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Abstract

Time series forecasting models are some of the most important type of quantitative models, in
which past observations are collected and analyzes to describe their relationship. This model-
ing approach is particularly useful when little knowledge is available on the generation process
or when there is no accurate model that relates the prediction variable to other explanatory
variables. When modeling time series, two well-known methodologies are used for prediction in
linear time series, the autoregressive integrated moving average (ARIMA) and the autoregres-
sive fractionally integrated moving average (ARFIMA). The prediction of future events depends
on the analysis of past values. In case of ARIMA it is limited to a short memory dependency,
due to model characteristics on the modelling procedures with stationarity time series. This
means that the statistical proprieties such as mean, variance and autocorrelation are all con-
stant over time. However, depending on the dataset, the amount of past values necessary for
an accurate prediction may vary, as the correlation between data and their parameter deviate
along the time, leading to a long memory dependency. In these cases, the ARFIMA model can
be used, since it provides a solution for the tendency of over-differentiation on stationary series
that exhibit a long-run dependence. This uncertainty on the amount of necessary past values
necessary make an accurate prediction defines the classical case of long and short memory
dependency. When modeling a time series, the statistical proprieties can reveal characteristics
on the dataset that demonstrates memory dependency that decays exponentially (ARIMA) or
hyperbolically (ARFIMA). Thus, is not always clear if a process is stationary or what are the
influence of the past samples on the future values and, consequently, which of the two models
is the best choice for a given time series. As different datasets contain different characteris-
tics, a common approach to improve the accuracy is the use of preprocessing techniques or
the modification on a specific component of the aforementioned models in order to tackle the
memory dependency problem. Nevertheless, such solutions are specific to certain datasets, in
which different scenarios can generate different results in the performance and accuracy of the
model. This research proposes a new methodology which combines the two models and their
parameters in order to keep a low accumulative error. The proposed model is applied on a
variety of time series datasets without resorting to model modifications or the use of prepro-
cessing techniques. Twelve different datasets of different contexts were selected from the UCI
Machine Learning repository, Brazilian stock market and the Time Series Data Library. The
proposed method was compared with the original ARIMA and ARFIMA models, as well as
wavelet techniques that also tackle the memory dependency problem. Thus, performed better
accuracy in the majority of the datasets, except in multivariate biomedical time-series. In
addition, the proposed model also presented better accuracy in regions with abrupt changes
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when compared with other models, being a promise alternative in applications requiring fast
decision making based on data forecast. This indicates that the number of features in a dataset
can have a direct influence in the correlation between values.

Keywords: ARIMA, ARFIMA, combined methodology, time series forecasting, accumulative
error, memory dependency
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You can discover more about a person in an hour of play
than in a year of conversation.

Plato, 427 BCE

You can’t teach a man anything,
you can only help him find the answer inside him self.

Galileo Galilei, 1564 CE

There is nothing outside of yourself that can ever enable you to get better,
stronger, richer, quicker, or smarter.

Everything is within.
Everything exists.

Seek nothing outside of yourself.

Miyamoto Musashi 1584 CE, Gorin No Sho

Don’t look away, all life is transitory, a dream;
And we all come together in the same place,

in the end of time.
If I don’t see you again here...

I will see you in a little while...
in a place where no shadows fall.

Delenn, 2259 CE
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CHAPTER 1

Introduction

Temporal series prediction is one of the most important types of quantitative models in which
past observations of variables are collected and analyzed to develop a model describing their
underlying relationship [1]. This modeling approach is particularly useful when little knowledge
is available on the generation process or when there is no satisfactory explanatory model that
relates the prediction variable to other explanatory variables [2, 3].

Prediction procedures include different techniques and models. Moving averages (MA)
techniques, random walks and trend models, exponential smoothing, state space modeling,
multivariate methods, autoregressive (AR) models, co-integrated and casual models, method
based on neural networks, fuzzy systems or data mining and rule-based techniques are typical
models used in temporal series prediction or also commonly known as time series forecasting
[4, 5, 6, 7, 8].

When modeling time series, one of the most important and widely used linear models is the
Auto-Regressive Integrated Moving Average (ARIMA). The popularity of this model is due
to its statistical properties as well as the well-known Box-Jenkins methodology [9] used in the
model building process. When building an ARIMA based forecasting model, the basic steps
are model identification, parameter estimation and model validation. The main advantage of
ARIMA relies on its accuracy over a wide domain of datasets.

In any forecasting method, the prediction of future events depend on the analysis of past
values on the time series. With ARIMA, this is limited to a short memory dependency. How-
ever, depending on the dataset, the amount of past values necessary for an accurate prediction
may vary, as the correlation between data and their parameters deviate along the time. This
uncertainty over the number of necessary past values is the classical case of long and short
memory dependence [10, 11, 12].

In recent years, the study of long memory dependency or also commonly known as long
term memory, has been receiving increasing attention of statisticians and mathematicians, as it
can be found in many fields, such as hydrology [13], chemistry [14], physics [15], economic [16]
and finances [17]. When modeling time series in the presence of long memory dependence, a
common alternative is the Autoregressive Fractionally Integrated Moving Average (ARFIMA).
This model, while based on the ARIMA, allows the differencing parameter to be set to non-
integer values.

Another approach is to analyze the modelling procedures through a breakdown, i.e., a
fragmentation of the mathematical and statistical theorems that compose the model [18, 19, 20].
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These solutions, however, are only relevant to specific scenarios under certain conditions[21].

Currently, there is a fair amount of data available for most prediction problems, and a
variety of available techniques are applied to different areas with their particular targets and
objectives. The main question is then how much data is actually necessary for an accurate
prediction. One common approach is the comparison of ARIMA and ARFIMA results, which
will perform differently for each dataset, after which the best model is chosen [22, 23].

1.1 Motivation

The difficulties on estimating the amount of data necessary for an accurate prediction, as well
as the need of different sets of parameters for each model, leads to the motivation to create
a new mathematical model under a statistical learning framework. This model will combine
some characteristics of the two aforementioned linear models in the hope of achieving higher
prediction accuracy when compared to other alternative approaches.

1.2 Objectives

The main objective of this research is to develop a new method which combines the dynamics
of long and short memory dependency in order to obtain accurate predictions in different
scenarios. In each iteration of the modeling process, by observing the accumulative error,
estimated residuals and number of lags, the proposed model’s objective is to keep the error at
a minimum, deviating from the decay characteristics observed in the ARIMA and ARFIMA
models. The definition of a relationship between the exponential and hyperbolical decays of
these models allows to reduce the accumulative error and, consequently, increase the prediction
accuracy of the proposed method.

1.3 Expected Results

Different datasets can present significantly different statistical properties. Common approaches
to deal with such variations include pre-processing techniques and model-modification. How-
ever, such techniques are specific to each dataset, and can generate unexpected results if blindly
applied to different problems. The proposed method combines short and long memory de-
pendencies characteristics, respectively from ARIMA and ARFIMA, in order to use enough
information for and accurate prediction with minimal impact on the accumulative error.

It is important to notice that, as the proposed method is based on intrinsically linear models,
it is expected to underperform in some datasets with high number of features. In such cases, the
correlation between values decrease, hiding potential relationships between features that could
help the modeling process to obtain a low accumulative error. In contract, some alternative
methods specifically tackle the problem of high dimensionality, with partial accomplishment in
some datasets, as it will be demonstrated in the experiments.

1.4 Overview

The remaining of this dissertation is organized as follows. Chapter 2 reviews the basic methods
and groundwork used along this research, followed by Chapter 3, in which the proposed method
is presented in details. Chapter 4 describes the datasets and conditions used to perform the
experiments, while Chapter 5 shows experimental results and comparisons with the original
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basic methods and alternative approaches. Finally, Chapter 6 concludes this research and
describes possibilities for future work.





CHAPTER 2

Literature Review

2.1 Temporal Series History

In general, forecasting methods analyze past values to predict future values. Until the early
1920s, forecasts were made with the simple extrapolation of a global value, adjusted according
to time. An important contribution to the development of tools and methodologies to analyze
time series is the work made by Yule [24], in which the author refers that a time series should
be seen simply as the realization of a stochastic process. The author created the autoregressive
model (AR), in which the predicted value depended on the past values. In the following years,
experts in the field of statistics carried out their work and studies on the basis that the behavior
of a series depended on linear models and noise.

However, linear models are insufficient for the analysis of time series, due to the fact that
most of real series present strong tendencies of non-linearity [25]. To combat these difficulties,
from 1950 onwards, new studies were started in the area of time series forecasting, and the
exponential smoothing technique was created. It was also at this time, with the appearance of
the computer, that a rapidly evolution in forecasting methods began [26].

A work that is considered a reference in the history of forecasting with time series is the
book by Box Jenkins[9]. This book integrated all the existing knowledge to date in relation
to time series, regarding parameter estimation, identification and forecasting. These authors
approached the construction of stochastic models in the time domain for discrete time series,
which were as simple as possible, with a minimum number of parameters and thus satisfying a
parsimony criterion. The authors considered that the choice of this criterion was due to the fact
that these models are able to reveal something about the nature of the processes that generate
the time series and the possibility that these models are used to obtain optimal predictions of
future series values[27].

2.2 Temporal Series Objectives

Initially, time series analysis had the objective to draw inferences about the basic properties or
characteristics of the generating mechanism of the stochastic process of the series observations
[28]. When analyzing a time series, it is expected that there is a cause related to time that
influenced the data and that they may continue to influence them in the future. It is through
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the abstraction of regularities contained in the observable phenomena of a time series that the
possibility exists to build a mathematical model as a simplified representation of reality [29].
The objectives of analyzing a time series are the following[30, 31]:

1. Description: determine the properties of a series, such as the trend pattern, the existence
of structural changes and seasonality, etc. It is preferable to have the fundamental basics
of the dataset before an attempt is made to build and model a time series, in order to
describe some of its main properties. This will be a very important help in carrying out
the modeling process;

2. Explanation / Modeling: find an appropriate statistical model that allows explaining the
behavior of the series in the observed period;

3. Forecast: estimation of values that will occur in the Time Series, based on past events;

4. Process supervision: an accurate forecasts allows the statistician to take measures in
order to supervise a given process.

Their are four main different application areas for temporal series and their models to be
applied dynamically [9]: prediction of future events considering the previous and the current
events; transfer function estimation of a system considering the input and output of the model;
the use of variables as inputs to do evaluation of the impact in different parts of the temporal
series; lastly, to design the control schemes whereby the potential deviations from the system’s
output values obtained from a desired objective can be adjusted by the values on the feed of
the series.

For instance, as an example, in biology, a part that can be isolated to carry out a study
on it, in which the internal and external influences at work are known, is called the system.
Systems that evolve over time are especially classified as dynamic systems [32, 33]. A dynamic
system, in general, can be under the action of p input signals and reveal its behavior through
q output signals, in which the independent variable t represents time. Thus, these input and
output signals of a dynamic system can be seen as time series, that is, values of a certain
quantity as a function of time [19, 34].

2.3 Types of Time Series

When a sequence of values are grouped together, considering a period of time, this is namely
a time series which contains information related to an event. This data can be analyze with
the purpose to find a trend or pattern that can assist on the prediction of future events. When
performing this analysis, it is possible to optimize and better predict future actions [9, 35, 36].
Figure 2.1 shows basic methods of time series analysis.

2.3.1 Stochastic time series

A stochastic process can be described as a family of random variables {x1, x2, . . . , xt, t ∈ T}
indexed in time, where T is the index. A stochastic time series is stationary if its mean, variance
and autovariance (in different phases) remain the same. These characteristics are verified in
any period in which the measurement is made, that is, they do not vary with time [25, 30, 31].

The statistical properties of a finite set of data in the series {x1, x2, . . . , xn} ∈ Xt will always
be similar to those of a set {x1+h, x2+h . . . , xn+h} ∈ Xt for any integer value of h, which can
happen in the following cases:
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Figure 2.1: Classification of types of time series.

• When a group of variables are combine and hardly change, considering the transfer of
variables over time (strict sense):

F (xi, xj , . . . , xk) = F (xi+h, xj+h . . . , xk+h) (2.1)

• When the random values between the two points in the series are constant and rely only
on the period of time (weak sense):

E(Xt) = µ

V ar(Xt) = σ2

γ(t, t− k) = γ(t, t+ k) = γ(k) where k = 0,±1,±2, . . . (2.2)

In the literature there is also an alternative way of describing a stationary stochastic process
in the frequency domain, through its function of spectral density, obtained by the Discrete
Fourier Transform (DTF). Nevertheless, time series analysis applied to forecast usually does
not rely on frequency analysis [2, 9].

Some examples of stationary stochastic processes:

• White noise process, ARIMA (0, 0, 0)

Xt = εt (2.3)

• Homogeneous order process 1, ARIMA (1, 0, 0)

∇Xt = εt (2.4)

• Autoregressive order process (p), ARIMA (p, 0, 0)

Xt = ρ1x1 + . . .+ ρpxt−p + εt (2.5)

• Moving average order process (q), ARIMA (0, 0, q)

Xt = εt − θ1εt−1 − . . .− θqεt−q (2.6)

• ARMA process (p, 0, q)

Xt = ρ1xt−1 + . . .+ ρpxt−p + εt + θ1εt−1 + . . .+ θqεt−q (2.7)
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2.3.2 Non-stationary stochastic process

A stochastic time series is non-stationary when its mean and/or variance varies with time. In
these series it is only possible to determine a part of the data, so they generate a worse forecasts
than the stationary series [37]. The statistical properties of a finite set of data in the series
{x1, x2, . . . , xn} ∈ Xt will be different from those of a set {x1+h, x2+h . . . , xn+h} ∈ Xt for at
least one integer value of h. These series can be considered:

• Non-stationary time series on average, when the mean of the series is not stable over
time, and may have an increasing or decreasing trend:

E(Xt) 6= µ (2.8)

• Non-stationary time series in covariance, when the variance or covariance varies with
time:

V ar(Xt) 6= σ2

γ(t, t− k) 6= γ(t, t+ k) (2.9)

Some examples of non-stationary stochastic processes:

• Random walk, ARIMA (0, 1, 0):

(1−B)xt = εt (2.10)

• Simple Exponential Smoothing Process:

(1−B)xt = (1− θ1B)εt (2.11)

• ARIMA integrated processes (p, d, q):

(1− ρ1B − . . .− ρpBp)(1−B)dxt = (1− θ1B − . . .− θqBq)εt (2.12)

• Long memory processes:

(1−B)dxt = εt for − 0.5 < d < +0.5 (2.13)

• ARFIMA process (p, d, q):

ρp(B)∇dzt = θq(B)εt for − 0.5 < d < +0.5 (2.14)

2.4 Trend and Seasonality of Time Series

A very important behavior is the trend, which can be defined as a long-term behavior of the
time series. In this case, the series varies due to the constant gain (growth) or loss (decline),
in successive periods of time [38]. It is important to notice that, sometimes, there are some
cyclical variations and irregular fluctuations that should not be overlooked [39].

If we consider that the time series has no seasonal component, we can consider the model:

Zt = Tt + εt (2.15)
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where εt is a random variable with zero mean, variance σ2ε and Tt are the trend estimator.
After estimating the trend T̂t we can consider an adjusted series:

Yt = Zt − T̂t (2.16)

Another process that is used to remove the trend is to make successive differences from the
original series until a stationary series is found:

∇Zt = Zt − Zt−1 (2.17)

One of the problems in verifying the trend of a time series is related to the need to know whether
the data are independent, since most tests are based on this hypothesis. The most used tests
to detect trends are the Wald-Wolfowitz tests, the Cox-Stuart test, the Mann-Kendall test and
the Spearman test [40]. The perception of the trend depends, in part, on the duration of the
observation of the time series. In addition, the decomposition of seasonal variation and trend
components may not be independent [41].

Seasonal variation is a type of variation in which similar patterns of behavior are repeated
in equal periods of time, usually during the year, but can also be weekly, monthly or quarterly
periods. Examples of these seasonal variations are the mating and reproduction cycles of the
animals and the temperature variations in a given region recorded annually or daily. Seasonality
can be divided into two types, deterministic, when the seasonal pattern is regular and stable
over time or stochastic, when the seasonal pattern varies over time [42, 43].

The tests most used to estimate seasonality are the Kruskal-Wallis test (for several inde-
pendent samples) [44], Friedman test (indicated for several dependent or paired samples) [45]
and the F test, always taking care to remove, if any, the series trend [45]. If the time series
has more than one non-random component, a proposal is to test the existence of one of them
(trend or seasonality) after the elimination of the other component [30, 31].

2.5 Mathematical Methods of Forecasting Time Series

A forecasting method has a set of procedures that, based on a historical data, allows to predict
what the expected behavior of the data will be, in the medium or long term. A forecast reflects
a manifestation in relation to the unknown successes in a determined future [19]. Forecasting is
not an end in itself, but a mean to provide information and contribute for consequent decision-
making in order to achieve certain objectives [30, 31].

The time series forecasting methods, which are classified as quantitative, base their predic-
tions on the extrapolation of characteristics of past observations and on the interrelationship
between them, providing reliable predictions if the future shows behavior similar to the past.
Most time series forecasting methods are based on the assumption that past observations con-
tain all information about the time series pattern of behavior and that pattern recurs over time
[46].

Forecasting methodologies can be divided in three types, judicial predictions on which are
based on subjective judgment; univariate methods, which rely on the present and past values
in a time function; multivariate methods, on which the predictors depends on a single or group
of variables [47].

Given that there are countless methods for forecasting time series and is not always with the
most complex methods that the best results are obtained, it will be necessary to first evaluate
the benefits of the various methods, before starting a forecast of a certain time series [46].

In choosing the forecasting method that can give the best results, it is important to take
into consideration some of error measurement approaches:
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• Graphical comparison;

• Scatter diagram;

• Correlation coefficient;

• Accumulated quadratic error;

• Root of the mean square error (RMSE);

• Absolute percentage error (MAPE);

2.5.1 Simple forecasting methods

Many studies involving time series use simple forecasting methods to forecast future events
of the time series by observing past events of the series under study. The objective of these
methods is to identify a basic pattern present in the documented dataset of the temporal series
and consequently to predict future values. Given that these univariate statistical methods
are simple to implement, their overall computing cost is relatively small and they provide a
reasonably accurate forecast, these methods are widely used [30, 31].

Persistence Model

The Persistence Model (PM) is perhaps the simplest possible forecasting model available. It
simply uses the sample xt−1 to predict xt+1 [30].

Simple Moving Average

The simple moving average (not to be confused with the Moving Average model presented in
Section 2.7.2) is defined as a models that uses an average of recorded observations, as a forecast
for a certain period in the future. In these models, moving averages can be simple, centered or
weighted. The term moving average is used because as an observation becomes available, the
average of the observations is recalculated using this value and ignoring the oldest one [30, 31].
For models that use the simple moving average, an equation of the type can be defined:

Xt =
xt−1, xt−2, . . . , xt−n

n
(2.18)

where n (observation window) is the number of observations and Xt is the average. In these
models the number of observations is proportional to the smoothing effect on the forecast.
Larger observation windows should be used for series that present a lot of randomness or small
changes in their patterns, so that the calculation of the moving average is immune to noise and
short movements. Conversely, smaller observation window should be used for series that show
little random fluctuation in the data or significant changes, in order to react more quickly to
these changes.

2.5.2 Exponential smoothing

The exponential smoothing models are divided into:

• Simple Exponential Smoothing Models;

• Linear Exponential Smoothing Models;

• Holt-Winters Models with and without seasonality.
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Simple Exponential Smoothing Model

Like the moving average models, the straightening models use the recorded observations to
determine the behavior of the series. However, while in the simple moving average all the
observations used have an equal weight in the calculation of the forecast, in simple smoothing
each observation of the series has a different weight. In this model, the value of the last
observations is evidenced by the application of a smoothing constant α, in the forecast at the
previous moment. The formula for calculating exponential smoothing is given by the equation:

Ft+1 = αxt + (1− α)Ft (2.19)

where:

Ft+1 represents the forecast at time t+ 1;

α(0 < α < 1) (smoothing constant) is the weight attributed to the observation;

xt is the newest observed event;

Ft is the last predicted event.

For small α values, the weight of the initial observations is greater in predicting the behavior
of the series, while for larger α values (close to 1), the forecast will be mostly affected by the
recent observations.

Linear Exponential Smoothing Model

This method was developed to recognize the presence of a trend in the time series, thus im-
proving the forecast value, which will be given by the following equation:

Ft+n = St +mTt (2.20)

where:

St designates the forecast at time t and is given by:

St = αxt + (1− α)(St−1 + Tt−1); (2.21)

Tt represents the trend component and is given by:

Tt = β(St − St−1) + (1− β)(Tt−1); (2.22)

α and β are smoothing coefficients.

Exponential Smoothing Method Holt-Winter with Seasonality

This forecasting method is similar to the linear exponential smoothing method, however it is
capable of analysing time series that show seasonal trends. The forecast value is given by:

Ft+m = (St +mTt)lt−1+m

St = α
xt
lt−1

+ (1− α)(St−1 + Tt−1)

Tt = β(St − St−1) + (1− β)(Tt−1)

lt = γ
xt
St

+ (1− γ)lt−1 (2.23)
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where:

lt is the smoothing of the seasonality factor
xt
St

;

l is the seasonality interval;

γ weight attributed to the seasonality factor.

2.6 Time Series Analysis

Before the models described in Section 2.7 can be applied, several tests must be performed on
the time series in order to determine the order of the models and other parameters.

2.6.1 Normality test

There are several tests used to find out whether data from a temporal series contains a normal
distribution. For instance, Shapiro-Wilk, Doornik-Hansen, Jarque-Bera and Lilliefors tests are
available [48].

2.6.2 Unit root test or stationarity test

A time series will be stationary if its properties do not change over time. The analysis of the
time series graph may give an idea of the behavior of the data, but it is insufficient to verify
whether it will be stationary. There are several tests to do this study, most of which are based
on finding a unit root. According to the literature, more than one unit root test should be
used in order to certify the stationarity of the series. Some of the most used tests are the
Augmented Dickley-Fuller tests, Phillips-Perron test and KPSS test [49].

Augmented Dickley-Fuller

This test is also known as the ADF (Augmented Dickley - Fuller) test and is based on the
following description:

∇yt = β1 + β2t+ δyy−1 +

m∑
i=1

αi∇yt−1 + εt (2.24)

where:

β1 is the series intercept, also known as series drit;

β1 is the trend coefficient;

δ is the unit root presence coefficient;

m is the series lags number;

In this test, the following hypotheses are considered:

• H0 : δ = 0 A unit root is contained in the temporal series.

• H1 : δ 6= 0 The series does not contain stationarity.
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A regression of ∇yt will be made in yt−1, ∇yt−1,..., ∇yt+p−1 and then the T statistic will
be calculated, which will be given by:

T =
δ̂

se(δ̂)
(2.25)

where:

δ̂ is the estimator for δ;

se(δ̂) is the estimator considering a standard deviation on the error of δ.

The critical values of the T statistic are calculated by Dickley and Fuller through Monte Carlo
simulation. [49, 50]

Phillips-Perron

This test is known in the literature by the acronym PP and is a generalization of the Dickley-
Fuller test for cases in which the errors {εt}, t ∈ Z are correlated and, possibly, heteroscedastic,
therefore considering the same hypotheses, based on the study of the following description:

∇yt = β1 + β2t+ δyy−1 +

m∑
i=1

αi∇yt−1 + εt (2.26)

Particularly in this test, the Z statistic is calculated by:

Z = nδ̂n −
n2σ̂2

2s2n
(λ̂2n − γ̂0,n) (2.27)

Being:

γ̂0,n =
1

n

n∑
i=1+j

riri−1 (2.28)

λ̂2n = γ̂0,n + 2

q∑
j=1

(
1− j

q + 1

)
γ̂j,n (2.29)

s2n =
1

n− k

n∑
i=1

r2i (2.30)

where:

ri is represented by the residue in yi using least squares estimators;

k is the number of covariates in the regression;

q is the number of lags used to calculate λ̂2n.

It should be noted that Z is an adjustment of the Dickley-Fuller statistic and that if the process
is not correlated it will have null covariance and therefore λ̂2n = γ̂0,n. On the other hand, if the
process is not heteroscedastic it will be se(δ) = 1

n and Z will be given by:

Z = nδ̂ =
δ̂

se(δ̂)
(2.31)



14 CHAPTER 2. LITERATURE REVIEW

So Z becomes Dickley-Fuller’s statistic and therefore will have the same distribution as the
ADF test statistic.

KPSS

This test aims to determine stationarity in a time series and was created by Denis Kwiatkowski,
Peter C. B. Phillips, Peter Schmidt and Yongcheol Shin. Comparing with the previous tests
(ADF and PP), the hypotheses to determine stationarity are exchanged, that is:

• H0 = The series is non-stationary;

• H1 = The series has a unit root.

Considering Yt : t ∈ N , the observations of a time series, it will be decomposed into components
of deterministic tendency ξt, random walk rt and stationary error εt being:

Yt = ξt + rt + εt (2.32)

where: µt represents the fluctuations of the random walk.

Considering et, t ∈ N the residuals of a y regression is explained by the trend, random walk
and intercept components. The estimator for the variance of the regression errors is given by:

σ̂2ε =
SQE

E
(2.33)

The partial sum of the residuals is defined by: St =
t∑

i=1
et, t = 1, 2, ..., T the statistics of this

test are defined by:

LM =
N∑
t=1

S2
t

N2σ̂2ε
(2.34)

2.7 Reference Methods

In this section an analysis will be made to the Box-Jenkins methodology [9], for later comparison
with the modeling done with ARFIMA.

2.7.1 Autoregressive (AR)

In the Autoregressive (AR) model, past values of a time series are used to predict a future
value. Values at different instants of time contributes differently to this calculation. If only
the immediately proceeding value is used, it is said to be an AR(1) process. More generally,
an AR(p) corresponds to a process that uses the last p values, where p is know as the lag. The
AR(p) model is described as:

Xt = c+

p∑
i=1

ϕiXt−i + εt (2.35)

where ϕ1, . . . , ϕp are the model parameters, εt is the error and c is a constant.
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2.7.2 Moving Average (MA)

In this model, instead of the temporal series values being directly used, the past error terms are
the parameterized values used for calculating a prediction. Similarly to the AR model, MA(q)
represents the moving average or order q, i.e., the last q error terms are used. The MA(q) can
be mathematically expressed as:

Xt = µ+ εt + θ1εt−1 + · · ·+ θqεt−q (2.36)

where µ is the mean of the time series, θ1, . . . , θq are the model parameters and εt−1+ · · ·+εt−q
are the past values.

2.7.3 ARIMA

When analyzing a temporal series assuming their statistical linearity, an ARIMA (Auto-
Regressive Integrated Moving Average) model can be used for predictions on temporal series
that are not stationary but can be made so by differentiation. The autoregressive terms cor-
respond to lagged series values and the moving averages terms correspond to lagged random
errors, while the differentiation is the integration between the two models [51, 52].

The model is based on a linear combination of past values (AR components) and errors
(MA components) [53, 9]. The ARIMA predicted value xt is given by:

xt = A(L)d (1 +B (L) εt)

A (L) = 1− ρ1L− ρ2L2 − . . .− ρpLp

B (L) = 1 + θ1L+ θ2L
2 + . . .+ θqL

q (2.37)

where d is the order of differentiation, εt is the error, L is the lag operator, ρp are the parameters
of the AR terms on the polynomial of order p and θq indicate the parameters of the MA terms
on the polynomial of order q. Such model is referenced as an (p, d, q) ARIMA.

This model is intended to be used with stationary time series, i.e. time series with statistical
properties that are constant over time [9]. The stationarity of a time series can be evaluated
by different statistical tools, such as the Mean Absolute Percentage Error (MAPE), given by:

MAPE =
1

N

N∑
i=1

∣∣∣∣ x̂i − xixi

∣∣∣∣× 100% (2.38)

where N is the number of predicted values and x̂i and xi are, respectively, the ith predicted
and actual values.

There are two phases to the identification of an appropriate ARIMA model: (1) changing
the data into a stationary time series and (2) determining the tentative model by observing the
behavior of the autocorrelation function (ACF) and partial autocorrelation functions (PACF)
[9].

The autocorrelation coefficient rk measures the correlation between a set of observations
and a lagged set of observations in a time series:

rk =

n∑
t=1

(xt − x̄) (xt+k − x̄)

n∑
t=1

(xt − x̄)2
(2.39)

where xt is the sample of the stationary time series at time t and x̄ is the mean of the stationary
time series. Box and Jenkins suggest the number of pairs used to calculate the autocorrelation
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to be no more than n = 4. The sample autocorrelation coefficient rk is an initial estimate of
ρp from Eq. (2.37) [9].

The objective of the partial autocorrelation analysis is to measure how xt and xt+k are
related. The PACF is used as a guide, along with the estimated ACF, for choosing one or more
ARIMA models that might fit the available data. The partial autocorrelation ϕk,k is given by:

ϕk,k =

rk −
k−1∑
j=1

ϕk−1,jrk−j

1−
k−1∑
j=1

ϕk−1,jrj

(2.40)

where:

ϕk,j = rk−1,j − ϕk,kϕk−1,k−j

ϕ1,1 = r1

In this model, a nonstationary time series is differentiated d times until it becomes station-
ary, where d is an integer. Such a series is said to be integrated of order d, denoted I (d), with
the non-differentiated I (0) being the option for stationary series. Is important to notice that
many series exhibit too much dependence to be I (0), but are not I (1) [54].

When considering a seasonal ARIMA, the predicted values are evaluated using additional
statistical tools, including the Mean Squared Error (MSE) [27], given by:

MSE =
1

N + 1

N∑
i=1

(x̂i − xi)2 (2.41)

The minimal value of equation (2.41) corresponds to the best seasonal model.
It must be noted that, in many cases, it is not always clear what order of differentiation is

necessary for a series to become stationary, as well as the range of dependency between values.
For these cases, the ARFIMA model can be used, as it can also be applied to nonstationary
time series [49, 28].

2.7.4 ARFIMA

The ARFIMA is one of the most popular models for problems with long-memory dependency
[49]. It provides a solution for the tendency to over-differentiate stationary series that exhibit
long-run dependence, allowing a continuum of the fractional differencing parameter −0.5 <
d < +0.5 [55, 56].

The ARFIMA model is described as follow:

A (L) (1− L)dxt = B (L) εt

(1− L)d =

∞∑
k=1

(k − d)Lk

(−d) (k + 1)
(2.42)

The stochastic process xt is both stationary and invertible if all the roots of A (L) and B (L)
present |d| < 0.5. An important characteristic of an ARFIMA process is its autocorrelation
function’s hyperbolic decay rate, which contrasts with the exponential decay rate observed in
the ARIMA model [57].

This characteristic is visible when the ACF estimation results in a stable distribution with a
negative differentiate parameter [58]. This shows that the dependence in the long memory can
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occur in diverse circumstances, impacting values in arbitrary distant events that still strongly
influence each other [59, 60]. Consequently, predicted ARFIMA values with normal distribu-
tion, for the differentiate parameter d > 0, have a slow autocovariance function decay that
is not absolute summable. This behavior corresponds to the classical definition of long range
dependency [2].

Inverting Eq. (2.42), it is possible to evaluate the decay of the ACF in more details:

xt = (1− L)−d(A (L))−1B (L) εt (2.43)

Following the estimated parameter procedure, the temporary results are acquire by putting
d = 0 in Eq. (2.43), and describe the behavior of the fractionally differenced process (1− L)dxt.
The long memory dependency is observed by using the estimated value of d from Eq. (2.42),
and demonstrate a fractionally integrated xt.

Spectral Density

The spectral density of ARFIMA models with d > 0 are finite except at null frequency, while
ARIMA models have their spectral density finite at all frequencies. Generally, the two models
have different spectral densities for frequencies close to zero when d > 0 [26, 61].

The ARFIMA model can capture both low-frequency and high-frequency components in
the spectral density [62]. In contrast, the ARIMA model cannot differentiate between long-run
and short-run effects. Thus, it fails to capture long-range dependencies and its spectral density,
although remaining finite, is pulled upward [63, 64].

This assumption is useful when evaluating the memory parameter d, providing information
on correlations in a time series measured at different time scales. When d = 0, the changes in
the values of the time series are uncorrelated with each other. When d > 0, increases in the
values of a time series are more likely to be followed by increases, and, conversely, decreases are
more likely to be followed by decreases. Such a time series is called persistent and it has long-
memory property. Finally, when d < 0, increases in the values of the time series are likely to
be followed by decreases and, conversely, decreases are more likely to be followed by increases.
Such a time series is called antipersistent or short memory dependent [65]. Antipersistence
has been observed in financial time series for electricity price processes [66], in climatology
[67] and particularly in nanoscale biophysics [68, 69]. An antipersistence time series reverses
itself more often than a stochastic series would [65]. For the ARFIMA model, the influence
of a given value on the series decreases with the inverse of the square root of its distance on
time. However, although non-stationary long memory time-series can be properly modeled,
non-stationary short memory dependencies can result in an incorrect parameter estimation
[2, 70, 71].

In the literature, different methods of assessing short and long range dependence and es-
timating the memory parameter have been developed, as briefly explained in the following
section.

2.8 Alternative Approaches

Several authors proposed improvements through a breakdown on the AR components of the
ARIMA model, in order to increase the accuracy of the parametrization process [72]. Although
this approach can follow the variations in the parametrization of the model, it fails when the
lag of a time series changes along the time. The variations in the required lag of a time-series
can be addressed by the use of statistical tools in order to decompose and evaluate the model.
This can reduce instabilities in the forecast and improve the accuracy of the ARIMA model.
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However, such procedure is highly dependent on the quality of the statistical tools used in the
decomposition process [73, 74].

The use of preprocessing techniques on the datasets had also been reported to improve
forecasting accuracy. For instance, making the mean and variance constant and not depend-
ing on time was used to improve ARIMA results. However, in the case of ARFIMA, such
preprocessing removes important long-term dependencies necessary for an accurate prediction
[75, 76].

When applying such techniques, it becomes more difficult to do a parameter identification
prior to the model estimation, resulting in a higher accumulative error when applied to datasets
with diverse characteristics [77, 78, 79]. An alternative approach to avoid these problems is
the use of wavelet analysis, which can be applied to standard models such as ARIMA and
ARFIMA without resorting to fragmentation or preprocessing.

2.8.1 Wavelet Multiresolution Analysis (WMA)

Wavelet Multiresolution Analysis (WMA) is a technique used to smooth the input values until
identifying the overall long-term trend. The fluctuations of the wavelet components can be
accurately modeled with ARIMA models [80]. Such combination is quite flexible, presenting
good prediction results for several different types of time-series. The major limitation of the
method is the assumption of short memory dependency.

2.8.2 Bayesian Wavelet (BW)

In the case of long-memory dependency time-series, the Bayesian Wavelet (BW) method can
be used to detect multiple changes in the estimation order of an ARFIMA model. However,
the process of fitting the model to a given dataset can be a major issue depending on the
short-term characteristics of the data [81].

2.9 Linear Regression

The relation between two variables in a straight line can be mathematically defined as a linear
regression. In this description, when one variable is the dependent one and all others are
independent, this is defined as a simple linear regression. If there is more than one independent
variable, it is defined as a multiple linear regression. However, a multiple linear regression
differs from a multi-variate linear regression, in which there are multiple dependent variables
for forecast, instead of a single one [82, 83].

These methods are built using linear predictor functions, which are the parameters used to
estimate values from the dataset [82, 84]. In regression analysis, the objective is to measure
the normal distribution of the results, which are given by the predictors. This means that
the independent variables’ values are related conditionally to the average of the result of the
dependent variables [85, 82]. Generally, a linear regression can be in the following two forms.

In the case of forecast accuracy improvement, a linear regression can be applied to a pre-
diction model to fit the observed data from the dependent and independent variables. Sub-
sequently to the creation of the model, new values of the independent variable can be added
without the dependent variable, on which the already constructed model can forecast a new
result.

For analysis of the fluctuation of the dependent variable (which can be a characteristic of
the independent variable), the linear regression can be used to measure the connection between
them. Particularly, it can be used to analyze if an independent variable does not have linear
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connection with the dependent variable, or to find if there is some redundant information of
the dependent variable in the subgroup of the independent variable [85, 86].

Usually, linear regression models are suitable to be used with the least square method, but
also can be uses with other methods, such as the least absolute deviation or the least square
minimizing function [86, 87].

Considering data in the form of {yi, xi1, ..., xiy}ni=1 of n real numbers, the connection between
the dependent variable y and the p-vector of regressors x is defined as linear, describing a linear
regression model. This connection is built through an unobserved and random error variable ε
[88, 83]. This is mathematically defined as:

yi = β0 + β1xi1+, ...,+βpxip + εi = xTi β + εi (2.44)

where i = 1, ..., n and T denotes the transpose. The matrix form of the n equations can be
written as:

y = Xβ + ε (2.45)

where:

y =


y1
y2
...
yn

 , X =


xT1
xT2
...
xTn

 =


1 x11 ... x1p
1 x21 ... x2p
...

...
. . .

...
1 xn1 ... xnp

 , β =


β0
β1
...
βp

 , ε =


ε1
ε2
...
εn


The interpretation of this equation is as follows. The term y is the predicted dependent

value, while the matrix X contains the independent variables xi in each ith row. From these,
one row might be constant (e.g. xi0 = 1), in which the X is p + 1-dimensional, and the
corresponding β0 is called the intercept term. βi are the regression coefficients, and εi are the
errors [85, 87]. The error ε is used as the minimization loss when calculating the optimal value
of β, minimizing the error of the independent variable y in relation to the input values X.
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Proposed Method

This dissertation proposes a new method which combines the ARIMA and ARFIMA models,
taking into account both long and short memory characteristics of the input data in order to
minimize the accumulative error over time. This allows the proposed method to be applied to
several different scenarios, as it will be demonstrated in the experiments on Chapter 5.

In order to combine the characteristics of both methods, a new linear regression function
was created. This function joins the error and residual values of the two methods in order to
model its own predictor function, regression and error. The function focus on reducing the
accumulated error and maximizing the autocorrelation of the time-series values relevant to the
current prediction. Thus, the model is dynamically adapted to the data’s memory dependence.

This is done by selecting the model with lowest error for each new prediction. As each model
uses different amounts of past data to be able to forecast the newest data, the model selection
process indirectly adjusts the amount of past information used by the proposed method. This
results in an improved prediction accuracy.

The main diagram of the proposed method is shown in Fig. 3.1. It starts by evaluating
the statistical tools over a given dataset, followed by the independent parametrization of both
ARIMA and ARFIMA standard models. The percentage error of both models is measured and
the parameters of the model with the smallest error are selected. These parameters are then
used by the combined model (CM) to generate a predicted value and the process is repeated.
The combination of the short and long term memory characteristics of both models helps to
limit the increase of the accumulative error.

Considering a time series X given by:

XT = x1, x2, . . . , xn, xn+1, . . . , xt, . . . (3.1)

where x1, x2, . . . are past values, xn is the current value, xn+1, . . . are future values and xt is a
sample at a given time t.

In order to distinguish between the predicted values of ARIMA, ARFIMA and the proposed
method, X will be renamed, respectively, XG, XF and XC , where the values x1, . . . , xn are the
same for all three models. The design matrix M is then given by:
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ARIMA 

Parameter 

Es!ma!on

Evaluate

Sta!s!cal Tools

ARIMA

Model

Combined 

Model

ARFIMA

Model

ARIMA

Value

Predicted

Value

ARFIMA

Value

ARFIMA 

Parameter 

Es!ma!on

Figure 3.1: Proposed method block diagram, combining the ARIMA and ARFIMA models.

M =



xG1 xF1 xC1
xG2 xF2 xC2
...

...
...

xGn xFn xCn
xGn+1 xFn+1 xCn+1
...

...
...

xGt xFt xCt
...

...
...


(3.2)

The first predicted value calculated by the CM model is based on the values of xGt and xFt ,
as well as the error εt from equations (2.37) and (2.42), renamed εGt and εFt , respectively.

The prediction x∗t of the CM model is given by:

x∗t = BT
t A+ et (3.3)

where A is the regression coefficient vector, et is the mean-zero error on the stationary process
and BT

t is given by:

BT
t =

t−1∑
j=t−w

βjε
C
j (3.4)

where βt is the MA at a given time t, w is the MA interval and the error εCt is defined as:
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εCt = min
(
εGt , ε

F
t

)
(3.5)

There is a variety of statistical tools that can be used to analyse a dataset, depending on
the memory dependency scale in use, in order to achieve an accurate prediction. This research
uses the Least Square Estimate (LSE), as it presents an optimal regression analysis for the
probabilistic distribution in linear models [83]. The LSE is given by:

Âlse =
(
MTM

)−1
MTX (3.6)

When the error εt is heavy-tailed, it is more desirable to use robust estimation procedures
such as the Least Absolute Deviation (LAD), given by:

Âlad = arg min
A

∣∣∣∣∣
t∑

i=1

xi −XTA

∣∣∣∣∣ (3.7)

In both the LSE and LAD cases, the estimated residuals can be written as:

elset = xt −XT Âlse

eladt = xt −XT Âlad (3.8)

The value of et on Eq. (3.3) is based on the selection between elset and eladt , depending on
the characteristics of the distribution of εCt .

In order not to exceed the lag operators of the ARIMA and ARFIMA models (respectively
LG and LF ), the lag of the CM model is defined as LC = min

(
LG, LF

)
. It is then possible to

validate the CM model through a log loss function, defined as:

LF (x∗t , yt) = (1− yt) ln (1− x∗t )− yt lnx∗t (3.9)

where:

yt =

{
1 if t 6 LC

0 otherwise
(3.10)

This function defines a relationship between equations (3.4) and (3.8), combining the ex-
ponential and hyperbolical decay characteristics of ARIMA and ARFIMA models in order to
keep a low accumulative error. The minimal accumulative error point k is then calculated by:

k = max
t

τt > n+LC∑
i=n+1

x∗i τi

 (3.11)

where τt is the likelihood of convergence in the CM model, given by:

τt = exp (LF (x∗t , yt)) (3.12)

Finally, the predicted value xCn+1 is given by:

xCn+1 =
x∗kτk

n+LC∑
i=n+1

x∗i τi

(3.13)
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The parametrization of the obtained ARIMA, ARFIMA, respectively PG =
{
pG, dG, qG

}
and PF =

{
pF , dF , qF

}
are then updated for the next iteration. On the first iteration, the

parameters of the CM model, PC =
{
pC , dC , qC

}
receive the parameters of the selected model

from (3.5), and afterwards changed according to (3.3), based on the polynomial order of (2.37).
The aforementioned steps can be summarized in the following algorithm:

1. Calculate xGn+1 and xFn+1 using (2.37) and (2.42);

2. Calculate εCn+1 using (3.5);

3. Calculate et using (3.6) to (3.8);

4. Calculate x∗n+i (i = 1 . . . LC) using (3.3);

5. Validate model using (3.9) to (3.12);

6. Calculate xCn+1 using (3.13);

7. Update PG, PF & PC ;

8. Increment n and repeat.

It must be noticed that some statistical tools might not work properly when dealing with
both short and long memory dependency, which would reduce the accuracy of the proposed
method.
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Experimental Framework

In order to demonstrate the efficiency of the proposed algorithm, several datasets of different
contexts were used in the experiments, shown in Table 4.1. All the datasets were obtained
from the UCI Machine Learning Repository [89], except the Sugar Price Database (dataset 1),
obtained from CEPEA-USP [90], Sunspot Number (dataset 6), obtained from WDC-SILSO [91],
and the Nile River (dataset 9), obtained from the Forecast Package for R [92]. Considering the
multivariate characteristics of the datasets and their application in univariate models described
in this paper, a single feature was selected or calculated from each dataset, as described in 4.2.

Each dataset was split into training and test sets, with each set containing 50% of the
available samples. The training data was used to generate some tentative models, which were
compared between each other in order to find the one with the smallest error. The best fit
parameters for each model was determined by the analysis of the statistical tools described in
Chapter 2. The trained models were then applied to the unseen test datasets in order to obtain
the actual forecast results. All experimental results correspond to a one-step ahead forecast.

Table 4.1: Time series datasets.

Name Dataset Samples

Sugar Price Database 1 3346

Greenhouse Gas Observing Network 2 327

Electricity Load Diagrams 3 140256

Individual Household Electric Power Consumption 4 2075259

Combined Cycle Power Plant 5 9568

Sunspot Number 6 3253

Istanbul Stock Exchange 7 536

Dow Jones Index 8 750

Nile River 9 1299

Epileptic Seizure Recognition 10 4097

Basic Hand Movements 11 3000

Arrhythmia 12 452

Table 4.2 describes the selected feature of each of the datasets used in the experiments in
Section 5.

25
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Table 4.2: Time series dataset selected feature.

Dataset Selected Feature

1 Price of 50 kg bag of crystal sugar (daily close value)

2 Average of all regions

3 Consumption of client MT-166

4 Global active power

5 Net hourly electrical energy output (EP)

6 Monthly mean of total sunspot number [Jan. 1749 – Dec. 2019]

7 Istanbul Stock return value

8 Close value of the stock price at end of week

9 Annual minimum level of Nile River, 622 – 1921

10 Response variable of a single selected individual (first subject)

11 Holding of spherical tools by a single female individual (first subject)

12 Sum of areas of all segments (QRSA)

Table 4.3 describes the B3 Ibovespa Stock Market, which contains the value of 50kg sugar
bag from November 2003 to May 2009 [90].

Table 4.3: Sugar Price Database.

Dataset Characteristics Time Series

Number of Instances 3346

Number of Attributes 3

Associated Task Classification / Regression

Area Business

Table 4.4 describes the concentration of greenhouse gas (GHG) emissions in California.
This dataset is divided over the period May 10th to July 31th, 2010 [89, 93].

Table 4.4: Greenhouse Gas Observing Network.

Dataset Characteristics Multivariate, Time Series

Number of Instances 2921

Number of Attributes 5232

Associated Task Regression

Area Physical

Table 4.5 describes the electrical consumption from 370 points per clients from 2011 to 2014
period in Portugal [89].

Table 4.5: Electricity Load Diagrams.

Dataset Characteristics Time Series

Number of Instances 370

Number of Attributes 140256

Associated Task Regression / Clustering

Area Computer
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Table 4.6 describes a set of measures of electrical power consumption in one house consid-
ering a every minute measure over a period of around 4 years [89].

Table 4.6: Individual Household Power Consumption.

Dataset Characteristics Multivariate, Time Series

Number of Instances 2075259

Number of Attributes 9

Associated Task Regression / Clustering

Area Physical

Table 4.7 describes a datase on which contains several events gathered from a combined
cycle power plant during a 6 years period [89, 94, 95].

Table 4.7: Combined Cycle Power Plant.

Dataset Characteristics Multivariate

Number of Instances 9568

Number of Attributes 4

Associated Task Regression

Area Computer

Table 4.8 describes the average month of sunspot number considering there total measure-
ment [91].

Table 4.8: Sunspot Number.

Dataset Characteristics Time Series, Multivariate

Number of Instances 3253

Number of Attributes 5

Associated Task Regression

Area Physical

Table 4.9 describes in details the Istanbul Stock Exchange with other international indexes
as described(SP,DAX,FTSE,NIKKEI,BOV ESPA,MSCE − EU,MSCI − EM), from
June 2009 to February 2011 [89, 6].

Table 4.9: Istanbul Stock Exchange.

Dataset Characteristics Multivariate, Time Series

Number of Instances 536

Number of Attributes 8

Associated Task Classification / Regression

Area Business

Table 4.10 describes the Dow Jones Industrial Index. As a reminder: assume a daily data
collection. When Monday is over all of the data for that day is collected. However it is not
possible to invest on Monday, because the data collection completes only at the end of the day.
It is possible to use the data from Monday to invest on Tuesday [89, 8]



28 CHAPTER 4. EXPERIMENTAL FRAMEWORK

Table 4.10: Dow Jones Index.

Dataset Characteristics Time Series

Number of Instances 750

Number of Attributes 16

Associated Task Classification / Clustering

Area Business

Table 4.11: Nile River Annual Flow.

Dataset Characteristics Time Series

Number of Instances 1299

Number of Attributes 2

Associated Task Regression

Area Physical

Table 4.11 describes the flow measurements annually on the Nile river at Aswan city (for-
merly Assuan), from 1871 to 1970 [92, 96].

Table 4.12 describes a group of datasets which contains EEG signals [89, 97].

Table 4.12: Epileptic Seizure Recognition.

Dataset Characteristics Multivariate, Time Series

Number of Instances 4097

Number of Attributes 179

Associated Task Classification, Clustering

Area Life

Table 4.13 contains data of sEMG signals applied for basic hand movements [89, 98].

Table 4.13: sEMG for Basic Hand Movements.

Dataset Characteristics Time Series

Number of Instances 3000

Number of Attributes 144

Associated Task Classification

Area Life

Table 4.14 contains a selection of different classes of cardiac arrhythmia [89, 99].

Table 4.14: Arrhythmia.

Dataset Characteristics Multivariate, Time Series

Number of Instances 452

Number of Attributes 279

Associated Task Classification

Area Life

As shown in Tables 4.3 – 4.14, the datasets previously described shown several different
instances and attributes, also from a variety of fields of application. On Chapter 5, the exper-
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imental results and comparison were made between the models described on the Chapters 2
and 3.





CHAPTER 5

Experiments

The experiments demonstrate how the proposed method better handles the memory depen-
dency in most datasets, resulting in more accurate forecast when compared with the traditional
ARIMA and ARFIMA models. For each of the compared methods, the best fit parameters, re-
sulting in the smallest accumulative average error per window of time, as well as the respective
training error, were obtained for each dataset and are presented in Table 5.1.

As previously mentioned, some datasets present lower average absolute error with ARIMA,
while others perform better with ARFIMA, due to their long or short memory dependency
characteristics. As shown in Table 5.2, when compared to both methods, the proposed model
presents a lower testing error for most of the datasets, with the exception of datasets 10, 11
& 12. Datasets 1 to 9 present an average error reduction of 3.27%, while datasets 10 to 12
present an average error increase of 9.43%, when compared with ARIMA and ARFIMA.

Table 5.1: Best fit parameters (p, d, q) and training error (MAPE) for each model.

Dataset ARIMA ARFIMA CM

1 (1,1,3) 31.67% (2,0.23,4) 32.23% (1,0.43,2) 28.48%

2 (1,0,2) 18.47% (2,0.17,1) 17.26% (1,0.2,3) 16.82%

3 (2,1,1) 9.43% (3,0.5,2) 10.87% (2,1,2) 8.21%

4 (4,0,1) 15.64% (1,-0.34,5) 17.12% (3,0.2,4) 12.23%

5 (3,1,5) 21.05% (1,0.47,3) 19.22% (2,0.15,3) 18.55%

6 (1,1,6) 9.68% (2,0.33,1) 10.42% (1,1,4) 8.75%

7 (2,0,1) 29.12% (3,0.29,5) 28.41% (2,-0.3,3) 27.63%

8 (3,0,5) 30.05% (4,-0.42,3) 29.85% (2,1,4) 28.79%

9 (1,1,4) 20.45% (1,0.45,2) 17.23% (1,0.36,3) 16.86%

10 (2,1,3) 54.65% (2,-0.5,3) 46.79% (4,-0.3,3) 62.47%

11 (4,1,2) 68.41% (3,0.34,2) 57.61% (2,0.5,4) 74.52%

12 (3,1,4) 67.23% (2,-0.3,3) 58.12% (3,0.4,4) 73.67%
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Table 5.2: Testing error (MAPE) for ARIMA, ARFIMA, WMA, BW, CM & PM models.

Dataset ARIMA ARFIMA WMA BW CM PM

1 33.57% 35.21% 32.68% 31.52% 29.56% 38.85%

2 21.13% 19.97% 17.53% 18.21% 17.05% 27.84%

3 12.56% 13.89% 15.35% 14.64% 9.35% 19.23%

4 18.84% 19.17% 18.47% 16.85% 14.71% 25.61%

5 22.77% 21.93% 21.65% 22.13% 19.07% 26.43%

6 10.81% 12.05% 9.34% 9.12% 8.98% 13.58%

7 31.23% 30.11% 31.05% 29.74% 28.16% 39.72%

8 32.19% 31.08% 30.88% 31.49% 28.93% 38.89%

9 21.67% 17.54% 19.15% 18.37% 17.11% 24.21%

10 58.71% 49.63% 51.87% 43.54% 64.28% 70.41%

11 72.15% 60.48% 64.68% 54.98% 76.32% 81.34%

12 71.79% 63.16% 65.11% 56.84% 75.64% 79.87%
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Figure 5.1: Comparison of the predicted values of ARIMA, ARFIMA and CM methods for the
Sugar Price Database. The vertical lines indicate two regions emphasized in Figures 5.2 and
5.3. The marked points at times 500 and 1000 are used on the analysis of the proposed method
in Figures 5.4 and 5.5.

5.1 Sugar Price Database

A detailed comparison of the three methods is presented for the Sugar Price Database (dataset
1). Figure 5.1 shows an overall view of the predicted values along the time. Two regions were
selected to emphasize the differences in the predicted values, marked with vertical lines in Fig.
5.1 around 1500 and 2880, shown in Fig. 5.2 and 5.3, respectively. Also, points marked at
samples 500 and 1000 were used on the analysis of the proposed method in Fig. 5.4 and 5.5.

Figure 5.2 shows an example in which the ARFIMA model fails to accurately predict the
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Figure 5.2: Detailed view of the region around sample 1500 from Fig. 5.1. The ARFIMA
models fails due to the over-differentiated trend in the short-run.

future values. The reason for this is the low fluctuation of the values, which causes ARFIMA
to over-differentiate the trend, thus failing to foreseen the correct value in the short run.

Figure 5.3 shows an area of prediction where the ARIMA model fails to accurately pre-
dict the future values. The reason is the long term fluctuations in the actual values, which
have an inconsistent trend in a fractional level, preventing ARIMA to maintain a low level of
accumulative error.

In both cases, the CM method presents a lower accumulative error during the course of the
prediction of future values. Figure 5.4 demonstrates the CM model details (sample 500 in Fig.
5.1) working with several statistical tools in order to choose the lowest derivative value for the
AR part, keeping it close to zero and consequently a lower accumulative error.

Figure 5.5 shows the different decay functions (sample 1000 in Fig. 5.1), from which the
slowest one closest to zero is chosen. This keeps a low MA derivative value that can properly
fit the structure of the model during the prediction of the next values.

5.2 Combined Cycle Power Plant

An addition detailed comparison of the three methods is presented for dataset 5. This dataset
contains 9568 data points of collected hourly from a Combined Cycle Power Plant between 2006
& 2011, during which plant was working with full load [89]. Figure 5.6 shows an overall view
of the predicted values along the time. Two regions were selected to emphasize the differences
in the predicted values, marked with vertical lines in Fig. 5.6 at 70–80 and 130–140, shown in
Fig. 5.7 and 5.8, respectively. Also, points marked at samples 23 and 116 were used on the
analysis of the proposed method in Fig. 5.9 and 5.10.

Figure 5.7 shows an example in which the ARFIMA model fails to accurately predict the
future values. The reason for this is the low fluctuation of the values, which causes ARFIMA
to over-differentiate the trend, thus failing to foreseen the correct value in the short run.
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Figure 5.3: Detailed view of the region around sample 2280 from Fig. 5.1. The ARIMA model
fails to predict future values due to the inconsistent trend in a fractional level.
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Figure 5.4: Derivative value corresponding to several statistical tools used in the CM method
(sample 500 in Fig. 5.1). Choosing the value closest to zero helps to keep a low accumulative
error.

Figure 5.8 shows an area of prediction where the ARIMA model fails to accurately pre-
dict the future values. The reason is the long term fluctuations in the actual values, which
have an inconsistent trend in a fractional level, preventing ARIMA to maintain a low level of
accumulative error.
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Figure 5.5: Selection of decay functions (sample 1000 in Fig. 5.1). Choosing the slowest one
that is closest to zero helps to keep a low MA derivative value.
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Figure 5.6: Comparison of the predicted values of ARIMA, ARFIMA and CM methods for the
Combined Cycle Power Plant (dataset 5). The vertical lines indicate two regions emphasized in
Figures 5.7 and 5.8. The marked points (arrows) at times 23 and 116 are used on the analysis
of the proposed method in Figures 5.9 and 5.10.

In both cases, the CM method presents a lower accumulative error during the course of the
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Figure 5.7: Detailed view of the region at times 70–80 from Fig. 5.6. The ARFIMA models
fails due to the over-differentiated trend in the short-run.
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Figure 5.8: Detailed view of the region at times 130–140 from Fig. 5.6. The ARIMA model
fails to predict future values due to the inconsistent trend in a fractional level.

prediction of future values. Figure 5.9 demonstrates the CM model details (sample 23 in Fig.
5.6) working with several statistical tools in order to choose the lowest derivative value for the
AR part, keeping it close to zero and consequently a lower accumulative error.

Figure 5.10 shows the different decay functions (sample 116 in Fig. 5.6), from which the
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Figure 5.9: Derivative value corresponding to several statistical tools used in the CM method
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slowest one closest to zero is chosen. This keeps a low MA derivative value that can properly
fit the structure of the model during the prediction of the next values.
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Figure 5.11: Minimal error and model selection for dataset 2: (a) ARIMA error, (b) ARFIMA
error, (c) minimal error and (d) selected model.

5.3 Model selection analysis

In order to clarify the model selection process used by the proposed method, the individual
errors of each model and the selected model along three time-series were calculated. Figure
5.11 shows the results for the dataset 2 (Greenhouse Gas Observing Network), in which Figure
5.11(a) & (b) shows the errors for the ARIMA and ARFIMA models, respectively. From
the total of 327 samples, the ARFIMA model presented a lower error 239 times, while the
ARIMA model was selected 88 times, as shown in Figures 5.11(c) (minimal error) and (d)
(selected model). A major characteristic of this dataset is the large amount of peaks and
abrupt changes.

Figure 5.12 shows the difference between ARIMA and ARFIMA absolute errors
∣∣εGt ∣∣− ∣∣εFt ∣∣,

together with the respectively selected models, for samples 100 to 150 of dataset 2. Positive
values indicate that the ARIMA error is larger and thus the ARFIMA model was selected.
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Figure 5.12: Error difference and selected model for dataset 2.

Reciprocally, negative values indicate a larger ARFIMA error, with the ARIMA model selected
instead.

The results for the first 500 samples of dataset 6 (Sunspot Number) are shown in Figure
5.13. Again, the errors of the ARIMA and ARFIMA models are presented, in Figures 5.13(a)
and (b). This time, however, from the total of 3253 samples, the ARIMA model was selected
1420 times, while the ARFIMA model presented a lower error 1833 times, as shown in Figures
5.13(c) and (d). This dataset presents a strong seasonal trend. Figure 5.14 shows the difference
between ARIMA and ARFIMA absolute errors and the selected model for samples 100 to 150
of dataset 6.

Finally, Figure 5.15 display the results for dataset 12 (Arrhythmia). In this case, from 452
samples, the ARIMA model was selected 194 times while the ARFIMA model was selected 258
times. Although the final prediction accuracy of the proposed model was worse than either
models, the tendency of selecting the better model for the task (ARFIMA) can be observed.
Figure 5.16 shows the difference between ARIMA and ARFIMA absolute errors and the selected
model for samples 100 to 150 of dataset 12.

It must be noticed that the errors presented in Figures 5.11 to 5.16 for ARIMA and
ARFIMA do not correspond to the error of these models when used individually. This is
due to the fact that, when used within the proposed method’s framework, their prediction
values are not directly used; instead, the final forecast value of the proposed method is used by
both models in the following iterations, thus resulting in a different error profile. Figure 5.17
shows the error of ARIMA and ARFIMA when used independently and within the proposed
method with dataset 2. The error values of the independent models are naturally higher.

5.4 Comparison with alternative approaches

Finally, the proposed method was also compared with two other methods described in Sect.
2.8. Table 5.2 shows the comparison of MAPE values between the ARIMA, ARFIMA, WMA,
BW and CM models. Table 5.2 also includes the results for the Persistence Model (PM) for
reference. This model simply uses the sample xt−1 to predict xt+1[30]. The proposed method
again presents a lower accumulative error for all but three of the datasets. Datasets 1 to 9
presented and average error reduction of 12.52%, while datasets 10 to 12 presented an average
error increase of 37.63%, when compared with the WMA, BW and PM methods.

5.4.1 Individual Household Electric Power Consumption

Figure 7 shows an interval of 500 days (November 2nd, 2007 to March 16th, 2009) of dataset
4, in which the predicted values of the WMA, BW and CM models are displayed together
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Figure 5.13: Minimal error and model selection for dataset 6: (a) ARIMA error, (b) ARFIMA
error, (c) minimal error and (d) selected model.
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with the actual values. This dataset contains the electric power consumption of a household in
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Figure 5.15: Minimal error and model selection for dataset 12: (a) ARIMA error, (b) ARFIMA
error, (c) minimal error and (d) selected model.
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Sceaux, France, sampled every minute between 2006 and 2010 [89]. The region between vertical
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Figure 5.17: Comparison of (a) ARIMA and (b) ARFIMA errors when used standalone or
within the proposed model.

lines correspond to the 2008 year period, while the marked point (December 11th, 2008) is the
period shown in Fig. 5.19. The lower accumulative error of the proposed CM model can be
observed, due to its combined use of long and short memory dependency. The large error values
of the PM method can also be clearly observed. Figure 5.19 describes the power usage in a
one-day cycle, showing the consumption habits of the residents. The measurements correspond
to one-minute average intervals, during a one-day cycle from midnight of December 11th until
midnight of December 12th, 2008.

5.4.2 Abrupt Changes

The performance of the compared methods was also evaluated in segments containing abrupt
changes in datasets 3, 4 & 5. These regions can be detected by the analysis of the absolute
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Figure 5.18: Sampling of 500 days of the Individual Household Electric Power Consumption
time series (dataset 4), showing a comparison between the predicted values of the WMA, BW,
CM & PM models in relation with the actual data. The region between vertical lines (days 560
& 925) correspond to the 2008 year period, while the marked point (arrow, day 906, December
11th, 2008) is the period shown in Fig. 5.19.
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Figure 5.19: Power usage in a one-day cycle (one-minute average intervals) of the Individual
Household Electric Power Consumption time series (dataset 4), from midnight of December
11th until midnight of December 12th.

percentage error (APE) and accuracy error (AE), defined as follows:

APEi =

∣∣∣∣ x̂i − xixi

∣∣∣∣× 100% (5.1)

AEi = APEi −MAPE (5.2)

When a transition from positive to negative values of the APE is observed, it corresponds
to an abrupt change in the actual value of the time series [100]. As different transitions would
be observed for each method, the abrupt changes detected by the PM model were used as a
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Figure 5.20: Sampling of 10 days of the Electricity Load Diagrams time series (dataset 3),
showing a comparison between the predicted values of the WMA, BW, CM & PM models in
relation with the actual data.

Table 5.3: Testing error (MAPE) for regions containing abrupt changes for WMA, BW, CM
& PM models, with the NAC indicated for each dataset.

Dataset WMA BW CM PM NAC

3 77.979% 73.141% 2.440% 65.041% 7053

4 63.381% 61.874% 36.257% 48.298% 51824

5 25.895% 22.579% 16.312% 18.671% 2316

reference, as it is the most susceptible model for such events among the compared methods
[101].

Figure 5.20 shows an interval of 10 days (April 13th to April 23rd) of dataset 3. This
dataset contains electricity consumption of 370 Portuguese clients in kWh, taken in 15 minutes
intervals, from which client number 166 was selected due to the steep variations present in the
data [89]. Fig. 5.21(a) shows a region containing an abrupt change, while the AE values for
each method at the same time interval are shown in Fig. 5.21(b).

The MAPE value for the 3 following points of a detected abrupt change was calculated for
each compared method. The average of all regions, as well as the number of detected abrupt
changed (NAC) are shown in Table 5.3.

The proposed method showed significantly lower prediction error in the segments containing
abrupt changes, especially for dataset 3. As it can be observed in Fig. 5.20, this dataset has a
strong seasonal trend, which can be handled particularly well by the ARIMA model [27], and
subsequently the proposed CM method, as it is partially based on the former.
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Figure 5.21: Abrupt change contained in dataset 3: (a) comparison between the predicted
values of the WMA, BW, CM & PM models in relation with the actual data, (b) AE values
for each model, at the same time interval.





CHAPTER 6

Conclusions

This dissertation presented a solution that addresses the problem of memory dependency in
time series forecasting by combining two well-known methods, ARIMA and ARFIMA, to create
a new prediction model capable of achieving high accuracy over different types of datasets.

Instead of employing model fragmentation or preprocessing techniques, which performances
are usually data-dependent, the proposed method combines the short and long-term memory
properties of ARIMA and ARFIMA, respectively, so that to keep the accumulative error low
along the time. This is achieved by calculating the likelihood of convergence of the exponential
and hyperbolical decays of the two models and combining these values in order to obtain the
final prediction.

Several different datasets were used to compare the performance of the proposed method
with the original ARIMA and ARFIMA models. The results were also compared with the
WMA and BW methods, which tackle the memory dependency problem, as well as the simple
PM method. From the ARIMA and ARFIMA results, it is possible to observe the different
cases of memory dependency among the datasets. Nevertheless, the proposed method presented
lower MAPE values for most of the datasets, with the exception of datasets 10 to 12.

As shown in Table 4.1, these datasets consist of multivariate time-series of biomedical
signals with large number of features, which causes the correlation between values to decrease,
leading to a divergence in the prediction estimation of the proposed method. In contrast, the
wavelet-transform based decomposition of the WMA and BW methods can better handle the
large number of features, achieving the lowest error for these datasets.

A common assumption in temporal series prediction is that the training and test data
follow the same probability distribution. A dataset shift is said to occur when the distribution
differs between the two sets [9, 10]. This divergence can be due to several factors: how input
features are used, how the training and test sets are selected, shifts in distribution due to
non-stationarity environments, among others.

Datasets of biomedical signals commonly present such variations due to the conditions
in which the signals are acquired. They also present highly non-linear and interdependent
features, which can be confirmed by the overall poor performance of all used methods in the
experiments in Chapter 5. Wavelet-based methods (e.g. WMA and BW) are able to estimate
both the overall trend and multiple changes in the estimation order of a time series, which
probably contributed for their lower susceptivity to the dataset shift problem.

The effects of dataset shift could be mitigated, for instance, with the use of multivariate
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model, together with a more detailed analysis of the model selection process by correlation
tools, such as PP (equation 2.27) or KPSS (equation 2.34). Moreover, in the particular case
of the proposed model, by modifying the calculation of the minimal accumulative error point
(equation 3.11) and analyzing the impact on the likelihood of convergence (equation 3.12) may
give a better understanding of the effects of a dataset shift and possibly contribute to the
improvement of accuracy to a better prediction of the model.

The proposed model also presented better accuracy in regions with abrupt changes when
compared with other models, being a promising alternative in applications requiring fast deci-
sion making based on data forecast.

6.1 Future Work

The proposed method was developed with the objective to understand the dynamics of long
and short memory dependency in different scenarios. In order to improve the accuracy of
the CM model on more complex datasets, future work includes the use of neural networks in
order to create a hybrid model, with the objective of optimizing the model estimation and
parametrization procedures[102, 103, 104]. A possible development is a hybrid neural network
prediction model using the linear optimization techniques here presented, in conjunction with
the backpropagation algorithm[105, 106].

The proposed model could also be the basic to create a Long-Short Term Memory (LSTM)
unit to be used in a Recurrent Neural Network (RNN). Such model could have potential appli-
cations in biomedical signal processing. This would eliminate the need of external parameters
when modeling datasets with long and short memory dependence characteristics.



APPENDIX A

R Language Source Code & Toolchain

The methods described in this thesis were developed using the R programming language. R is
free, available on Windows, Mac OS and Linux. There are many types of add-on packages to
different purposes and analysis. This tutorial the R language was used with RStudio (IDE).
The sequence of operations described here is based on the workflow by Hyndman & Khandakar
[92].

A.1 Installing R and RStudio

The following links describes where to download and how to install the R langugage and the
RStudio IDE:

• Website with installation of R in https://cran.r-project.org/

• Website with installation of RStudio in https://rstudio.com/products/rstudio/download/

After the installation, run the RStudio. On the “Packages” tab, click on “Install packages”
and install the package fpp2 (make sure “install dependencies” is marked checked).

A.2 Code Format

The R code are in this format:

autoplot(a10)

h02 %>% ets() %>% forecast() %>% summary()

A.3 Language Packages

On the following links there is a description on how to install the packages in R, necessary do
the development of this tutorial.

How to install packages: https://rdrr.io/r/utils/install.packages.html

https://cran.r-project.org/
https://rstudio.com/products/rstudio/download/
https://rdrr.io/r/utils/install.packages.html
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A.3.1 Utility packages

The following packages were downloaded separated from the main packages, considering their
specific functions used in some situations during the analysis of time series.

• install.packages(c(’FitAR’, ’fUnitRoots’))

• TSA https://www.rdocumentation.org/packages/TSA

• install.packages(’useful’)

Getting started with R, these codes assume that you have the fpp2 package loaded (and
that you are using at least v2.3 of the package). So you should use the command library (fpp2)
before you try any examples provided here.

A.3.2 Forecast package

If you have never previously used R, please first try to read the following link:

• Forecast: http://pkg.robjhyndman.com/forecast/

This contains libraries with methods and tools to analyze time series [92].

Newer version can be downloaded from CRAN and installed inside RStudio using the fol-
lowing command:

• install.packages (’forecast’, dependencies = TRUE)

A.3.3 Fable package

The following link describes how to install the Fable package:

• Fable: http://fable.tidyverts.org/

The v0.1.0 pre-release can be installed using:

• install.packages ("fable", repos = "https://tidyverts.org/")

A.3.4 Forecasting package

This package is takes as reference the book title “Forecasting: Principles and Practice by Rob.
J. Hyndman and George Athanasopoulos”. Possible to access completely free on the following
link:

• Online textbook on forecasting: https://otexts.com/fpp3/

• All the R examples contained in this book uses the fpp3 package first: library(fpp3)

This library will upload datasets and functions from many different packages. For example,
different versions of the tidyverse, tsibble, tsibbledata, fable, and feasts packages (more
details tidyverts.org website).

https://www.rdocumentation.org/packages/TSA
http://pkg.robjhyndman.com/forecast/
http://fable.tidyverts.org/
https://otexts.com/fpp3/
tidyverts.org
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A.4 ARIMA Modeling

In order to apply the ARIMA model to a given dataset, the data needs first to be converted
into R’s time series data format.

sugar_price.timeseries <- ts(sugar_price,start=c(1997,5,2),

end=c(2010,10,15),frequency=252)

where sugar price is the data being converted to time series, start is the initial time of the
data (1997 May 2nd, in this example). As it is a monthly data divided on working days,
frequency=252 is set (quantity of working days in an average month). After that, the dataset
will be process and a figure simmilar to Fig. A.1 will be displayed. To explore the components
of a time series, the R code is:

components.ts = decompose(tsDataset)

plot(components.ts)

Figure A.1: Sugar price dataset on a time series

This will generate the components of this time series, as shown on Fig. A.2. It is possible
to observe different components as the figure described. Analyzing Fig. A.2, we can procedure
on the ARIMA model analysis. After, considering the stationarity of the time series it is
necessary to remove non-stationary part for ARIMA. To gain stationarity, the Unit Root test
is a common approach, such as the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test:

library("fUnitRoots")

urkpssTest(tsDataset, type = c("tau"), lags = c("short"),use.lag = NULL, doplot =

TRUE)

tsdatastationary = diff(tsDataset, differences=2)

plot(tsdatastationary)
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Figure A.2: Decomposition of the Sugar Price Time Series.

This results in the plot shown in Fig. A.3. We then proceed to remove the non-stationarity
of the Sugar Price Time series. After removing non-stationarity, the series will become as
shown in Fig. A.4. The autocorrelation can be calculated with the following code:

acf(tsDataset,lag.max=33)

It is then possible to display the ACF of the Sugar Price Time series as shown in Fig.
A.5. Be aware that, the autocorrelation function acf() is given for all possible lags. It also is
possible to set different sizes of lag, depending on the situation.

tsseasonaladjusted <- tsDataset- tscomponents$seasonal

ts1stationary <- diff(tsseasonaladjusted, differences=2)

As the code shows, it is possible to remove the seasonal factor from the data, on which
makes the data stationary, as presented in Fig. A.6. It is also possible to smooth the see more
clear the patterns in the time series.

A.5 Model Fitting

After analyzing the data, the next step is to model fitting, done by observing the order,
variables, etc. In this point is also necessary to look the values of p and q that will be used,
for this we use the acf() and pacf() functions.

acf(t1stationary, lag.max=25)

pacf(t1stationary, lag.max=25)
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Figure A.3: Residuals from the regression test on the Sugar Price Time Series, also the ACF
and PACF of the residuals considering 9 lags.

The resulting plots are presented in Fig. A.7. Analyzing the plots and the data results
from the process, we can select values as presented in Fig. A.8.

fitARIMA2 <- arima(tsDataset, order=c(1,1,1),seasonal = list(order = c(1,0,0),

period = 12),method="ML")

library(lmtest1)

coeftest(fitARIMA2)

Considering the fitARIMA code, each parameter of this function can be as described in
Fig.A.9, displaying the results of the fitARIMA function. In order to select with coefficients
and errors, it is possible to do this selection by the function confint(). The Fig.A.10 displays
the results of the confitARIMA function.

confint(fitARIMA)
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Figure A.4: Stationary Sugar Price Time Series.

Figure A.5: ACF of the Sugar Price Time Series.
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Figure A.6: Stationary Sugar Price Time Series.

Figure A.7: ACF and PACF on the Stationary Sugar Price Time Series.

A.6 Box Ljung Test

The ARIMA is based on the Box Ljung test:

acf(fitARIMA2$residuals1)

library(FitAR)

boxresult-LjungBoxTest (fitARIMA2$residuals1,k=3,StartLag=2)

plot(boxresult[,3],main= "Ljung-Box Q Test", ylab= "P-values", xlab= "Lag")
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Figure A.8: Shape and Indication on the which model to be selected.

Figure A.9: R language program, displaying the results of the fitARIMA function.

Figure A.10: R language program, displaying the results of the confitARIMA function.

qqnorm(fitARIMA2$residuals1)

qqline(fitARIMA2$residuals1)

Processing this code will generate the plots shown in Fig. A.11. This plot shows the results
of the fitARIMA function with the corresponding residuals. The output of the ACF shows that
there is no significant autocorrelation.
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Figure A.11: The fitARIMA function showing the residuals on ACF

Figure A.12: The displays of the Ljung-Box Q Test, indicating non-significance values.

Is is possible to observe that the p-values for the Ljung Box Q test are much higher than
0.05, which indicates “non-significance”. The rest of the values are standard as they are close
to the line as shown on Fig. A.12 and also is possible to analyze the Normal Q-Q plot on A.13.

With all this information, we can assume that there is no visible pattern on the residuals,
so the next logical step is to forecast. It is possible to use two different functions ets() and
auto.arima(), which will automate the process selection for possible ARIMA models.
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Figure A.13: Normal Q-Q Plot indicating the non-significance values as indicated on the p
values aforementioned.

auto.arima(tsDataset, trace=TRUE)

Considering the AIC, it is possible to repeat the process until no lower AIC can be found.
Figure A.14 shows the results of the auto.arima() function.

Figure A.14: ARIMA automatic function shows the output of best model fit and their coeffi-
cients.

A.6.1 Forecasting with ARIMA

The function predict() can be used for predicting result with different fitted models:

predict(fitARIMA2,n.ahead = 8)
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Alternately the function forecast.Arima(), which is inside the forecast R package, can be
used:

futureValue <- forecast.Arima(fitARIMA2,h=15, level=c(98.9))

plot.forecast(futureValue)

Figure A.15: The forecasts shown in blue line with 80% prediction are the dark shaded, and
the 95% prediction are the light shaded area.

Running the plot forecast on futureValue will generate Fig. A.15. This plot shows that
there is a forecast with 80% confidence within the a dark blue area, and of 95% within the
light blue area. This describes the sequence of steps to analyze and forecast a time series using
ARIMA.

A.6.2 Complete R Source Code

The entire code used in this explanation is available below and in the folder R language, which
is part of this tutorial package.

#Load Libraries

library("fUnitRoots")

library(lmtest)

library("forecast")
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library(FitAR)

library(readr)

#import data -> in this example Sugar Price from the Stock Market

sugar_price <- read_csv("C:/R/Sugar_price.csv")

#convert to time series

sugar_price.timeseries <- ts(sugar_price,start=c(1997,5,2),end=c(2010,10,15),

frequency=252)

#Display the dataset

plot(sugar_price.timeseries)

#decompose into time series components

timeseries.components <- decompose(sugar_price.timeseries)

plot(timeseries.components)

#detemine stationarity of the dataset

#KPSS Unit Root Test

urkpssTest(sugar_price.timeseries, type = c("tau"), lags = c("short"),

use.lag = NULL, doplot = TRUE)

timeseries.stationary <- difference(sugar_price.timeseries, differences=2)

plot(timeseries.stationary)

acf(sugar_price.timeseries,lag.max=25)

#remove seasonality

timeseries.seasonally.adjusted <- sugar_price.timeseries-

timeseries.components$seasonal

plot(timeseries.seasonally.adjusted)

timeseries.stationary <- diff(timeseries.seasonally.adjusted, differences=1)

plot(timeseries.stationary)

par(mfrow=c(2,1))

acf(timeseries.stationary, lag.max=25)

pacf(timeseries.stationary, lag.max=25)

#fit the model

fitARIMA<-arima(sugar_price.timeseries, order=c(1,1,1),

seasonal = list(order = c(1,0,0), period = 252),method="ML")

fitARIMA

#significance of coefficients

coeftest(fitARIMA)

par(mfrow=c(1,1))

acf(fitARIMA2$residuals1)

#residual diagnostics
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boxres2<-LjungBoxTest (fitARIMA2$residuals1,k=3,StartLag=2)

par(mfrow=c(2,1))

plot(boxres2[,4],main="Ljung Box Q Test", ylab="P values", xlab="Lag")

qqnorm(fitARIMA2$residuals1)

qqline(fitARIMA2$residuals1)

auto.arima(sugar_price.timeseries, trace=TRUE)

#forecast future values

par(mfrow=c(1,1))

predict(fitARIMA,n.ahead = 5)

futureValue <- forecast(fitARIMA,h=15, level=c(98.9))

autoplot(futureValue)





Credits for Illustrations

Figure 2.1: Adapted from [9]

Other figures not included in this list are original form the author.
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