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Abstract—In this paper, frequency response function (FRF)
identification methods using single point-to-point motion data for
the fast and precise motion control of industrial servo systems
are examined. The adaptation of controllers using an identified
FRF is effective for maintaining the motion accuracy, even if
plant parameters vary in the processing operation. However, it is
difficult to achieve an accurate FRF from the motion data during
repetitive motions with short time-intervals. In this study, a time-
domain least squares method-based FRF identification method
and a frequency-domain discrete Fourier transform-based FRF
identification method were theoretically and experimentally eval-
uated, using a laboratory galvano scanner.

Index Terms—frequency response function identification, dis-
crete Fourier transform, least squares method, one-shot motion,
fast and precise positioning

I. INTRODUCTION

Regarding the demands of high-throughput in industrial
mechatronic systems such as electronics processing machines,
the fast and precise point-to-point (PTP) positioning motion
is repetitively performed (so-called ”inching motion”) with
short time intervals (the time interval is defined as a period
between the start of the previous motion and the start of
the next motion) [1], [2]. As an example, in a high density
interconnected (HDI) printed circuit board (PCB) laser drilling
machine, galvano scanners for positioning the laser beam to
desired positions on PCBs perform numerous PTP motions
with short time intervals. In the fast and short time interval
motion, since parameters of a galvano scanner such as torque
constant and resonant frequencies vary owing to environmen-
tal temperature and self-heating, overshoot and/or vibratory
responses often deteriorate the positioning accuracy [3], [4].

To solve the above problem, the adaptive feedforward (FF)
compensation based on a frequency response function (FRF)
of a target system is a promising approach [2], and varieties of

FRF identification methods that are suitable for the adaptive
compensation have been studied in related research fields [5]–
[8]. In recent years, FRF identification methods using single
PTP motion data [9]–[11] have been actively studied. The FRF
identification methods do not require stopping the processing
operation of industrial systems [10], although the widely-used
sine sweep methods require the processing operation to stop
for a while. The most widespread FRF identification method
using one-shot PTP motion data is the least squares method
(LSM)-based method using a high-order Auto Regressive
with eXogenous (ARX) model [8], [11], [12]. The LSM-
based FRF identification method efficiently estimates the ARX
model parameters based on an optimization problem in time-
domain and identifies an FRF. However, it is well-known
that the identification accuracy in the frequency-domain is not
satisfactory since the LSM-based method is a time-domain
approach [12].

On the other hand, frequency-domain FRF identification
methods using single PTP motion data [10], [13] have been
studied to achieve a more accurate FRF than the time-
domain FRF identification methods. The frequency-domain
FRF identification methods simply depend on the discrete
Fourier transform (DFT) of input and output data during a
single PTP motion, and directly identifies an FRF of a target
system in the frequency-domain. In [13], three frequency-
domain FRF identification methods using different pre-filters
have been comparatively evaluated, especially focusing on the
effects of the time interval of the repetitive motion.

In this paper, a time-domain LSM-based FRF identifica-
tion method [12] and a frequency-domain DFT-based FRF
identification method proposed by the authors in [13] are
comparatively evaluated (theoretically and experimentally) to
determine a suitable method for identifying an accurate FRF
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Fig. 1. External appearance of a laboratory galvano scanner.

for the adaptive compensation. Theoretical features of the
two FRF identification methods were described in detail. In
addition, FRF identification experiments using a laboratory
galvano scanner were performed, focusing on the robustness
against a change of the time interval.

II. GALVANO SCANNER AND CONTROL SYSTEM

A. Galvano Scanner

The external appearance of a laboratory galvano scanner for
laser drilling of PCBs is shown in Fig. 1. A DC servomotor
rotates a galvano mirror mounted on the motor shaft and
a rotary encoder detects motor angle θm with resolution of
1.49 × 10−6 rad. The servo controller (sampling time of
Ts = 20 µs) outputs a motor current reference iref as a control
input to a servo amplifier. To realize high-throughput PCB pro-
cessing with high-quality, the fast and precise motion control
of a galvano scanner is one of the primary technologies.

Black dotted lines in Fig. 2 show a bode plot of θm for
iref measured via a sine sweep experiment using a servo
analyzer (Ono sokki, DS3000). The galvano scanner contains
the first resonant mode at 2.9 kHz and the second resonant
mode at 6.3 kHz that are generated by deformation of the
galvano mirror and torsion of the motor shaft. A plant model
P (s) = θm(s)/iref (s) focusing on the experimental gain
characteristic is formulated by (1) as a summation of a rigid
mode and two resonant modes:

P (s) = Kg

(
1

s2
+

2∑
l=1

kl
s2 + 2ζlωls+ ω2

l

)
(1)

where Kg is the gain considering the moment of inertia J
and torque constant of motor Kt, ωl is the natural angular
frequency of l-th resonant mode, ζl is the damping coefficient,
and kl is the resonant mode gain, respectively.

B. Target Control Specification

In industrial PCB processing machines, a galvano scanner
performs numerous PTP positioning motions with short time
intervals to make via holes on PCBs in short tact time [8],
[11]. Fig. 3 shows an example of experimental response
waveforms of the position and the position error with the
target position stroke of Xr = 1 mm (in laser position) and
the interval time of 0.76 ms (the shortest time interval). As
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Fig. 2. Bode characteristics of a galvano scanner measured by a sine sweep
experiment.
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Fig. 3. Experimental response waveforms of position and position error in
short-interval repetitive motion.

a target control specification, each position response should
settle to the target position within the target settling accuracy
of ±3 µm (horizontal dotted lines) by the settling time of
0.72 ms (vertical dotted lines).

Here, note that the torque constant Kt and the resonant
frequencies ω1 and ω2 vary depending on environmental
temperature and self-heating in the PCB processing operation
[8]. In particular, variations of Kt and ω1 notably deteriorates
the positioning accuracy. Therefore, an adaptive compensation
strategy is required to maintain the fast and precise control
performance. In addition, to realize that, fast and accurate
identification of an FRF of a galvano scanner in a frequency
range of 400 ∼ 4000 Hz is required during the short-interval
PTP motions as shown in Fig. 3.

C. Adaptive PTP Position Control System

Fig. 4 depicts a block diagram of the two-degree-of-freedom
(2DoF) position control system for the galvano scanner, where
C(z) is the feedback (FB) controller composed of a PID
compensator and two second-order resonance compensation
filters according to [14], Pn(z) is the discrete-time plant model
considering P (s) of (1) and a phase delay model (ε−Ls),



Pn(z) C(z) Plant+ +

+r

−

ufsc

u

K̂t, ω̂1

Fad(z)
y

Parameter
ident. system

P̂ (ωk) FRF ident.
system

Fig. 4. Block diagram of adaptive 2DoF position control system.

Fad(z) is the adaptation filter, ufsc is the FF control input
generated by the final-state control (FSC) framework [3],
u(= iref ) is the control input, r is the target position trajectory
reference, and y(∝ θm) is the motor position, respectively.
The FSC-based FF control is designed so that y settles to
the target position Xr by 0.72 ms. To achieve fine adaptive
control performance, an accurate FRF P̂ (ωk) from the single
PTP motion data u and y as shown in Fig. 5 are required for
adapting Fad(z) and Pn(z) with accurate K̂t and ω̂1.

III. FRF IDENTIFICATION METHODS USING SINGLE
MOTION DATA

In this section, the time-domain LSM-based FRF identi-
fication method [12] and the frequency-domain DFT-based
FRF identification method proposed by the authors in [13] are
briefly introduced and their theoretical features are explained.

A. Least Squares Method-based FRF Identification [12]

Fig. 6 shows a block diagram of a the LSM-based FRF iden-
tification system for the discretized plant system P (z). The in-
put and output data {ui, yi} at t = iTs (i = 0, . . . , N−1) of a
single PTP motion (i.e., the time interval is NTs) are available
for FRF identification. In this system, first, the parameters of
an estimated plant model P̂ (z) are identified via the LSM in
time-domain, and then, an FRF P̂ (ωk) (k = 0, 1, . . . ,M − 1)
is calculated based on the discrete-time Fourier transform.

The actual plant P (z) is defined by (2) as an Np-th order
ARX model:

P (z) =
B(z)

A(z)

A(z) = 1 + a1z
−1 + · · ·+ aNp

z−Np

B(z) = b1z
−1 + · · ·+ bNp

z−Np

(2)

where an ∈ R and bn ∈ R (n = 1, . . . , Np) are the plant
parameters required to be identified. By considering (2), the
output data yi in the sample time-domain is expressed as

yi =− a1yi−1 − a2yi−2 · · · − aNp
yi−Np

+ b1ui−1 + b2ui−2 · · ·+ bNp
ui−Np

= θTϕi

(3)

where the unknown parameter vector θ ∈ R2Np and the data
vector ϕi ∈ R2Np are defined as follows:

θ = [−a1 − a2 · · · − aNp b1 b2 · · · bNp ]
T

ϕi = [yi−1 yi−2 · · · yi−Np
ui−1 ui−2 · · · ui−Np

]T .
(4)
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Fig. 5. Single PTP motion data of control input and position.
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Fig. 6. Time-domain FRF identification system based on the least sqares
method (LSM).

The estimated parameters θ̂ are obtained by minimizing the
following quadratic objective function.

J =

N−1∑
i=0

e2i =

N−1∑
i=0

(
yi − ŷi(θ̂)

)2
(5)

where the estimated output ŷ(z, θ̂) is defined by

ŷ(z, θ̂) = {1−A(z, θ̂)}y(z) +B(z, θ̂)u(z). (6)

The optimum θ̂ is estimated as (7) considering ∂J/∂θ̂ = 0.

θ̂ =

(
N−1∑
i=0

ϕiϕ
T
i

)−1(N−1∑
i=0

ϕiyi

)
(7)

Finally, the identified FRF P̂ (ωk) at frequencies ωk is obtained
from P̂ (z, θ̂), by substituting z = εjωkTs .

Here, a frequency-domain objective function corresponding
to the time-domain objective function of (5) is defined as
follows, based on the Parseval’s theorem:

J =

N−1∑
i=0

e2i =
1

N

N−1∑
k=0

E(ωk)
2 (8)
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where E(ωk) is the DFT of ei at a frequency of ωk = 2πk
NTs

and is expressed as

E(ωk) = A(ωk, θ̂)

(
Y (ωk)−

B(ωk, θ̂)

A(ωk, θ̂)
U(ωk)

)
. (9)

Therefore, the frequency-domain objective function can be
expressed as

J =
1

N

N−1∑
k=0

|A(ωk, θ̂)|2|U(ωk)|2|P (ωk)− P̂ (ωk, θ̂)|2. (10)

From (10), the LSM-based FRF identification includes
frequency-domain weighting functions |U(ωk)|2 and
|A(ωk, θ̂)|2 in theory. In general, since |A(ωk, θ̂)|2 has
higher gains in a high frequency range as shown by a black
broken line in Fig. 7(b), the LSM-based FRF identification
method tends to optimize the higher frequency range [12]
even though |U(ωk)|2 is generally small in the high frequency
range, as shown in Fig. 7(a). Therefore, the LSM-based FRF
identification method might experience difficulty in achieving
an accurate FRF in a low frequency range.

B. DFT-based FRF Identification Method [13]

A block diagram of the DFT-based FRF identification
system is shown in Fig. 8, where P̂ (ωk) is the identified
FRF, F (z) is the pre-filter, which is explained later, uf is
the filtered input, yf is the filtered output, Uf (ωk) is the DFT
of uf , and Yf (ωk) is the DFT of yf . In this system, first, the
single motion data {ui, yi} at t = iTs (i = 0, . . . , N − 1)
are input to F (z), and F (z) calculates the output data
{ufi, yfi} on-line. Second, {ufi, yfi} is transferred to the
DFT algorithm, where the DFT data length is M(≥ N),
i.e., uf = [uf0, uf1, . . . , uf(N−1), 0, . . . , 0]

T ∈ RM and
yf = [yf0, yf1, . . . , yf(N−1), 0, . . . , 0]

T ∈ RM . Finally, using
the DFT results Uf (ωk) and Yf (ωk) (k = 0, 1, . . . ,M − 1)

F (z) F (z)

yfuf

÷ × Yf (ωk)Uf (ωk)

DFTDFT

P̂ (ωk)

P (z)
yu

Fig. 8. Frequency-domain FRF identification system based on the DFT.

0 Sample2NN

Inverted data

Original data

Xr

Position

Fig. 9. Conceptual diagram of single PTP motion data in the DFT-based FRF
identification method using a differentiator.

of uf and yf , the identified FRF P̂ (ωk) = Yf (ωk)/Uf (ωk)
is obtained. The parameter estimation of an ARX model P̂ (z)
as in III-A is not required.

In general, the time-domain data ui and yi in a single PTP
motion are not cyclic (i.e., u0 ̸= uN−1 or y0 ̸= yN−1) as
shown in Fig. 5, which results in undesired frequency compo-
nents on the DFT results [9], [10]. In [13], the differentiator-
based pre-filter of (11) is used to make ui and yi cyclic.

F (z) = 1− z−1 (11)

To explain the theoretical meaning of introducing (11) as F (z),
a concept of the DFT-based FRF identification method using
the differentiator is shown in Fig. 9. A solid line represents an
example of single PTP motion data of position as an original
data yoi = yi(i = 0, . . . , N − 1). To obtain a cyclic data with
data length of 2N , yoi and its inverted data yo(N−1)−yo(i+N)

with N steps shifted are connected as indicated by a dotted
line. Using yoi, the connected signal ycm (m = 0, . . . , 2N−1)
is expressed as

ycm =

 yom : m = 0, . . . , N − 1
yo(N−1) − yo(m−N)

: m = N, . . . , 2N − 1
. (12)

The DFT Yc(ωk) of (12) is expressed as

Yc(ωk) =

2N−1∑
m=0

ycmε−jmωkTs (13)



where the discrete frequency of ωk is defined as ωk = 2πk
2NTs

.
Equation (13) can be reformulated as (14), considering the
differential data y′cm of ycm.

Yc(ωk) = y′c0 + (y′c0 + y′c1)ε
−jωkTs + · · ·

+

2N−1∑
m=0

y′cmε−j(2N−1)ωkTs ,

y′cm = ycm − yc(m−1), yc(−1) = 0.

(14)

Here, y′c satisfies the following equation from (12).

y′ci = −y′c(i+N) (i = 0, . . . , N − 1) (15)

Considering (14) and (15), Yc(ωk) is reformulated as follows:

Yc(ωk) = y′c0

N−1∑
i=0

ε−jiωkTs + y′c1

N−1∑
i=0

ε−jiωkTs + · · ·

+ y′c(N−1)

N−1∑
i=0

ε−jiωkTs

=

N−1∑
i=0

y′ciε
−jiωkTs ·

N−1∑
i=0

ε−jiωkTs .

(16)

As a result, the identified FRF P̂ (ωk) calculated from ucm

and ycm has the following relationship:

P̂ (ωk) =

∑N−1
i=0 y′ciε

−jiωkTs∑N−1
i=0 u′

ciε
−jiωkTs

=
Y ′
o(ωk)

U ′
o(ωk)

=
Yc(ωk)

Uc(ωk)
. (17)

Notice that, introducing the differentiator of (11), the concept
of Fig. 9 can be equivalently realized. For more detailed ex-
planation regarding the DFT-based FRF identification method
and comparative evaluations with other frequency-domain FRF
identification methods, refer [13].

IV. EVALUATIONS OF TIME- AND FREQUENCY-DOMAIN
FRF IDENTIFICATION METHODS

A. Experimental Setup

Fig. 10 shows a configuration of a laboratory experimental
setup. The 2DoF position control system (without the adap-
tation of the FF compensation) explained in II-C and the
FRF identification systems introduced in III-A and III-B were
implemented on a DSP (System Design Service, Ltd, PDRS-
6000). The FRF of the galvano scanner was identified using
single PTP motion data of u and y. To evaluate the robustness
against variations of the time interval, the PTP motion data
shown in Fig. 5 with the time intervals of 1.50 ms and 0.76 ms
were used for the FRF identification.

In the LSM-based FRF identification method, the ARX
model P̂ (z) defined by (18) with the order of Np = 20, which
is higher than the one of (1), was used considering the effects
of quantization errors, unknown modeling errors, and noise at
high frequencies [11], [12].

P̂ (z) =
b1z

−1 + · · ·+ b20z
−20

1 + a1z−1 + · · ·+ a20z−20
. (18)

On the other hand, in the DFT-based FRF identification
method, the data length M of the DFT was determined as

Servo amp.

Galvano scanner
Angle signal, θm(∝ y)

controller
Servoy

u

Current, im

I/F

DSP
θm

D/A

Current ref., iref (= u)

P̂ (ωk)

FRF ident.
system

Fig. 10. Configuration of experimental setup for FRF identification.

M = 5000 to ensure sufficient frequency resolution for the
FRF identification. Note that, in both the FRF identification
methods, the FRFs P̂ (ωk) were calculated at the same discrete
frequency ωk.

B. Experimental Results of FRF Identification

The FRF identification results of the LSM-based and the
DFT-based methods in the time intervals of 1.50 ms (N =
75) and 0.76 ms (N = 38) are shown in Fig. 11, while the
identification errors defined by |P (ωk)− P̂ (ωk)| are shown in
Fig. 12. Note that the evaluation frequency range was selected
at 400 ∼ 4000 Hz and the FRF measured by the sine sweep
experiment shown in Fig. 2 was defined as a reference FRF
P (ωk) of the galvano scanner in the following evaluations.
In Fig. 11 and Fig. 12, black dotted lines are the results of
the sine sweep experiment (same as in Fig. 2), red solid lines
are the ones of the LSM-based method (LSM), and blue solid
lines are the ones of the differentiator-based method (DIF),
respectively.

In the longer interval of 1.50 ms, the LSM-based FRF
identification method could accurately identify not only the
rigid mode in the low frequency range below 1 kHz but
also the first resonant mode. However, in the shorter interval
of 0.76 ms, significant identification errors were recognized.
Here, red solid lines and blue solid lines in Fig. 7 show the
evaluation frequencies ωk in the time intervals of 1.50 ms
and 0.76 ms. From the figure, the number of ωk in the
low frequency range decreases in the shorter interval motion,
owing to the frequency resolution ∆ω = ωk−ωk−1 = 2π

NTs
in

the DFT (∆ω = 2π×667 rad/s in the time interval of 1.50 ms
and ∆ω = 2π × 1316 rad/s in the time interval of 0.76 ms).
Therefore, the FRF identification errors in the shorter interval
motion is considered as the effects of the weighting function
|A(ωk, θ̂)|2 in the LSM as elucidated in III-A.

On the other hand, the proposed DFT-based FRF identifi-
cation method successfully reproduced P (ωk) in both cases.
The variations of the FRF identification results were explicitly
small, as shown in Fig. 12, compared to the ones of the LSM-
based FRF identification method.
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Fig. 11. Comparisons of FRF identification results for one-shot PTP motion data: (a) time interval of 1.50 ms; (b) time interval of 0.76 ms.
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V. CONCLUSION

In this paper, time- and frequency-domain FRF identifi-
cation methods using single PTP motion data (the LSM-
based method and the DFT-based method proposed by the
authors in [13]) were comparatively evaluated, for adaptive,
fast, precise, and short time interval positioning control. In the
LSM-based FRF identification method, since the frequency-
domain objective function of the LSM theoretically possessed
low weights in a lower frequency range, the identified FRF
included remarkable identification errors, especially in the
short interval motion. On the other hand, the DFT-based
FRF identification method using the differentiator-based pre-
filtering could obtain an accurate FRF, even in the short
interval motion. From the series of experimental evaluations
using a laboratory galvano scanner, it has been determined that
the proposed frequency-domain DFT-based FRF identification
method would be more suitable for performing the adaptive
compensation in the PCB processing operation.

As a future work, the adaptive FF compensation with
the proposed DFT-based FRF identification method will be
evaluated through experiments.
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