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Abstract—This paper presents an efficient hybrid optimization
method to design a high-performance cascade structure feedback
(FB) controller for a mechatronic system with resonant vibration
modes. The proposed method combines sequential quadratic
programming and a genetic algorithm (GA) in order to obtain
the parameters of the cascade structure FB controller. The
proposed method makes it possible to obtain a wide-bandwidth
FB controller that satisfies the specified stability margins and
sensitibity function gains for resonant modes in a short design
time. This paper describes the hybrid optimization method and
design procedure for the cascade structure FB controller in detail.
In addition, it shows how the effectiveness of the proposed method
was evaluated through frequency-domain simulations using a
laboratory galvano scanner, in comparison with the conventional
GA-based optimization method.

I. INTRODUCTION

The design of a wide-bandwidth feedback (FB) controller
is one of the important indices for the fast-response and high-
precision motion control of mechatronic systems. In particular,
for plant systems that include high-order resonant vibration
modes, it is well-known that designing a fine FB controller
is a difficult and complicated problem [1], [2]. Although
gain/phase stabilization [3] is a highly effective approach
to expand the control bandwidth, the design procedure
is still complex, and great skill is required of industrial
engineers. In the gain/phase stabilization approach, the FB
controller is generally defined as a cascade structure controller
connecting a PID (or phase lead/lag) compensator and some
resonant mode compensators in series, where each structural
compensator has parameters that need to be designed [3], [4].

In recent years, numerical optimization-based FB controller
design approaches such as convex optimization (LMIs)
[4]−[7] and nonlinear programming [8], [9] have aggressively
been studied in the related research fields in order to obtain
a wide-bandwidth FB controller with less labor. However,
since the parameters have nonlinear relationships with each
other in a cascade structure controller, which generaly makes

it difficult to find global optimum parameters, a numerical
optimization-based approach can only be used to design
specific parameters for a portion of the controller. Therefore,
the other parameters need to be manually given in advance [5],
[8], which becomes another complex problem in the controller
design. Although meta-heuristic optimization methods such as
a genetic algorithm (GA) are promising approaches to directly
design all of the parameters, it is well-known that the searching
time tends to be long when the design problem is difficult.

This paper presents a hybrid optimization method [10] that
combines sequential quadratic programing (SQP) and a GA in
order to efficiently design a wide-bandwidth cascade structure
FB controller for a resonant system. In the proposed method,
the SQP-based optimization efficiently obtains parameters for
the numerator of a PID compensator, based on a constrained
optimization problem, which pursues the control bandwidth
and ensures the specified system stability (gain and phase
margins) and sensitivity function gains for the resonant modes.
On the other hand, the GA-based optimization achieves the
other parameters in the PID and resonant mode compensators.
By applying the proposed method, a wide-bandwidth FB
controller for a resonant system can be designed in a short
time, compared with the conventional GA-based optimization
method. The effectiveness of the proposed method was verified
through frequency-domain simulations of a laboratory galvano
scanner as an example resonant system.

II. DESIGN PROBLEM

The design of a single-input-single-output FB controller for
the typical FB control system shown in Fig. 1 was considered
in this study. In the FB control system, C(s) is the FB
controller, P (s) is the plant, r is the reference for the system
input, y is the control output as the system output, and u is the
control input. C(s) is defined as a cascade structure controller
as follows, by connecting a PID compensator CPID(s) and
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Fig. 1. Block diagram of FB control system.

NR-pieces second-order resonant mode compensators CRi(s)
in series (NR ∈ N):

C(s) = CPID(s)

NR∏
i=1

CRi(s), (1)

CPID(s) = KP +
KI

s
+

KDs

TDs+ 1
, (2)

CRi(s) =
s2 + 2ζRniωRis+ ω2

Ri

s2 + 2ζRdiωRis+ ω2
Ri

. (3)

The aim of CRi(s) is to stabilize the resonant modes in P (s)
and sufficiently attenuate the vibratory responses, and it is
well-known that the gain/phase stabilization approach [3], [4]
can effectively expand the control bandwidth.

The design problem of C(s) is to obtain all of the
controller parameters defined by (4) that can expand the
control bandwidth as much as possible while satisfying the
specified gain margin of gm dB and phase margin of ϕm deg.

ηC = {KP ,KI ,KD, TD, ωR1, ζRn1, ζRd1,

. . . , ωRNR
, ζRnNR

, ζRdNR
} ∈ R (4)

III. HYBRID OPTIMIZATION METHOD

A. Reformulation of FB Controller

In order to design ηC using the hybrid optimization method,
CPID(s) of (2) is reformulated as (5) with undetermined PID
parameter vector ρPID ∈ R3×1.

CPID(s) = ΨPID(s)ρPID (5)

ΨPID(s) =

[
1

1

s

s

TDs+ 1

]
ρPID =

[
KP KI KD

]T
By using (5), (1) can be expressed as follows:

C(s) =

NR∏
i=1

CRi(s)ΨPID(s)ρPID = ΨC(s)ρPID. (6)

Note that C(s) becomes an affine function for ρPID.
Therefore, ηC to be designed can be expressed as (7), by
separating it into the PID parameters ηPID and the other
parameters ηoth.

ηC = {ηPID, ηoth}, (7)
ηPID = {KP ,KI ,KD},
ηoth = {TD, ωR1, ζRn1, ζRd1, . . . , ωRNR

, ζRnNR
, ζRdNR

}
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Fig. 2. Flowchart of hybrid optimization method using SQP and GA.

B. Design Procedure

A flowchart for the proposed hybrid optimization-based FB
controller design method is shown in Fig. 2. The proposed
method combines two optimization algorithms (SQP and GA)
to obtain the parameters for the cascade structure FB controller
such as (1). The SQP-based optimization obtains the PID
parameters ηPID using the SQP’s efficient searching ability.
On the other hand, the GA-based optimization finds the other
parameters ηoth, which cannot be directly handled by convex
optimization or easily solved by nonlinear programming
methods [5]−[7], using the meta-heuristic approach [10]. The
detailed design procedure is as follows.

• Step 1: The GA randomly generates the initial population
of ηoth (a population has Nind individuals) as the first
generation (igen = 1).

• Step 2: Appropriate PID parameters ηPID (ρPID) for
Nind candidates of ηoth are obtained by the SQP-based
optimization, which minimizes the objective function
JSQP under the specified constraints. The fitness scores
fSQP of the SQP are transferred to step 3.

• Step 3: All of the fitness scores fSQP are evaluated in
the GA, and the elite parameters ηPID and ηoth of the
elite individual are obtained.

• Step 4: If generation igen is less than the specified
number Ngen, then igen := igen + 1 and go to step 5;
else, go to step 6.

• Step 5: Genetic operations such as selection, crossover,
and mutation are performed, and a new population of ηoth
for the next generation is generated. While igen ≤ Ngen,
steps 2 ∼ 5 are repeated.

• Step 6: The desired C(s) is obtained with the elite ηPID

and ηoth, which can expand the control bandwidth while
satisfying the specified stability margins and sensitivity
gains for the resonant modes.
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C. SQP-based Parameter Optimization

1) Objective Function for Expanding Control Bandwidth:
The objective function JSQP , which is prepared to expand
the control bandwidth, is introduced in the design of PID
parameters ηPID (ρPID). First, the desired frequency-domain
sensitivity function Sdes(jω) is manually defined to specify
the target control bandwidth. Then, the desired frequency
response function of the open-loop Ldes(jω) is formulated
as (8) using Sdes(jω).

Ldes(jω) =
1− Sdes(jω)

Sdes(jω)
(8)

Here, the distance eL(ω) between the desired open-loop
Ldes(jω) and the actual open-loop L(jω) = C(jω)P (jω)
at a frequency ω on the complex plane can be expressed as
follows:

eL(ω) = |Ldes(jω)− L(jω)| =
∣∣∣∣YL(jω)

[
1

ρPID

]∣∣∣∣ , (9)

YL(jω) =
[
Ldes(jω) −P (jω)ΨC(jω)

]
=
[
Ldes(jω) −ΨL(jω)

]
∈ C1×4.

By using (9), JSQP is defined by (10) as the summation of the
squared eL(ω) at the discrete-frequencies Ωk(k = 1, . . . , Nk):

JSQP =

Nk∑
k=1

eL(Ωk)
2

=
[
1 ρT

PID

]
YL(jΩk)

TYL(jΩk)

[
1

ρPID

]
. (10)

In general, Ωk is selected at low frequencies below the target
control bandwidth.

2) Constraint for System Stability: Both the gain margin
and phase margin are ensured by using inequality constraints
with respect to ρPID, on the basis of the circle condition
method for a Nyquist diagram [6], [8]. Fig. 3 shows a
conceptual diagram of the circle condition, where the bold
line is an example Nyquist trajectory of the open-loop L(jω),
and Csta is the specified circle with a center at (−σsta, j0) and
a radius of rsta for stating the stability margins. The distance
between the Nyquist point (−1, j0) and the intersection of

Csta on the real axis represents the gain margin Gm (gm =
20log10Gm [dB]), while the angle between two intersections
of Csta and the unit circle represents the phase margin
Φm (ϕm = 180Φm/π [deg]). The circle condition for the
stability margins is mathematically formulated by (11), which
means the Nyquist trajectory passes the outside of Csta at a
frequency ω.

|L(jω) + σsta| > rsta, (11)

σsta =
G2

m − 1

2Gm(GmcosΦm − 1)
,

rsta =
(Gm − 1)2 + 2Gm(1− cosΦm)

2Gm(GmcosΦm − 1)

Here, in order to achieve a stable FB control system, the
following conditions should be satisfied.

0 < rsta < σsta, (σsta − 1)2 < r2sta (12)

By considering (5), (11) is reformulated as follows:

|ΨL(jω)ρPID + σsta| =
∣∣∣∣Ysta(jω)

[
1

ρPID

]∣∣∣∣ > rsta, (13)

Ysta =
[
σsta ΨL(jω)

]
∈ C1×4.

By squaring and reformulating (13), the inequality constraint
for the stability margins can be defined by (14) as a function
of ρPID.

Rsta(ω) =
[
1 ρT

PID

]
Ysta(jω)

TYsta(jω)

[
1

ρPID

]
−r2sta > 0. (14)

3) Constraint for Sensitivity gain of Resonant Mode:
An additional circle condition for the resonant modes is
introduced in order to sufficiently attenuate the sensitivity of
the resonant modes that require compensation. The amplitude
of the sensitivity at a frequency ω is represented by

|S(jω)| =
∣∣∣∣ 1

1 + L(jω)

∣∣∣∣ . (15)

Note that the denominator of the right hand side of (15)
corresponds to the distance between the open-loop L(jω) and
the Nyquist point (−1, j0). In order to attenuate |S(jω)| less
than the specified amplitude gsen dB, i.e., |S(jω)| < 10

gsen
20 ,

the following inequality is defined:

|L(jω) + 1| > rsen. (16)

Inequality (16) implies that the Nyquist trajectory of L(jω)
should be described outside of the specified circle Csen with
a center at (−1, j0) and a radius of rsen = 10−

gsen
20 in Fig.

3. Similar to section III-C2, (16) is transformed as follows:

|ΨL(jω)ρPID + 1| =
∣∣∣∣Ysen(jω)

[
1

ρPID

]∣∣∣∣ > rsen, (17)

Ysen =
[
1 ΨL(jω)

]
∈ C1×4.

Therefore, the inequality constraint for the sensitivity is



Fig. 4. Exterior of a laboratory galvano scanner.

formulated by

Rsen(ω) =
[
1 ρT

PID

]
Ysen(jω)

TYsen(jω)

[
1

ρPID

]
−r2sen > 0. (18)

To achieve the desired sensitivity attenuation property, (18) is
applied at specific frequencies around the resonant modes.

4) Optimization Problem: Finally, ρPID can be designed
based on the following optimization problem, using JSQP of
(10), Rsta of (14), and Rsen of (18):

min
ρPID

JSQP (19)

subject to Rsta(Ωp) > 0, Rsen(Ωq) > 0,

where Ωp(p = 1, . . . , Np) and Ωq(q = 1, . . . , Nq) are
the discrete frequencies where the inequality constraints are
imposed. In this study, (19) is solved by SQP.

D. GA-based Parameter Optimization

In the GA-based optimization, the fitness fSQP of (19)
calculated by the SQP-based optimization is used as the fitness
fGA of the GA. In the genetic operation, simple methods
(tournament selection, single-point crossover, and bit-string
mutation) are utilized to ensure the simplicity and efficiency
of the FB controller design.

IV. SIMULATION EXAMPLE

A. Target Plant

In this study, a laboratory galvano scanner for laser
processing machines was used as the plant system. The
external appearance of the laboratory galvano scanner is shown
in Fig. 4. The galvano scanner is simply composed of a
rotary motor, a mirror, and an optical encoder, and the fast-
response and high-precision control of the motor angle is
required to achieve a high production rate of high density
interconnect (HDI) printed circuit boards. For details of the
galvano scanner, see [10].

Fig. 5 shows the frequency characteristics of the galvano
scanner (from the motor current reference iref to the detected
motor angle θm), where the broken lines are the experimental
results, and the solid lines are the plant model P (jω). The
model parameters were identified by using the nonlinear least
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squares method. The galvano scanner has a primary resonant
mode at 2980 Hz, a secondary resonant mode at 5965 Hz,
other resonant modes in a frequency range greater than 10 kHz
due to the mechanism, and a phase delay property due to the
current control system and digital-to-analog (D/A) conversion
at the controller. P (s) = θm(s)/iref (s) is formulated as (20)
with consideration of the high-order resonant modes and the
phase delay:

P (s) = e−LsKp

(
1

s2
+

6∑
l=1

kl
s2 + 2ζlωls+ ω2

l

)
, (20)

where Kp is the gain (considering the moment of inertia,
torque constant of the motor, and steady gain of the current
controller), ωl is the natural angular frequency, ζl is the
damping coefficient, kl is the resonant mode gain, and L is the
equivalent dead time. In the following simulation evaluation,
P (s) of (20) is used as the plant in Fig. 1, and its frequency
response function P (jω) is adopted in the FB controller
design.

B. Application of Proposed Method

The FB controller C(s) was designed according to the
proposed method presented in section III. In this study, NR =
2 was selected to stabilize the primary and secondary resonant
modes, since these two resonant modes significantly affect the
system stability.

First, in order to define the circle condition Rsta of (14)
specifing the gain and phase margins of gm = 5 dB and
ϕm = 30 deg, the circle parameters σsta and rsta were
respectively assigned as σsm = 1.13 and rsm = 0.56.
The following applied frequencies Ωp were selected: Ωp =
2π × 100 ∼ 2π × 25000 rad/s (Np = 10000).

Second, two circle conditions Rsen1 and Rsen2 of (18)
were respectively imposed for the sensitivity of the primary
and secondary resonant modes. The boundaries gsen1 and
gsen2 were set to gsen1 = −20 dB and gsen2 = −10 dB
(i.e., rsen1 = 10.00 and rsen3 = 3.16), while the applied
frequencies Ω1q and Ω2q were set to Ω1q = 2π ×
2980 rad/s (N1q = 1) and Ω2q = 2π×5965 rad/s (N2q = 1),



TABLE I
PARAMETERS OF GENETIC OPERATION.

Generation number Ngen 10000
Individual number Nind 10
Selection rate 1.0
Crossover rate 0.9
Mutation rate 0.05

TABLE II
PARAMETER SEARCH RANGE OF ηoth IN GA-BASED OPTIMIZATION.

Parameter Minimum Maximum
TD [s−1] 1.59× 10−4 0.59× 10−4

ωR1 [rad/s] 2π × 1000 2π × 2960
ζRn1 -1 1
ζRd1 0 1
ωR2 [rad/s] 2π × 5965 2π × 12000
ζRn2 -1 1
ζRd2 0 1

where each resonant mode had the highest gain, as shown in
Fig. 5.

Third, the desired sensitivity function Sdes(jω) to expand
the control bandwidth was simply assigned as (21) in the
Laplace-domain expression, with consideration of the rigid
mode of the plant and the integral compensation of the PID
compensator in the low frequency range:

Sdes(s) =
KSs

3

(s+ ωS1)(s2 + 2ζS2ωS2s+ ω2
S2)

, (21)

where the parameters were respectively determined to be
KS = 1.2, ωS1 = 2π × 700 rad/s, ωS2 = 2π × 800 rad/s,
and ζS2 = 0.6. This parameter setting was a strict condition
for achieving a wider control bandwidth. Ldes(jω) to define
the objective function JSQP was calculated according to (8),
while the evaluated frequencies were set as Ωk = 2π× 100 ∼
2π × 1000 rad/s (Nk = 500).

For the GA-based optimization, the parameters of the
genetic operation were set as listed in Table I, while the search
ranges of ηoth were chosen as listed in Table II.

C. Comparative Evaluation

The proposed hybrid optimization method was applied to
the galvano scanner in order to verify the effectiveness of
a high-performance FB controller design. For comparison,
the conventional GA-based optimization method, which
designs all of the parameters ηC using only the GA, was
simultaneously evaluated. The objective function JGA of the
conventional method is defined as follows:

JGA =

Nk∑
k=1

eL(Ωk)
2 + Jsta + Jsen1 + Jsen2, (22)

Jsta =

{
0 (|L(jΩp) + σsta| > rsta)
1017 (|L(jΩp) + σsta| ≤ rsta)

,

Jsen1 =

{
0 (|L(jΩ1q) + 1| > rsen1)
1017 (|L(jΩ1q) + 1| ≤ rsen1)

,

Jsen2 =

{
0 (|L(jΩ2q) + 1| > rsen2)
1017 (|L(jΩ2q) + 1| ≤ rsen2)

.
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Fig. 6. Fitness for generation.

In (22), the first term on the right hand side is same as JSQP of
(10), while the second, third, and fourth terms are respectively
penalty functions that become large values when the circle
conditions on the stability margins and the sensitivity of the
resonant modes are not satisfied.

Fig. 6 shows the comparative elite fitness of fGA for
generation Ngen, where both the proposed and conventional
methods are performed three times. Note that the vertical axis
shows log scale values (i.e., log10fGA). In the conventional
method, there was fluctuation of the convergence speed and
final fitness, and it took at least 3 h to obtain the elite
parameters in the case of the shortest design time. On the
other hand, the proposed method could stably achieve the elite
parameters in every trials, and the average design time was
approximately 1 h that was less than one third of the shortest
time of the conventional method.

Next, the frequency characteristics of the FB control system
using the designed C(s) (best elite cases) are shown in Fig. 7.
Although the designed FB controllers had different frequency
characteristics, especially around the primary and secondary
resonant modes in Fig. 7(a), both methods successfully
ensured the specified stability margins and sensitivity of the
resonant modes in Figs. 7(c) and 7(d). Note that although the
proposed method could design almost the same FB controllers
by three times of trials, the conventional method could not
do it. On the other hand, from the perspective of the control
bandwidth, the proposed method could expand the gain-cross
frequency of L(jω) from 848 Hz to 1072 Hz in Fig. 7(b)
and decreased the sensitivity by 3 ∼ 5 dB under 1 kHz in
Fig. 7(d), in comparison with the conventional method. This
result demonstrated the effect of the high-efficiency of the
proposed hybrid optimization method for the design problem
of a cascade structure FB controller.

V. CONCLUSION

This paper presented a hybrid optimization method that
uses SQP and a GA to design a high-performance cascade
structure FB controller for a high-order resonant system. The
SQP-based optimization could obtain the parameters of a
PID compensator that realized a wide bandwidth and satisfied
the specified stability margins and sensitivity of the resonant
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Fig. 7. Frequency characteristics of FB control system: (a) FB controller C(jω); (b) open-loop characteristic L(jω); (c) Nyquist diagram of L(jω); (d)
sensitivity characteristic |S(jω)|.

modes, while the GA-based optimization could obtain the
other parameters that could not be found efficiently using the
SQP-based optimization. By combing the two optimization
methods, the complexity and difficulty of the cascade structure
FB controller design problem were effectively reduced. As a
result, the control bandwidth was successfully expanded by
26 %(848 rad/s → 1072 rad/s), while shortening the design
time by 67 %(3 h → 1 h), compared with those of the
conventional GA-based optimization method.
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