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Abstract— This paper presents a novel command shaping
approach which aims at suppressing scattered responses due to
rolling friction, for the fast and precise sequential positioning
control with micrometer-stroke. The concept of the proposed
command shaping is to prevent an overshoot response which
leads to the scattered responses, considering the complicated
and nonlinear rolling friction behavior. The command shaping
filter design presented in this study is friction-model-free and
is based on the constrained optimization framework. The
effectiveness of the proposed approach is demonstrated through
experiments for a laboratory table positioning system.

I. INTRODUCTION

Industrial mechatronic systems such as electronics
manufacturing machines are subjected to friction forces,
e.g., rolling friction generated at linear guides and bearings
with rolling elements, which deteriorate fast-response and
high-precision positioning performance [1], [2]. In recent
years, for demands of higher density in processing objects,
the positioning stroke is getting shorter (micrometer-stroke),
and the micrometer-stroke point-to-point motion is sequen-
tially and repetitively performed (so-called “inching motion”)
[3]. However, the rolling friction generally shows nonlinear
elastic behavior in the micrometer-stroke motion, which
causes scattered position responses among the sequential
positioning trials. Hence, effective friction compensation
techniques are required for the fine micrometer-stroke
sequential motion.

In the research fields on friction compensation, most
of friction compensation techniques are the friction-model-
based approach such as model-based feedforward (FF)
friction compensation in combination with linear feedback
(FB) control strategies (e.g., PID and disturbance observer)
[4], [5], [6], because of the fine compensation performance
for the rolling friction behavior. A precise friction model is
indispensable in order to acquire ideal friction cancellation,
while complicated-structure friction models and/or friction
compensation algorithms are necessary, which may lead
to increase of labor on the compensation design and
computation loads on on-line calculation [1], [7].

On the other hand, the friction-model-free approach such
as learning control [2], [8], disturbance observer [4], sliding
mode control [9], etc., compensates for the nonlinear friction
phenomena without information of friction. However, the
friction compensation ability is restricted by instability of
the control system and is deteriorated in comparison to the
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Fig. 1. Linear motor-driven table as laboratory prototype.

precise-friction-model-based FF approach. Hence, it is better
to use the friction-model-free approach in combination with
the friction-model-based FF approach [1].

This paper presents a novel friction-model-free position
command shaping approach for suppressing the scattered
responses in the fast and precise micrometer-stroke position-
ing motion, which has never been examined in literature.
The proposed approach generates a position trajectory
reference aiming at suppressing an overshoot response in
each positioning trial through a command shaping filter. The
command shaping filter is designed based on constrained
optimization, with consideration of rolling friction properties
in macro- and micro-displacement regions (friction-model-
free). The proposed command shaping approach does not
affect to stability of position control systems applied and
can be used with the conventional friction-model-based
and/or friction-model-free friction compensation approaches.
The effectiveness of the proposed approach is verified in
combination of the friction-model-based FF compensation
and the PID linear FB control, through experiments using a
laboratory linear motor-driven table positioning device.

II. SERVO SYSTEM WITH ROLLING FRICTION

A. Linear motor-driven table

Fig. 1 shows the exterior of the prototype table positioning
system for electronics manufacturing machines, machine
tools, etc. A moving table on a machine stand is driven by
an AC linear motor along rolling-ball linear guides, where
rolling friction is generated. A mass load is mounted on
the table through a flexible beam and has a resonant mode
of about 81 Hz. On the other hand, the machine stand
supported by six leveling bolts on the floor also causes
resonant vibration of about 38 Hz. A linear encoder along the
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Fig. 2. Test pattern of sequential positioning motion.
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Fig. 3. Bode plots of table position for motor thrust reference.

guides detects the table position, and the detected position is
controlled in a full-closed position control manner through
a DSP (SDS, PCI-DSP46713, sampling time of 500 µs) and
an AC servo amplifier (Sanyo Denki, PY0, current control
bandwidth of about 750 Hz).

B. Target control specification

The sequential positioning motion (inching motion) shown
in Fig. 2 is evaluated in this study, with consideration of
a typical motion pattern in industry. Each point-to-point
positioning motion is performed with stroke of Yr = 20 µm
and the interval time of 0.5 s. The actual position should
follow to the target position with the accuracy of ±2 µm by
the settling time of 35 ms in each positioning trial.

C. Frequency response characteristic

Dark solid lines in Fig. 3 indicate an experimental Bode
plot of the detected table position y for the motor thrust
reference u as control input. There are two resonant modes
at 38 Hz and 81 Hz owing to the flexible mass load and the
machine stand. In addition, the current control system and
low-pass filters in the servo amplifiers address a phase delay
property as shown in the high frequency range.

A linear plant model P (s) = y(s)/u(s) can be defined by

P (s) = Cd(s) ·Kt

(
k0
s2

+

2∑
i=1

ki
s2 + 2ζiωis+ ωis2

)
, (1)

where Cd(s) is the phase delay model, Kt is the motor
thrust constant, ωi is the natural angular frequency of the
i-th vibration mode, ζi is the damping coefficient, and ki is
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Fig. 4. Rolling friction characteristics.
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Fig. 5. Rolling friction characteristics.

the vibration mode gain, respectively. Dark broken lines in
Fig. 3 depict a Bode plot of P (s). Note that model errors
at the low frequencies less than 20 Hz are the influence of
the nonlinear friction, which can be modeled by introducing
a precise friction model (see [1], [7] for details).

D. Rolling friction characteristic

Figs. 4 and 5 show rolling friction characteristics of the
experimental device. From Fig. 4, the rolling friction reveals
the nonlinear elastic property in the micro-displacement
region (so called ”pre-rolling region”), and the pre-rolling
region is about 100 µm. On the other hand, as indicated by
a dark solid line in Fig. 5 which includes several internal
loops, the elastic friction property suddenly varies when the
friction trajectory in an internal loop returns to the outer loop.
That is, the rolling friction behaves depending on history of
the past position trajectory (so-called “history dependency”
or “memory characteristic”) [1], [3], [4].

For analysis and compensation of the rolling friction
during the fine positioning motion, a multi-structure rolling
friction model [7] (“RFM” in the following) shown in Fig.
6 is introduced in this study. In Fig. 6, froll is the rolling
friction force as output, x is the position corresponding to
y as input, fj(j = 1, . . . ,M) is the element force, xj is
the element position, Fmj is the maximum element force,
Kj is the element elastic coefficient, and Dj is the element
viscous coefficient, respectively. froll is calculated as (2), by
summing all the elementary models’ outputs.

froll =

M∑
j=1

fj (2)
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Fig. 6. Conceptual diagram of rolling friction model.

The parameters Kj , Dj , and Fmj are identified through Back
Propagation algorithm with M = 10, by giving experimental
data such as Figs. 4 and 5 to the algorithm as teaching data
(see [7] for more detail).

Dark broken line in Fig. 5 indicates the history dependency
of RFM, which well-reproduces the actual rolling friction.

III. SCATTERED RESPONSES IN SEQUENTIAL
POSITIONING MOTION

A. Position control system using friction-model-based FF
friction compensation and linear FB compensation

Fig. 7 shows a block diagram of a two-degree-of-freedom
(2DoF) table position control system, where Fcs(z) is the
command shaping filter based on the deadbeat FF control
framework [10], Pff (z) is the discrete plant model of
(1), Cd(z) is the phase delay compensator as the discrete
model of Cd(s) in (1), Cfb(z) is the PID-type linear FB
controller, rc is the position command with amplitude of
Yc (step signal), rt is the target position trajectory, uff is
the FF motor thrust reference, and froll is the FF friction
compensation force generated by RFM, respectively.

Cfb(z) is designed so that the FB control system possess
a higher control bandwidth as much as possible (gain-cross
frequency is about 60 Hz) under the specified stability
margins (gain margin of 5 dB and phase margin of
30 deg). The RFM-based FF friction compensation performs
delay-free compensation by using the position trajectory
Fcs(z)rc(z) as input to RFM, aiming at friction cancellation
during the positioning motion.

B. Design method of conventional command shaping filter

Fig. 8 shows a block diagram of the FF control system
in Fig. 7 for the design of the command shaping filter
Fcs(z). Note that if the plant model Pff (z) for the design
of Fcs(z) reproduces the actual plant P (z), rt(s) = y(s)
can be realized. Hence, P (z) = Pff (z) = NP (z)/DP (z)
is assumed in the following design. The transfer function of
Fcs(z) is formulated by (3), as an N -th order FIR filter with
a free parameter vector ρ ∈ RN+1:

Fcs(z) =
Ncs(z)

zN
=

[zN · · · z 1]ρ

zN
, (3)

ρ = [ρN · · · ρ1 ρ0]
T .

In order to achieve the point-to-point positioning motion with
the specified settling time, ρ is designed in consideration of
the following two equality constraints.

Cfb(z)

uff

+

u Plant
y

Cd(z)
+ +

+

rt
Fcs(z) Pff (z)

rc
+
−

RFM
froll

Fig. 7. Block diagram of position control system with command shaping
filter.
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Fig. 8. Block diagram of FF control system.

a) Pole-zero cancellation: the transfer characteristic
rt(s)/rc(s) in Fig. 8 is expressed as

rt(z)

rc(z)
= Pff (z)Fcs(z) =

NP (z)

DP (z)

Ncs(z)

zN
. (4)

In order to settle rt to rc (step signal) by N+1 steps, Ncs(z)
has to include all roots λl (l = 1, 2, . . . , Nλ) of DP (z). The
mathematical expression is given by

Ncs(λl) = ρNλN
l + · · ·+ ρ1λl + ρ0

= [λN
l · · · λl 1]ρ = 0. (5)

Thus, the equality constraint is defined as

Θaρ = Γa, (6)

where Θa ∈ CNλ×(N+1) and Γa ∈ RNλ are given by

Θa =


λN
1 · · · λ1 1

λN
2 · · · λ2 1
...

...
...

...
λN
Nλ

· · · λNλ
1

 , Γa = [0 · · · 0 0]
T
.

b) Final-value theorem: The final-value of rt for the step
position command rc is expressed as follows:

rt(∞) = lim
z→1

(1− z−1)
NP (z)

DP (z)

Ncs(z)

zN
r(z)

=
NP (1)

DP (1)

Ncs(1)

1
. (7)

In order to ensure the final-value theorem, i.e., rt(∞) = 1,
the following condition should be satisfied.

Ncs(1) = ρN+ · · ·+ρ1+ρ0 = [1 · · · 1 1]ρ =
DP (1)

NP (1)
(8)

Therefore, the equality constraint is expressed as

Θbρ = Γb, (9)

where Θb ∈ R1×(N+1) and Γb ∈ R are given by

Θb = [1 · · · 1 1], Γb =
DP (1)

NP (1)
.

On the other hand, an objective function Jconv which
considers differential of the FF control input uff is defined
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Fig. 9. Comparisons of position trajectory reference rt and FF thrust uff .
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Fig. 10. Experimental results of conventional command shaping approach.

by (10), in order to generate the smooth trajectory rt:

Jconv =

N∑
k=0

(uff [k]− uff [k − 1])
2
=

N∑
k=0

ρ2k = ρTρ, (10)

where uff [−1] = 0. Note that the position stroke Yr of rc
is assumed as Yr = 1 in the objective function design.

Finally, the conventional command shaping filter is
designed based on the following constrained optimization.

min
ρ

Jconv (11)

s.t. Θaρ = Γa, Θbρ = Γb

Optimization of (11) is performed according to the Lagrange
multiplier method (see [10] for more detail).

C. Design of conventional command shaping filter

The conventional command shaping filter is designed with
N = 70 in consideration of the target settling time of 35(=
70Ts) ms. On the other hand, Pff (z) for the design of Fcs(z)
is assigned as the discrete-time plant model of (1).

Thin lines in Fig. 9 show response waveforms of rt and
uff . The shaped position trajectory rt smoothly settles to
Yr = 20 µm by 35 ms.

D. Scattered responses and simulation analysis

Fig. 10 shows experimental response waveforms of the
table position y in the sequential positioning motion as Fig.
2, where five response waveforms to positive direction are
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Fig. 11. Comparisons of estimated friction for table position.
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Fig. 12. Simulation results of table position and rolling friction under
different overshoot displacement situations.

indicated. From the figure, the position responses implicitly
scatter during the transient as well as at the settling region,
which deteriorate the target settling accuracy of ±2 µm.

In order to examine the friction behavior during the
sequential motion, Lissajous waveforms of the friction force
for y are indicated in Fig. 11, where a solid line is calculated
by using the estimated friction force f̂ (by an off-line
disturbance observer) and a broken line is calculated by using
the FF friction compensation force froll, respectively. From
the figure, f̂ and froll behave similar in each positioning trial
and increase gradually by proceeding the positioning trial,
since the rolling friction behaves mainly in the pre-rolling
region in the micrometer-stroke motion [3]. However, the
actual friction forces (i.e., f̂ ) at the settling region (around
vertical dotted lines) decrease after the overshoot responses,
and start from different friction forces in comparison with
froll, which occurs remarkable friction compensation errors.
The reference [7] has clarified that the friction decrease
owns to the nonlinear elasticity of the rolling friction. Fig.
12 shows example simulation results of y and froll by
intentionally giving the initial friction errors due to the
overshoot xos in the previous positioning trial. The initial
friction errors cause the scattered responses in y during the
transient, as same as the experimental results of Fig. 10.

In the conventional studies on the friction compensa-
tion, advanced friction-model-based and friction-model-free
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friction compensation approaches are mainly presented,
i.e., initial friction compensation [3], [7], combination of
friction-model-based FF and linear FB [4], [5], [6], and
nonlinear FB. In this study, a novel command shaping
approach is examined in consideration of the rolling friction
behavior in the sequential positioning motion.

IV. PROPOSED COMMAND SHAPING APPROACH
CONSIDERING ROLLING FRICTION

A. Command Shaping Strategy

Fig. 13 shows conceptual time-series waveforms of the
position trajectory rt(= y) in the conventional and proposed
command shaping approaches. The points of the proposed
approach for preventing the overshoot response which causes
the scattered responses are summarized as follows:

• The trajectory reference rt is restricted to within Yr −
Ys < rt < Yr during the specified time period of t =
(N − Ns)Ts ∼ (N − 1)Ts (“slow settling period” in
the following), and settles to the target position of Yr

at t = NTs.
• The position trajectory reference rt smoothly changes,

specifically around the slow settling period.
By applying the shaped trajectory reference rt to the position
control system, the influence of the friction compensation
errors and the other modeling errors is expected to be
converged during the slow settling period while suppressing
the overshoot response.

B. Design method of proposed command shaping filter

The proposed command shaping filter is designed based on
constrained optimization in consideration of the conceptual
position trajectory shown in Fig. 13.
• Inequality constraints for slow settling period: in order to
restrict rt during the slow settling period, the proposed
method imposes the following inequality constraints to the
design of Fcs(z).

Yr − Ys < rt[k] < Yr (12)
(k = N −Ns, . . . , N − 2, N − 1)

Here, the shaped trajectory reference vector Rt ∈ RN+1 is
defined by (13) as a function of ρ.

Rt(ρ) = [rt[0] rt[1] · · · rt[N ]]
T
= ΩpRcρ, (13)

where Ωp ∈ R(N+1)×(N+1) and Rc ∈ R(N+1)×(N+1) are
defined as follows:

Ωp =


Dp 0 · · · 0

CpBp Dp · · · 0
...

...
. . .

...
CpA

N−1
p Bp CpA

N−2
p Bp · · · Dp

 ,

Rc = Yr


1 0 · · · 0
1 1 · · · 0
...

...
. . .

...
1 1 · · · 1

 .

By applying Schur complement, (12) can be transformed to
the following LMI.

Θk(ρ) =

[
Σ̄ EkY (ρ)− Σ0

(EkY (ρ))T − Σ0 Σ̄

]
> 0, (14)

where Ek ∈ R1×(N+1), Σ̄ ∈ R, and Σ0 ∈ R are given by

El = [ 0 · · · 0 1︸ ︷︷ ︸
k

0 · · · 0 ],

Σ̄ =
Xs

2
, Σ0 =

2Xr −Xs

2
.

• Smoothing of settling trajectory: a new objective function
Jprop which aims at smoothing the shaped trajectory rt in
the slow settling period is newly introduced as

Jprop =

N∑
k=0

{wk (uff [k]− uff [k − 1])}2 =

N∑
k=0

(wkρk)
2

= ρTW T
s Wsρ, (15)

where uff [−1] = 0, and Ws ∈ R(N+1)×(N+1) is given by

Ws = diag(w0, w1, · · · , wN ), wk =
Kw

N
k + 1.

Therefore, by applying Kw(> 0) to satisfy wk−1 > wk, the
smoothed trajectory reference rt[k] is generated around the
slow settling period.

Finally, the proposed command shaping filter is designed
by solving the following constrained optimization.

min
ρ

Jprop (16)

s.t. Θaρ = Γa,Θbρ = Γb,Θk(ρ) > 0

Since all the functions in (15) are expressed as Affine
functions with respect to ρ, (15) can be solved as a convex
optimization problem based on the LMI technique.

C. Design of command shaping filter

In the proposed command shaping filter design, N , Ns,
and Ys are respectively set as N = 130, Ns = 60, and
Ys = 1.5 µm so that rt almost settles to Yr by the settling
time of 35(= (N −Ns)Ts = 70Ts) ms. On the other hand,
Kw is assigned as Kw = 0.1 in order to generate smooth
rt around the slow settling period. Although there are some
additional parameters to the conventional approach, it is easy
to set them.
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Fig. 14. Experimental results of proposed command shaping approach.

Bold lines in Fig. 9 indicate rt and uff generated by
the proposed command shaping filter. The shaped trajectory
rt is smoothed and has a margin to the target position of
Yr = 20 µm in the slow settling period for suppressing
the overshoot response. However, as a contradiction of the
objective function of (15) and the inequality constraints
of (14), the initial thrust in uff is larger than the one
of the conventional approach indicated by the thin line.
Further improved filter design will be examined as the future
challenges.

V. EXPERIMENTAL EVALUATIONS

The sequential micrometer-stroke positioning motion is
conducted by using the proposed command shaping filter.
Note that the RFM for compensation as well as the FB
controller Cfb(z) are the same as of the experiments with
the conventional command shaping filter in III-D.

Fig. 14 shows five experimental waveforms of y, while
Fig. 15 shows the comparative position dispersion (3σ).
From the figures, the proposed approach successfully reduces
the maximum dispersion from 1.02 µm of the conventional
approach to 0.56 µm (−45 %), and the target settling
accuracy of ±2 µm is satisfied only by shaping the position
trajectory reference.

Table I lists the maximum overshoot displacement and its
dispersion in the five-time positioning trials shown in Figs.
10 and 14. The proposed approach suppresses not only the
maximum overshoot displacement but also the dispersion,
which prevents the scattered responses, and the effectiveness
of the proposed command shaping strategy presented in IV-A
is verified.

VI. CONCLUSION

A novel command shaping approach for suppressing the
scattered responses has been presented, and the effectiveness
has been demonstrated through experiments using the linear
motor-driven table system. The proposed command shaping
is a friction-model-free scheme and can be combined with
the conventional linear FB control strategies, friction-model-
based FF friction compensation approaches, etc, which are
highly suitable for industrial applications.

As the future challenges, further improved command
shaping approaches such as infinite-impulse-response (IIR)-
type command shaping filter design, optimal command
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TABLE I
MAXIMUM OVERSHOOT DISPLACEMENT AND ITS DISPERSION.

unit: µm

approach
max. overshoot displacement

avg. dispersion1st 2nd 3rd 4th 5th
conventional 1.5 0.4 0.7 0.7 0.8 0.82 1.10

proposed 0.8 0.5 0.4 0.6 0.5 0.56 0.41

shaping considering the FB control property, learning-based
command shaping, etc., will be studied on the basis of the
overshoot suppression strategy presented in this paper.
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