU Intel(R) Core(TM)i3-3240 CPU @3.40GHz ʷ 4
Memory 4.0GB

Under this environment, we make four paths between the
Web client and the Web server. We refer to them as Path 1,
Path 2, Path 3 and Path 4. MPTCP utilizes all of the four
paths. In this experiment, as the first step of our research, we
only use the proposed method for Path 4. For this reason, we
consider the following two paths as candidates of Path 4.

• A path with load traffic; its round trip time is 0ms
• A path without load traffic; its round trip time is 100ms

We refer to the former and the latter as Path 4-1 and Path 4-2,
respectively. Here we use the three experimental configurations



TABLE IX
COMMUNICATE ENVIRONMENT

Path 1 Path 2 Path 3 Path 4-1 Path 4-2

Env1 delay 0ms 100ms 100ms 100ms 0ms
load O X O X O

Env2 delay 0ms 100ms 100ms 100ms 0ms
load O X X X O

Env3 delay 0ms 100ms 0ms 100ms 0ms
load O X O X O

shown in Table IX. These paths are composed of four network
emulators(network emulator 1 through network emulator 4),
which also works as a router. We use RaspberryPi3 and ryu[5]
as OpenFlow switch and OpenFlow controller respectively. In
order to eliminate an impact of controll traffic on experimental
result, the OpenFlow controller and the each OpenFlow switch
are connected on the network independent of the data transfer
network. The load clients communicate with the corresponding
load servers and generate Web traffic for load. In addition, we
use four network emulators with function of router to generate
delay on each path. Moreover, we use another network emula-
tor on Path 4 to generate different delay between Path 4-1 and
path 4-2. We use Dummynet[6] as a network emulator. We
show the specification of the network emulators are shown in
Table X through TableXIV.

TABLE X
SPECIFICATION OF NETWORK EMULATOR 1

Product XCY J1800
OS FreeBSD 11.1 RELEASE

CPU Intel(R) Celeron(R) CPU 1037U@1.80GHz
Memory 2.6GB

TABLE XI
SPECIFICATION OF NETWORK EMULATOR 2

Product XCY 1037U
OS FreeBSD 11.1 RELEASE

CPU Intel(R) Celeron(R) CPU J1800@2.41GHz
Memory 3.0GB

TABLE XII
SPECIFICATION OF NETWORK EMULATOR 3

Product Dell Vostro 220s
OS FreeBSD 11.1 RELEASE

CPU Intel(R) Core(TM)2 Duo CPU E7200@2.53GHz
Memory 2.6GB

TABLE XIII
SPECIFICATION OF NETWORK EMULATOR 4

Product Dell Vostro 220s
OS FreeBSD 9.2 RELEASE

CPU Intel(R) Core(TM)2 Duo CPU E7500@2.93GHz
Memory 4.0GB

TABLE XIV
SPECIFICATION OF NETWORK EMULATOR 5

Product XCY 1037U
OS FreeBSD 11.1 RELEASE

CPU Intel(R) Celeron(R) CPU J1800@2.41GHz
Memory 3.0GB

We consider the mean throughput as QoS parameters. We
compare results of the proposed method with those which treat
either the Path 4-1 or Path 4-2 as Path 4.

IV. RESULTS

Environment1 Environment2 Environment3

m
ea

n 
of

 th
ro

ug
hp

ut
(K

by
te

s/
se

c)

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0
7.5
8.0
8.5

4−1
4−2
Proposal

Fig. 3. Mean of throughput

Our experimental results are shown in Fig. 3. This shows
the 95% confidence interval obtained by the t-test with the
significance level 5%.

Figure 3 indicates that the mean throughput is improved by
using the proposed method in all environments. Consequently,
we confirm that by using the proposed method in Path 4, the
load balancing using Path 4-1 and Path 4-2 was appropriately
performed, and then the load of the Path 4 was suppressed.
From the above results, we indicate that QoS was improved
by applying our method in MPTCP communication under this
environment. Therefore, we could confirm the effectiveness of
our method.

V. CONCLUSIONS

In this research, we proposed a method for assisting IP
routing for MPTCP by using SDN. We target Web services
and implemented it. From the experimental results, the effec-
tiveness of this method was confirmed.

ACKNOWLEDGMENT

This work was supported by MEXT KAKENHI Grant
Number JP 16K00122.

REFERENCES

[1] A. Ford et al.,RFC6824,Jan. 2013.
[2] J. Postel. Internet Protocol. RFC 791 (INTERNET STANDARD),

September 1981. Updated by RFCs 1349, 2474, 6864.
[3] https://www.opennetworking.org/sdn-resources/sdn-definition
[4] https://www.opennetworking.org/sdn-resources/openflow
[5] ʠ ryu ʡ. https://osrg.github.io/ryu/.
[6] ʠ Dummynet ʡ. http://info.iet.unipi.it/ luigi/dummynet/.


