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Abstract

This paper consists of two parts. First, we propose a new method for quantify-

ing the statistical significance of the features which are selected by a sparse machine

learning algorithm. The proposed method can select high-order interactions of features

related to responses (e.g., drug resistance of patients) and quantify the association with

the responses. In our experiment, several combinations of mutations in gene sequence

associated with HIV-1 drug resistance were selected, and the confidence interval of the
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fitted coefficients for the selected combinations were provided. In the second part, we

propose a new robust learning method that stabilizes the learning results by automat-

ically controlling the degree of influence of outliers. Although it is possible to obtain

training data relatively easily by using crowdsourcing in recent years, the learning re-

sults become unstable due to anomaly samples in training datasets. The motivation

for this research is to overcome such a problem. The proposed method is an anneal-

ing method with a continuous temperature parameter, where the parameter can be

regarded as the degree of influence of outliers. Although most of conventional methods

are also annealing based approaches, the temperature parameter can NOT be con-

tinuously changed because of computational efficiency – there is a trade-off between

computational time and generalization performance, that is a severe problem in robust

learning. Our proposed method can change the parameter continuously by using a

new homotopy approach where the optimal solution of the model can be calculated by

piecewise linear function with respect to the parameter. Our experiments showed that

generalization performance and computational time of the proposed method are better

than the conventional method.

Part I

Statistical inference for feature selection

algorithms

1 Introduction

In this paper, we consider a stepwise feature selection algorithm for a high-order interaction

model that has r-th order interactions of multiple features, and we propose a new statistical

inference for selected high-order interaction features. Feature selection and statistical infer-

ence for high-order interaction features are important tasks. For example, in a biomedical

study, co-occurrence of multiple mutations in multiple genes may have a significant influence

on a response to a drug even if occurrence of single mutation in each of these genes has no
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influence [1, 2, 3]. In high-order interaction model, a difficulty of these tasks is that there is a

huge number of possible combinations of multiple features. If one has a dataset with d orig-

inal features and takes into account interactions up to order r, the model has D =
∑r

ρ=1

(
d
ρ

)
features (e.g., for d = 10, 000, r = 5, D > 1017). Feature selection and statistical infer-

ence in such an extremely high-dimensional model are challenging both computationally

and statistically.

A common approach to high-dimensional modeling is to consider a sparse model, i.e., a

model only with a selected subset of features. In the past two decades, considerable amount of

studies have been done on sparse modeling and feature selection in high-dimensional models.

In these studies, a variety of feature selection algorithms such as marginal screening [4], or-

thogonal matching pursuit [5], LASSO [6], and their various extensions have been developed.

On the other hand, statistical inference for sparse models (hypothesis testing or confidence

interval computation of the fitted coefficients) have not been deeply studied until recently.

After the seminal work by [7], significant progress has been made on statistical inference for

sparse linear models [7, 8, 9, 10, 11, 12, 13, 14, 15], and these approaches are sometimes

called Selective Inference or Post-Selection Inference. The basic idea of selective inference

is to consider the sampling distribution of test statistic after feature selection, where the

sampling distribution is a conditional distribution which is characterized by selected and

unselected features. By considering such a distribution, we can eliminate the selection bias

[16] that arises in feature selection. In the following paragraph, we briefly discuss selection

bias in testing selected features.

1.1 Selection bias in feature selection

A simple illustration of selection bias is depicted in Figure 1. In this example, we generated

several images whose color was randomly generated based on the standard normal distri-

bution N(0, 12). By using a selection algorithm, we selected a region which is composed of

3×3 pixels, and we considered a naive hypothesis testing that the expected average color

of pixels on the selected region is zero or not (the detail will be described later). Although

each color of pixels was randomly generated, the color level on the selected region tends to

be higher, and type I error could not be controlled under the desired significance level. The
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Figure 1: A simple demonstration of selection bias. In this example, we randomly generated

5×5, . . ., 100×100 images whose color was generated based on normal distribution N(0, 12).

In each image, we selected the region (which is composed of 3×3 pixels) whose average

value is the highest compared with the other regions in an image. We observed that the

color of selected region looks “significantly higher” when it is selected from larger image.

This indicates that the selection bias depends on both selected and unselected regions. The

bottom plot shows the frequencies of the false positive findings for various sizes of images,

in which we applied a naive hypothesis testing where the null hypothesis is that the average

value on the selected region is equals to 0, with desired 5% significant level.

detail of the hypothesis testing is shown as follows. Let τj be the average color of pixels on

the j-th selected region in an image. Since each color of pixels was randomly generated by

using N(0, 12), one expects that the sampling distribution of value τj is also N(0, 12). The
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classical z-test Hj,0 : E[τj] = 0, s ∼ N(0, 12) is totally valid when j is completely randomly

selected. On the other hand, E[τj] 6= 0 when j is selected based on observations of generated

image. It is because the region would NOT be selected when the average value τj is relatively

smaller than the others. This indicates that the distribution of value τj after selection is

no longer normal distribution N(0, 12), but rather a conditional distribution which is condi-

tioned by the selected and unselected regions. To remove the bias, it is necessary to analyze

the sampling space of the test statistic after selection.

1.2 Our contributions

Our main contribution is to develop a selective inference procedure for selected features in

high-order interaction model. In high-order interaction model, there is a serious computa-

tional problem because the sampling distribution depends not only on selected features but

also on an extremely large number of unselected features. For circumventing the computa-

tional issue, we consider a tree structure among features and derive a novel pruning condition

that enables us to efficiently identify a set of features which have no effect on the sampling

distribution.

1.3 Organization of the paper

Here is the outline of this paper. §2 presents problem formulation, illustrative example,

formal description of selective inference, and a brief review of recent selective inference liter-

ature. §3 describes our main contribution, where we develop a method that enables selective

inference in extremely high-dimensional settings. §4 discusses extensions for computational

efficiency and statistical power of selective inference. §5 covers numerical experiments for

demonstrating the advantage of selective inference framework. §6 concludes the paper.
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2 Preliminaries

2.1 Notations

We use the following notations in the remainder. For any natural numbers n and d, we

denote the set of indices as [n] = {1, . . . , n}, and we denote a vector and a matrix as y ∈ Rn

and Z ∈ Rn×d, respectively. Furthermore, the i-th row and j-th column vectors of matrix

Z ∈ Rn×d are written as zi: ∈ R1×d, z:j ∈ Rn×1 respectively, and (i, j)-th element of matrix

Z is written as zij. For a set of indices S ∈ [d], we denote a sub-matrix as ZS ∈ Rn×|S| whose

column vectors are composed of S columns of the matrix Z.

2.2 Problem statement for high-order interaction model

Let zi: = [zi1, . . . , zid] ∈ [0, 1]1×d be d-dimensional original features with i-th sample index.

We consider the following high-order interaction model up to r-th order

f(zi:) =
∑
j1∈[d]

αj1zij1 +
∑

(j1,j2)∈[d]×[d]
j1 6=j2

αj1,j2zij1zij2 + · · ·+
∑

(j1,...,jr)∈[d]r

j1 6=... 6=jr

αj1,...,jrzij1 · · · zijr , (1)

where αs are the coefficients, and the number of coefficients is D =
∑

j∈[r]

(
d
j

)
. For notation

simplicity, we write the high-order interaction model (1) as the following linear model

f(xi:;β) = xi:β = β1xi1 + · · ·+ βDxiD, (2)

where β1, . . . , βD are D coefficients corresponding to αj1 , . . . , αj1,...,jr in (1), and xi: is D-

dimensional high-order interaction features which is computed by multiplying original fea-

tures. Although the bias term in (2) can be considered by appending an unit vector x:0 = 1

and a coefficient β0, we omit the explicit notation.

Our goal is to select high-order interaction features which are highly associated with the

n-sample continuous responses y = (y1, · · · , yn)> ∈ Rn, and provide the statistical inference

of the association for each of the selected features. The original training set is denoted as

(Z,y) ∈ [0, 1]n×d×Rn, while the expanded training set is written as (X,y) ∈ [0, 1]n×D×Rn.

The short description of symbols is summarized in Table 1.
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Table 1: The short description of symbols

Symbol Description

n The number of samples

d The number of original features

D The number of high-order interaction features

r The maximum order of interactions

Z ∈ [0, 1]n×d Original design matrix

X ∈ [0, 1]n×D Design matrix for high-order interaction features

y ∈ Rn Response vector

2.3 Sparse high-order interaction model

Since the number of all features D in the high-order interaction model is enormous, we con-

sider a sparse model by using a forward greedy feature selection algorithm called Orthogonal

Matching Pursuit (OMP) [5]. Let S(t) ⊆ [D] be the set of indices for selected features at

feature selection step t ≥ 1. In OMP, each feature is selected by

S(t) = {j(t) ∪ S(t−1)}, j(t) = arg max
j∈[D]\S(t−1)

|x>:jr(t)|, (3)

where S(0) = ∅ and r(1) = y. The (residual) vector r(t) is

r(t) = y −XS(t−1)β̂S(t−1) , (4)

and β̂S(t−1) is the least square estimator β̂S(t−1) = X+
S(t−1)y where the super script + means

pseudo inverse. The feature selection step t is sequentially incremented.

In this paper, we do not care about the normalization of x:j for each j ∈ [D], because

high-order interaction features tend to be very sparse when original features are defined in

[0, 1]. Moreover, we do not care about the centralization of features but it can be considered

when the residual vector is centralized as 1>r(t) = 0 because the inner product will be shift

invariant x>:jr
(t) = (x:j + c1)>r(t) for any scalar parameter c.
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2.4 Selective inference for sparse linear model

In this section, we review statistical inference after feature selection, which is based on

selective inference recently developed by [7]. To formalize the problem, we consider the

following response which follows the multivariate normal distribution

y ∼ N(µ, σ2In), (5)

where µ is unknown mean, σ2 is a known variance, and In is n sample identity matrix.

We model the expected value of response as µ = XS(t)βS(t) , where XS(t) is the fixed design

matrix at feature selection step t, and βS(t) is the best linear predictor, that is

βS(t) = arg min
β
S(t)
∈RD

E‖y −XS(t)βS(t)‖2
2 = X+

S(t)µ.

Lee et al.,[7] suggested to consider a family of intervals {CS(t),j}j∈S(t) that have conditional

(1− α) coverage:

Pr(βS(t),j ∈ CS(t),j|S(t)) ≥ 1− α. (6)

If (6) holds, then, FCR (false coverage-statement rate) [17] and pFCR (positive false coverage-

statement rate) [18] can be controlled (the proof is shown at Lemma 2.1 of [7]) as

FCR = E

[
|{j ∈ S(t) : βS(t),j /∈ CS(t),j}|

|S(t)| ; |S(t)| > 0

]
≤ α,

pFCR = E

[
|{j ∈ S(t) : βS(t),j /∈ CS(t),j}|

|S(t)|

∣∣∣∣∣ |S(t)| > 0

]
≤ α.

In this paper, our interest is to construct the conditional intervals shown in (6) for each of

the selected high-order interaction features. Our interest is not in evaluating the correctness

of the selected model and we do not discuss how to terminate the feature selection step t

in OMP. Lee et al.[7] showed that valid confidence intervals can be computed even if the

selected model is wrong, but the requirement is the normality of error as shown in (5). On

the other hand, the selective inference for determining the feature selection step t is studied

in [9], where the interest is to check whether the selected model is correct or not.
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2.4.1 Basic idea of selective inference

Selective inference is developed for two stage methods, where a subset of features is selected

in the first stage, and inferences for the selected features are made in the second stage. A

key finding by [7] is that, if the first selection stage is described as a linear selection event,

then exact (non-asymptotic) statistical inference for the fitted coefficients conditional on the

selection event can be done.

2.4.2 Feature selection stage

Suppose that, in the first feature selection stage, a subset of features S(t) = {j(1), · · · , j(t)} ⊆
[D] are selected, where j(t) is defined by (3). The selective inference framework in [7] can be

applied to feature selection algorithms whose selection process can be characterized by a set

of linear inequalities in the form of Ay ≤ b with a certain matrix A and a certain vector b

that do not depend on y. This type of selection event is called a linear selection event. In

the selective inference framework, inferences are made conditional on the selection event, it

means that, in the case of a linear selection event, we only care about the cases where y is

observed in a polytope Pol(S(t)) = {y ∈ Rn | Ay ≤ b}. In [7], [19] and [20], some feature

selection procedures are shown to be linear selection events.

As pointed out in [19], [20] the selection process of OMP is a linear selection event, i.e.,

characterized by a set of linear constraints. Let S(t) and S̄(t) be the set of indices for selected

and unselected features, respectively at feature selection step t ∈ [k] for a fixed natural

number k. It indicates that S(1) ⊆ S(2) ⊆ · · · ⊆ S(k) and S̄(1) ⊇ S̄(2) ⊇ · · · ⊇ S̄(k). Moreover,

let j(t) be the index of t-th selected feature, which is defined by (3). The selection event of

OMP is rewritten by the following constraints

∀j′ ∈ S̄(t), t ∈ [k], |x>:j(t)r(t)| ≥ |x>:j′r(t)|. (7)

13



These constraints are rephrased by

∀j′ ∈ S̄(t), t ∈ [k],

if x>:j(t)r
(t) > 0, then

(−x:j(t) − x:j′)
>r(t) ≤ 0,

(−x:j(t) + x:j′)
>r(t) ≤ 0,

if x>:j(t)r
(t) ≤ 0, then

( x:j(t) − x:j′)
>r(t) ≤ 0,

( x:j(t) + x:j′)
>r(t) ≤ 0.

By using sj(t) = sign(x>
:j(t)
r(t)), these constraints are summarized as

∀j′ ∈ S̄(t), t ∈ [k],

(−sj(t)x:j(t) − x:j′)
>r(t) ≤ 0,

(−sj(t)x:j(t) + x:j′)
>r(t) ≤ 0,

−sj(t)x>:j(t)r(t) ≤ 0,

or equivalently

∀(j′, ξ) ∈ S̄(t) × {−1, 1, 0}, t ∈ [k],

(−sj(t)x:j(t) + ξx:j′)
>r(t) ≤ 0.

Since the residual vector (4) is r(t) = (In − XS(t−1)X+
S(t−1))y, the constraints are rephrased

by the set of linear inequalities in the form of Ay ≤ b as

∀(j′, ξ) ∈ S̄(t) × {−1, 1, 0}, t ∈ [k],

(−sj(t)x:j(t) + ξx:j′)
>Γ(t)y ≤ 0, (8)

where Γ(t) = (In −XS(t−1)X+
S(t−1)) and Γ(1) = In.

2.4.3 Statistical inference stage

In the remainder, we use the notation S = S(k) with a certain fixed natural number k. If we

consider the case where S is NOT selected from the data, i.e., independent of y, then the
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sampling distribution of each fitted coefficient β̂S,j = (X+
S y)j is

β̂S,j ∼ N(βS,j, σ
2
S,j), where σ2

S,j = σ2(X>SXS)−1
jj . (9)

If we define `
(j)
α/2 and u

(j)
α/2 to be the lower and upper α/2 points of the sampling distribution

in (9), then the type I error at level α is controlled as

Pr(βS,j /∈ [`
(j)
α/2, u

(j)
α/2]) ≤ α. (10)

On the other hand, after feature selection, we would like to control the following selective

type I error

Pr(βS,j /∈ [`
(S,j)
α/2 , u

(S,j)
α/2 ] | S)

=Pr(βS,j /∈ [`
(S,j)
α/2 , u

(S,j)
α/2 ] | y ∈ Pol(S)) ≤ α, (11)

where the selection event is written as y ∈ Pol(S) in the case of a linear selection event. [7]

derived how to compute these confidence intervals as formally stated in the following lemma.

Lemma 1. Let F
[L,U ]

µ,σ2 be the CDF of a truncated normal distribution with the mean µ, the

variance σ2, and the truncation interval [L,U ], i.e.,

F
[L,U ]

µ,σ2 (x) =
Φ((x− µ)/σ)− Φ((L− µ)/σ)

Φ((U − µ)/σ)− Φ((L− µ)/σ)
,

where Φ is the CDF of the standard normal distribution. Furthermore, let the truncation

points be

L(S, j) = β̂S,j + θL(X>SXS)−1
jj , (12a)

where θL = min
θ∈R

θ s.t. y + θ(X+
S )>ej ∈ Pol(S),

U(S, j) = β̂S,j + θU(X>SXS)−1
jj , (12b)

where θU = max
θ∈R

θ s.t. y + θ(X+
S )>ej ∈ Pol(S),

where ej is an unit vector, j-th element of which is one. If `
(S,j)
α/2 and u

(S,j)
α/2 are defined such

that

F
[L(S,j),U(S,j)]

`
(S,j)
α/2

,σ2
S,j

(β̂S,j) = 1− α/2, (13a)

F
[L(S,j),U(S,j)]

u
(S,j)
α/2

,σ2
S,j

(β̂S,j) = α/2, (13b)
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then, the interval [`
(S,j)
α/2 , u

(S,j)
α/2 ] satisfies the conditional coverage property, i.e.,

Pr(βS,j /∈ [`
(S,j)
α/2 , u

(S,j)
α/2 ] | S) = α.

The proof of Lemma 1 is presented in § 7.1 although it is easily proved by using the

results in [7]. Lemma 1 indicates that the sampling distribution of each fitted coefficient

β̂S,j = (X+
S y)j is a truncated normal distribution when the selection event is a linear selection

event {Ay ≤ b}. Figure 2 schematically illustrates that truncation points can be computed

by optimizing θ along with the direction η = (X+
S )>ej since each fitted coefficient β̂S,j is

η>y.

Figure 2: An illustration of polyhedral lemma. The polyhedron represents the selection

event and truncation points can be computed by optimizing θ along with the direction

η = (X+
S )>ej.

Unfortunately, we cannot directly apply this selective inference framework to the high-

order interaction model because the polytope Pol(S) is characterized by extremely large

number of linear inequalities, and the optimization problems in (12) are hard to solve.
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3 Computational tricks by using tree-based feature rep-

resentation

The OMP feature selection (3) and the computation of truncation points (12) are compu-

tationally infeasible because the number of high-order interaction features D is extremely

huge. For circumventing this issue, we introduce a tree-based representation of high-order

interaction features shown in Figure 3 and consider the following computational pruning

techniques in both feature selection and statistical inference stages.

(a) Tree-based feature representation (b) Another tree-based feature representation

Figure 3: (a) An example of high-order interaction features represented by a tree structure

with a fixed sample index i, where the number of original features d = 3 and the maximum

interaction order r = 2. In the tree, each node can be efficiently computed by using a tree (or

graph) search technique such as DFS (depth first search). This tree originally has a lattice

structure, e.g., the node zi1zi2 has two edges from zi1 and zi2, but we remove the edges

for simplicity. (b) Another tree-based feature representation by using high-order interaction

features.
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3.1 Pruning technique in feature selection stage

Since a high-order interaction feature is the product of multiple original features whose value

are defined in [0, 1] ∈ R, the following property holds:

0 ≤ xij̃ ≤ xij,∀(i, j̃) ∈ [n]×Des(j), (14)

where Des(j) is the set of indicates for descendant features of j-th parent feature. By using

this, for any residual vector r(t), we obtain

|x>
:j̃
r(t)| ≤ max


∑

i:r
(t)
i >0

xijr
(t)
i ,−

∑
i:r

(t)
i <0

xijr
(t)
i

 . (15)

When we search over the tree, if the right-hand side of (15) is smaller than the current largest

correlation in (3), then, we can quit searching over its descendant nodes j̃ ∈ Des(j). This

pruning technique has been widely used in item-set or sub-graph mining, e.g.,[21, 22, 23, 24].

3.2 Proposed pruning technique in statistical inference stage

In the following lemma, we show the solutions of the optimization problems (12).

Lemma 2. For η = (X+
S )>ej, the solutions of the optimization problems in (12) are respec-

tively written as

θL = max
t∈[k]

max
(j′,ξ)∈S̄(t)×{−1,1,0},

(ξx:j′−sj(t)x:j(t)
)>Γ(t)η<0

(sj(t)x:j(t) − ξx:j′)
>Γ(t)y

(ξx:j′ − sj(t)x:j(t))
>Γ(t)η

≤ 0, (16a)

θU = min
t∈[k]

min
(j′,ξ)∈S̄(t)×{−1,1,0},

(ξx:j′−sj(t)x:j(t)
)>Γ(t)η>0

(sj(t)x:j(t) − ξx:j′)
>Γ(t)y

(ξx:j′ − sj(t)x:j(t))
>Γ(t)η

≥ 0. (16b)

where S̄(t), sj(t) and Γ(t) are appeared in (8).

The proof of Lemma 2 is presented in § 7.2. Since the inner maximization and inner

minimization of (16) are difficult to compute, we present an efficient computational trick

for those inner optimization problems, which is our main contribution. Our basic idea for

addressing the computational difficulty is to note that most of the inequalities actually do
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not affect the results of the selective inference, and a large portion of them can be identified

by exploiting the anti-monotonicity properties defined in the tree structure.

We consider a tree which consists of a set of nodes corresponding to each of the unselected

features j′ ∈ S̄(t). We define Des(j′) be the set of descendant nodes of j′-th node in the tree.

When we search over the tree, we introduce a novel pruning strategy by deriving a condition

such that, if the j′-th node in the tree satisfies certain conditions, then all the j̃′ ∈ Des(j′)
are guaranteed to be irrelevant to the selective inference results because they do not affect

the optimal solutions in (16).

Theorem 3. Consider solving the inner maximization problem in (16a), and let θ̂L be the

current optimal solution, i.e., we know that the optimal θL is at least no greater than θ̂L.

For any j′ ∈ S̄(t) and all ξ ∈ {−1, 1, 0}, if either of the following conditions∑
i:ξ(Γ(t)η)

i
<0

xij′ξ
(
Γ(t)η

)
i
− sj(t)x>:j(t)Γ(t)η ≥ 0, or

max{0, sj(t)x>:j(t)Γ(t)y −∑i:ξ(Γ(t)y)
i
>0 xij′ξ

(
Γ(t)y

)
i
}

min{0,∑i:ξ(Γ(t)η)
i
<0 xij′ξ (Γ(t)η)i − sj(t)x>:j(t)Γ(t)η} ≤ θ̂L (17)

are satisfied, then its descendant nodes j̃′ ∈ Des(j′) do not affect the solution of (16a).

Similarly, for any j′ ∈ S̄(t) and all ξ ∈ {−1, 1, 0}, if either of the following conditions∑
i:ξ(Γ(t)η)

i
>0

xij′ξ
(
Γ(t)η

)
i
− sj(t)x>:j(t)Γ(t)η ≤ 0, or

max{0, sj(t)x>:j(t)Γ(t)y −∑i:ξ(Γ(t)y)
i
>0 xij′ξ

(
Γ(t)y

)
i
}

max{0,∑i:ξ(Γ(t)η)
i
>0 xij′ξ (Γ(t)η)i − sj(t)x>:j(t)Γ(t)η} ≥ θ̂U (18)

are satisfied, then its descendant nodes j̃′ ∈ Des(j′) do not affect the solution of (16b).

The proof of Theorem 3 is presented in § 7.3. Figure 4 shows that all the conditions in

Theorem 3 can be checked at the j′-th node in each tree, and if the conditions are satisfied as

the j′-th node, then one can skip searching over its subtree. It allows us to perform selective

inference even if the number of constraints that defines the selection event is extremely

large. A brief statement of selective inference with our proposed pruning technique is shown

in Algorithm 1.
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Figure 4: An example of our pruning technique behavior. In the tree, we consider the

situation that the feature xi2 is selected at step t = 1 and the sets of indices are S(1) =

{2}, S̄(1) = {1, 3, 4, 5, 6, 7}. Then, we consider the tree corresponding to the unselected

features j′ ∈ S̄(1). In this example, we update the current optimal solutions θ̂L and θ̂U by

using the feature xij′ with the j′ = 1. Moreover, the pruning conditions are satisfied at

the j′ = 1, then one can skip searching over its subtree which has no effect on the selective

inference.

4 Extensions

In this section, we improve computational efficiency and statistical power of selective in-

ference. The drawback of selective inference is that one has to consider the number of

considerable constraints as shown in (8). This is not desirable in terms of both computa-

tional efficiency and statistical power – according to [20], “a greater degree of conditioning

will generally lead to less powerful tests and wider intervals,” and this fact is also studied

in [25]. Moreover, the statistical power of selective inference is generally less powerful when

the number of selected features is increased, because the degree of conditioning is linearly

increased with the number of selected features.

In order to circumvent such a over conditioning, we consider the following confidence
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Algorithm 1 Selective inference with our proposed pruning technique.

Input: Dataset (Z,y), the number of selected features k, the maximum interaction order

r, desired significance level α.

Output: The set of selected features S(k), and confidence intervals for the selected features.

1: Consider the rth-order interaction features which are represented by the tree in Figure 3.

2: for t = 1, · · · , k do

3: Select a feature and update the current set S(t) by using the pruning condition (15)

with OMP in (3).

4: end for

5: for j = 1, · · · , k do

6: For η = (X+
S(k))

>ej, compute θL, θU in (16) by using our proposed pruning conditions

(17) and (18).

7: Compute the confidence interval [`
(S(k),j)
α/2 , u

(S(k)S,j)
α/2 ] which satisfies equation (13).

8: end for

interval instead of (6): for any t ∈ [k] with a fixed natural number k,

Pr(βS(t),t ∈ CS(t),t|S(t)) ≥ 1− α. (19)

In this inequality, we consider incrementally selected k model, and we only interested in

the coefficient of t-th selected feature in the t-th model. The advantage of this approach is

that the coefficient βS(t),t is independent of t + 1, · · · , k selected features. In other words,

we do NOT need to consider the selection events that t + 1, · · · , k features are selected,

and then the degree of conditioning is strictly smaller than fully conditioned (8). Although

a hypothesis testing for incrementally selected model is introduced in [9, 26] and the null

hypothesis is called incremental null, our contribution is to utilize (19) for reducing the

degree of conditioning.

Simulation study for FCR control Here, we checked whether selective inference can

control FCR or not when we consider the confidence interval (19). We generated the following
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synthetic response as yi = µi + εi, µi = −zi1 + 2zi2− 1.5zi3, εi ∼ N(0, 0.52), and the element

of design matrix zij ∈ {0, 1} was randomly generated by

zij =

 0 if u ≤ ζ,

1 otherwise,
(20)

where u was a random variable generated by the uniform distribution Unif(0, 1), and ζ is

the sparsity of design matrix. We fixed the number of original features d and the sparsity ζ

as 100, 95%, respectively. FCR was estimated by using v/k where v is the number of false

rejections and k is the number of selected features, e.g., if two features zi1, zi5 are selected

with k = 2 and each of the intervals does not cover zero, then the number of false rejections

v is one (because zi5 is not in the true model) and FCR = 1/2. We randomly generated

the synthetic data over 2000 times and averaged FCR over those independent simulations.

Figure 5 showed FCRs for various parameters with significance level was 0.05. FCR could

be controlled for any the number of selected features k ∈ {1, · · · , 10} even if the number of

features in the true model was three. In particular, FCR in the case of greater n and smaller

k was nearly zero since the selected features were in the true model in most cases and false

rejections were almost none.

5 Experiments

5.1 Experiments on synthetic data

We compared our selective inference approach with non-adjusted z-testing using (9) and

data-splitting approach [8] on synthetic data. In data-splitting, we splitted the data into

two subsets, and used one for feature selection and another for z-testing. The performance

of data-splitting is basically weak both in selection and inference stages because only a part

of the available data is used in each stage. We wrote the short description of each approach

in Table 2.

First, we generated the synthetic data whose response was yi = εi, εi ∼ N(0, σ2), this

means that all coefficients are 0. The element of original design matrix Z was randomly

generated by using (20). Since there were several hyper-parameters (σ, ζ, etc.), we used
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Figure 5: FCRs for various parameters: the number of samples n and selected features

k. We fixed the number of original features d and sparsity of design matrix ζ as 100, 95%,

respectively.

Table 2: The short description of approaches

Symbol Description

SI Our selective inference approach.

SIinc SI with the incrementally constructed interval (19).

OLS z-testing using ordinary least squares in (9).

split Data-splitting approach.

the default settings of parameters as shown in Table 3, but those parameters were changed

depending on the experiment.

FCR controlling Here, we checked whether FCR can be properly controlled or not. FCR

was estimated by using v/k where v is the number of false rejections and k is the number of

selected features. We randomly generated the synthetic data over 2000 times and averaged

FCR over those independent simulations. Figure 6 showed that our approaches and split

could control FCRs for any parameters under the desired significance level, while OLS could

not control them. (a) The selection bias was more intense if the number of samples n
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Table 3: Default setting of parameters

Parameter Value Description

n 100 The number of samples.

d 100 The number of original features.

k 5 The number of selected features.

r 3 The maximum order of interactions.

σ 0.5 Noise level for response.

ζ 95% Sparsity of original design matrix.

α 5% Desired significance level.

is increased. We conjecture that the non-adjusted confidence intervals might not cover 0

because a greater n will leads tighter confidence interval. (b) The selection bias critically

depends on the number of original features. (c) The selection bias was smaller if the number

of selected features k is increased. We conjecture that redundant features make the absolute

value of fitted coefficients be smaller, and then the confidence intervals tend to cover 0 if k

is excessively increased.

Statistical power comparison Second, we evaluated the statistical power of the infer-

ence. We replaced the response as yi = −zi1+2zi2zi3−3zi4zi5zi6+εi, ε ∼ N(0, σ2), and we set

the sparsity ζ of the original vectors z:1, · · · , z:6 to 80%. We computed TPR (true positive

rate) of the approaches. We defined TPR = TP/3 where TP is the number of true positives,

e.g., TP is 3 if the confidence intervals of coefficients corresponding to zi1, zi2zi3 and zi4zi5zi6

do not cover 0. We randomly generated the synthetic data over 2000 times and averaged

TPRs over those independent simulations. Figure 7 showed that SIinc quite outperformed

data-splitting, while the power of SI decreases as the number of selected features increases.

This indicates that the degree of conditioning critically depends on k in SI, which leads to

wider intervals.

Computational efficiency and sensitivity Lastly, we evaluated the computational ef-

ficiency and sensitivity of our approaches. We used the same synthetic data in the previous
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Figure 6: FCRs for various parameters. Our approaches and split could control FCRs

under the desired significance level, while OLS could not control them.

paragraph (statistical power comparison), but we changed the number of original features

d and the sparsity of original design matrix ζ. We randomly generated the synthetic data

over 100 times and averaged computational time over those independent simulations. The

machine spec was Intel(R) Core(TM) i7-3517U CPU 1.90GHz with 4GByte memory, and

we implemented our approach as a single thread application. Figure 8 showed that the com-

putational cost strongly depends on three parameters: (i)the number of original features d,

(ii)the sparsity ζ, and (iii)the maximum interaction order r when d is large and ζ is lower.

SI and SIinc were almost the same if the number of selected features k is small.
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Figure 7: TPRs for various parameters. (a) and (b) SIinc quite outperformed data-splitting.

(c) the power of SI decreases as the number of selected features increases. (d) FPRs did not

depend on the maximum interaction order r if r ≥ 4; however, we observed that FPRs were

slightly decreased depending on r when the number of samples n was very small.

5.2 Application to HIV drug resistance data

We applied our selective inference approaches to HIV-1 sequence data obtained from Stanford

HIV Drug Resistance Database [27]. The goal here was to find statistically significant high-

order interaction features that are highly associated with the drug resistances. The detail of

the features is that, each feature means a mutation that is defined as amino acid differences

from HIV-1 subtype B consensus sequence. If a position of the sequence is mutated, then

the feature corresponding to the position is 1 otherwise 0. We used three datasets for an-
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tiretroviral drugs: Delavirdine(DLV), Tenofovir(TDF), and Atazanavir(ATV). We converted

the response (drug resistance) yi as yi ← log(yi) since the responses were heavy tailed. We

estimated the variance parameter σ2 by using σ̂2 = 1
n−1

∑n
i (yi − ȳ)2 where ȳ is the sample

mean of responses. We assumed that the estimated variance σ̂2 is greater than the true

variance σ2, and this leads to wider intervals but type I error is still controlled. We selected

k = 30 features with the maximum interaction order r = 5, and evaluated the confidence

intervals for those features with Bonferroni-adjusted significance level α = 0.05/k.

Figure 9 showed the confidence intervals of fitted coefficients for selected features. These

results indicate that our approaches could successfully identify statistically significant high-

order interaction features. Our proposed selective inference approaches are applicable to

genome-wide association studies (GWASs). In GWASs, evaluating combinatorial effects of

mutations (or SNPs: single nucleotide polymorphisms) is important because a large propor-

tion of heritability remains unexplained by single effect [1, 2, 3]. Although several existing

pattern mining algorithms [21, 22, 23] can detect interactions of features which are asso-

ciated with the response, these can NOT control false positive findings, which means that

adaptation of the mining results to real world application would be risky. Our approaches

can detects them under FCR controlling even if the number of possible combinations of

features is extremely large. Table 4 showed that the computational times of our approaches

are feasible and SIinc is strictly faster than SI. Lastly, we applied data-splitting approach

Table 4: Computational times [s] in HIV datasets

Dataset SI SIinc

DLV (n = 732, d = 371) 54.7 28.5

TDF (n = 353, d = 348) 36.4 15.6

ATV (n = 329, d = 225) 16.8 8.1

to ATV dataset in different splitting. Figure 10 showed that both confidence interval and

set of selected features are affected by the randomness of splitting, that is a drawback of

data-splitting approach.
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Figure 8: Computational times for various parameters: the number of original features

d ∈ {500, 1000}, the maximum interaction order r ∈ {3, 5, 7, 9,∞}, the sparsity of original

design matrix ζ ∈ {99.6%, 99.5%, 99.4%}, the number of selected features k ∈ {5, 10}.
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(c) ATV dataset (n = 329, d = 225)

Figure 9: The confidence intervals of fitted coefficients for k = 30 selected features with

Bonferroni-adjusted significance level α = 0.05/k.
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ATV dataset (n = 329, d = 225)

Figure 10: The confidence intervals using data-splitting approach where data is splitted

differently. Each label of horizontal axis is sorted in the order of OMP selection steps: the left

side corresponds to step = 1, and the right side corresponds to step = 30. It is quite annoying

that both confidence interval and set of selected features are affected by the randomness of

splitting.
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6 Conclusion

In this paper, we extended selective inference framework to a high-order interaction model

by introducing a novel computational trick for computing the sampling distribution of test

statistic. We demonstrated that our approaches are computationally useful, the statistical

power of inference is better than data-splitting approach, and it allows us to address selection

bias issue.

7 Proofs

7.1 Proof of Lamma 1

Proof. To prove the lemma, we first state the polyhedral lemma in [7] that is slightly general

case of V[y] = Σ as follows:

Lemma 4 (Polyhedral Lemma; [7]). Suppose y ∼ N(µ,Σ). Let c = Ση(η>Ση)−1 for any

η ∈ Rn, and let z = (In − cη>)y. Then we have

Pol(S) = {y ∈ Rn | Ay ≤ b}

=

y ∈ Rn

∣∣∣∣∣∣ L(S, z) ≤ η>y ≤ U(S,z),

N(S,z) ≥ 0

 ,

where

L(S,z) = max
j:(Ac)j<0

bj − (Az)j
(Ac)j

, (21a)

U(S,z) = min
j:(Ac)j>0

bj − (Az)j
(Ac)j

, (21b)

N(S,z) = max
j:(Ac)j=0

bj − (Az)j. (21c)

In addition, (L(S,z), U(S,z), N(S,z)) is independent of η>y.

The polyhedral lemma allows us to construct a pivotal quantity as a truncated normal

distribution, that is

[F
[L(S,z),U(S,z)]

η>µ,η>Ση
(η>y)|y ∈ Pol(S)] ∼ Unif(0, 1),
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where Unif(0, 1) denotes the standard (continuous) uniform distribution. For concreteness,

η>y is the least square estimator β̂S,j when η = (X+
S )>ej. By using this, the conditional

(1− α) interval [`
(S,z)
α/2 , u

(S,z)
α/2 ] are defined by

F
[L(S,z),U(S,z)]

`
(S,z)
α/2

,η>Ση
(η>y) = 1− α/2,

F
[L(S,z),U(S,z)]

u
(S,z)
α/2

,η>Ση
(η>y) = α/2.

Since z is independent of η>y (in fact, the direction of two vectors is orthogonal as η>z = 0),

we abbreviate z that can be integrated out.

The remaining is to show that truncation points in (21) are equivalent to

L(S) = η>y + θLη
>Ση (22a)

where θL = min
θ∈R

θ s.t. y + θΣη ∈ Pol(S)

and

U(S) = η>y + θUη
>Ση (22b)

where θU = max
θ∈R

θ s.t. y + θΣη ∈ Pol(S),

respectively. Simple calculation shows that, for any θ ∈ R, we have

y + θΣη ∈ Pol(S)

⇔ A(y + θΣη) ≤ b

⇔ θ · AΣη ≤ b− Ay.

⇔


θ ≤ (b− Ay)j/(AΣη)j, (AΣη)j > 0

θ ≥ (b− Ay)j/(AΣη)j, (AΣη)j < 0

0 ≤ (b− Ay)j, (AΣη)j = 0

.

On the other hand, by the definition of c and z in Lemma 4, it is easy to see that

L(S) = η>y + η>Ση max
j:(AΣη)j<0

(b− Ay)j
(AΣη)j

.

Therefore, for each j such that (AΣη)j < 0, we have

max
j:(AΣη)j<0

(b− Ay)j
(AΣη)j

≤ θ
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and thus the minimum possible feasible θ would be

θL = min{θ ∈ R | y + θΣη ∈ Pol(S)}

= max
j:(AΣη)j<0

(b− Ay)j
(AΣη)j

.

Similarly, we see that the equivalency of U(S).

To complete the proof, let us consider the covariance matrix σ2In and choose η =

(X+
S )>ej. In this case, (22) can be written as

L(S, j) = β̂S,j + θLσ
2(X>SXS)−1

jj

where θL = min
θ∈R

θ s.t. y + θσ2(X+
S )>ej ∈ Pol(S)

and

U(S, j) = β̂S,j + θUσ
2(X>SXS)−1

jj

where θU = max
θ∈R

θ s.t. y + θσ2(X+
S )>ej ∈ Pol(S),

respectively, but we can ignore the scaling factor σ2 because

min{θ ∈ Rn | y + θ(X+
S )>ej ∈ Pol(S)}

= min{θσ2 ∈ Rn | y + θσ2(X+
S )>ej ∈ Pol(S)}

and

max{θ ∈ Rn | y + θ(X+
S )>ej ∈ Pol(S)}

= max{θσ2 ∈ Rn | y + θσ2(X+
S )>ej ∈ Pol(S)}.

7.2 Proof of Lemma 2

Proof. From (8), for all possible pairs of (j′, ξ) ∈ S̄(t) × {−1, 1, 0}, t ∈ [k], the constraint

y + θη ∈ Pol(S(k)) is written as

(−sj(t)x:j(t) + ξx:j′)
>Γ(t)(y + θη) ≤ 0,
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that is equivalent to

if (ξx:j′ − sj(t)x:j(t))
>Γ(t)η < 0, then

(sj(t)x:j(t) − ξx:j′)
>Γ(t)y

(ξx:j′ − sj(t)x:j(t))
>Γ(t)η

≤ θ, (23a)

if (ξx:j′ − sj(t)x:j(t))
>Γ(t)η > 0, then

(sj(t)x:j(t) − ξx:j′)
>Γ(t)y

(ξx:j′ − sj(t)x:j(t))
>Γ(t)η

≥ θ. (23b)

(i) First, the numerators of (23) are non-negative because of (8). (ii) Second, if the denomi-

nators of (23) are negative, then the minimum possible feasible θ would be

max
t∈[k]

max
(j′,ξ)∈S̄(t)×{−1,1,0}

(sj(t)x:j(t) − ξx:j′)
>Γ(t)y

(ξx:j′ − sj(t)x:j(t))
>Γ(t)η

,

and the maximum possible feasible θ would be 0. (iii) Similarly, if the denominators of (23)

are positive, then the maximum possible feasible θ would be

min
t∈[k]

min
(j′,ξ)∈S̄(t)×{−1,1,0}

(sj(t)x:j(t) − ξx:j′)
>Γ(t)y

(ξx:j′ − sj(t)x:j(t))
>Γ(t)η

,

and minimum possible feasible θ would be 0. Since the requirements in (i), (ii) and (iii) must

be satisfied for all possible (j′, ξ) ∈ S̄(t) × {−1, 1, 0}, t ∈ [k], θL and θU are given by (16a)

and (16b), respectively.
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7.3 Proof of Theorem 3

Proof. Nothing that 0 ≤ xij̃′ ≤ xij′ ≤ 1 from (14), for any descendant node j̃′ ∈ Des(j′).
For any vector v ∈ Rn, the following inequalities are satisfied

(ξx:j̃′ − sj(t)x:j(t))
>v =

∑
ξvi>0

xij̃′ξvi +
∑
ξvi<0

xij̃′ξvi − sj(t)x>:j(t)v

≥
∑
ξvi<0

xij̃′ξvi − sj(t)x>:j(t)v

≥
∑
ξvi<0

xij′ξvi − sj(t)x>:j(t)v, (24a)

(sj(t)x:j(t) − ξx:j̃′)
>v = sj(t)x

>
:j(t)v −

∑
ξvi>0

xij̃′ξvi −
∑
ξvi<0

xij̃′ξvi

≥ sj(t)x
>
:j(t)v −

∑
ξvi>0

xij̃′ξvi

≥ sj(t)x
>
:j(t)v −

∑
ξvi>0

xij′ξvi. (24b)

We prove the pruning condition (17) in the theorem. (i) First, from Lemma 2, any pairs

(j(t), j̃′) such that (ξx:j̃′ − sj(t)x:j(t))
>Γ(t)η ≥ 0 are irrelevant to the solution θL. Also from

(24a), ∑
i:ξ(Γ(t)η)

i
<0

xij′ξ
(
Γ(t)η

)
i
− sj(t)x>:j(t)Γ(t)η ≥ 0

⇒ (ξx:j̃′ − sj(t)x:j(t))
>Γ(t)η ≥ 0.

(ii) Moreover, when (ξx:j̃′ − sj(t)x:j(t))
>Γ(t)η < 0, from (24a) and (24b),

(sj(t)x:j(t) − ξx:j′)
>Γ(t)y

(ξx:j′ − sj(t)x:j(t))
>Γ(t)η

≤
max{0, sj(t)x>:j(t)Γ(t)y −∑ξ(Γ(t)y)

i
>0 xij′ξ

(
Γ(t)y

)
i
}

min{0,∑i:ξ(Γ(t)η)
i
<0 xij′ξ (Γ(t)η)i − sj(t)x>:j(t)Γ(t)η} ,

note that the numerators of above inequalities are non-negative because of (8). By combining

(i) and (ii), if (17) holds, then (j, `′) for `′ ∈ Des(j′) do not affect the solution of (16a). The

first half of the theorem is proved, and the other half can be shown similarly.
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Part II

Robust machine learning by simulated

annealing with continuous temperature

parameter

8 Introduction

The support vector machine (SVM) has been one of the most successful machine learning

algorithms [29, 30, 31]. However, in recent practical machine learning applications with less

reliable data that contains outliers, non-robustness of the SVM often causes considerable

performance deterioration. In robust learning context, outliers indicate observations that

have been contaminated, inaccurately recorded, or drawn from different distributions from

other normal observations.

Figure 11 shows examples of robust SV classification and regression. In classification

problems, we regard the instances whose labels are flipped from the ground truth as outliers.

As illustrated in Figure 11(a), standard SV classifier may be highly affected by outliers.

On the other hand, robust SV classifier can alleviate the effects of outliers as illustrated in

Figure 11(b). In regression problems, we regard instances whose output response are highly

contaminated than other normal observations as outliers. Standard SV regression tends to

produce an unstable result as illustrated in Figure 11(c), while robust SV regression can

alleviate the effects of outliers as illustrated in Figure 11(d).

8.1 Existing robust classification and regression methods

A great deal of efforts have been devoted to improve the robustness of the SVM and other

similar learning algorithms [36, 28, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46]. In the context of SV

classification, so-called Ramp loss function (see Figure 12(a)) is introduced for alleviating

the effects of outliers. Similarly, robust loss function for SV regression (see Figure 12(b))

is also introduced. Robustness properties obtained by replacing the loss functions to these
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Figure 11: Illustrative examples of (a) standard SVC (support vector classification) and

(b) robust SVC, (c) standard SVR (support vector regression) and (d) robust SVR on toy

datasets. In robust SVM, the classification and regression results are not sensitive to the

two red outliers in the right-hand side of the plots.

robust ones have been intensively studied in the context of robust statistics.

As illustrated in Figure 12, robust loss functions have two common properties. First,

robust loss functions are essentially non-convex because they are designed to alleviate the

effect of outliers 1. If one uses a convex loss, even a single outlier can dominate the classifi-

cation or regression result. Second, robust loss functions have an additional parameter for

controlling the trade-off between robustness and efficiency. For example, in Ramp loss func-

1 Xu et al. [41] introduced a robust learning approach that does not require non-convex optimization,

in which non-convex loss functions are relaxed to be convex ones. In their approach, the resulting convex

problems are formulated as semi-definite programs (SDPs), which are therefore inherently non-scalable. In

our experience, the SDP method can be applied to datasets with up to a few hundred instances. Thus, we

do not compare our method with the method in [41] in this paper.
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(a) Robust loss function for SV classification (b) Robust loss function for SV regression

Figure 12: Robust loss functions for (a) SV classification and (b) SV regression. Note

that these robust loss functions are essentially non-convex because they are designed to

alleviate the effect of outliers. Furthermore, robust loss functions have additional hyper-

parameter for controlling the trade-off between robustness and efficiency. For example, in

Ramp loss function, one has to determine the breakpoint (the location of the orange circle)

of the robust loss function. In plot (a), the breakpoint at margin −1.0 indicates that we

regard the instances whose margin is smaller than −1.0 as outliers. Similarly, in plot (b),

the breakpoints at ±1.0 indicate that we regard the instances whose absolute residuals are

greater than 1.0 as outliers.

tion in Figure 12(a), one must determine the breakpoint of the loss function (the location

of the orange circle). Since such a tuning parameter governs the influence of outliers on the

model, it must be carefully tuned based on the property of noise contained in the data set.

Unless one has a clear knowledge about the properties of outliers, one has to tune the tuning

parameter by using a model selection method such as cross-validation. These two properties

suggest that one must solve many non-convex optimization problems for various values of

the tuning parameter.

Unfortunately, existing non-convex optimization algorithms for robust SVM learning are

not sufficiently efficient nor stable. The most common approach for solving non-convex

optimization problems in robust SV classification and regression is Difference of Convex (DC)

programming [37, 38, 39, 40, 42, 43], or its special form called Concave Convex Procedure
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(CCCP) [52]. Since a solution obtained by these general non-convex optimization methods

is only one of many local optimal solutions, one has to repeatedly solve the non-convex

optimization problems from multiple different initial solutions. Furthermore, due to the

non-convexity, robust SVM solutions with slightly different tuning parameter values can be

significantly different, which makes the tuning-parameter selection problem highly unstable.

To the best of our knowledge, there are no other existing studies that allows us to efficiently

obtain stable sequence of multiple local optimal solutions for various tuning parameters

values in the context of robust SV classification and regression.

8.2 Our contributions

In this paper, we address efficiency and stability issues of robust SV learning simultaneously

by introducing a novel homotopy approach 2. We use the parameterized formulations of

robust SVC and SVR which bridge the standard SVM and fully robust SVM via a parameter

that governs the influence of outliers. Our basic idea is to consider homotopy methods

[48, 49, 50, 51] for tracing a path of solutions when the parameter is continuously changed.

We call the parameter as the homotopy parameter and the path of solutions obtained by

tracing the homotopy parameter as the outlier path. Figure13 and Figure14 illustrate how the

robust loss functions for classification and regression problems can be gradually robustified,

respectively.

Our first technical contribution is in analyzing the properties of the outlier path for both

classification and regression problems. In particular, we derive the necessary and sufficient

conditions for SVC and SVR solutions to be locally optimal (note that the well-known

Karush-Khun Tucker (KKT) conditions are only necessary, but not sufficient). Interestingly,

the analyses indicate that the outlier paths contain a finite number of discontinuous points.

To the best of our knowledge, the above property of robust learning has not been known

previously.

2 For regression problems, we study least absolute deviation (LAD) regression. It is straightforward to

extend it to original SVR formulation with ε-insensitive loss function. In order to simplify the description, we

often call LAD regression as SV regression (SVR). In what follows, we use the term SVM when we describe

common properties of SVC and SVR.
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(a) Homotopy computation with decreasing θ from 1 to 0.
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θ = 0, s = −∞ θ = 0, s = −1 θ = 0, s = 0

(b) Homotopy computation with increasing s from −∞ to 0.

Figure 13: An illustration of the parameterized class of problems for robust SV classification

(SVC). A loss function in each plot (red one) is characterized by two parameters θ ∈ [0, 1]

and s ∈ (−∞, 0], which we call robustness parameters. When θ = 1 or s = −∞, the loss

function is identical with the hinge loss function in standard SVM. On the other hand, when

θ = 0 and s 6= −∞, the loss function is identical with the ramp loss function which has

been used in several robust SV learning studies. In this paper, we consider a parameterized

formulations of robust SVC which bridges the standard SVC and fully robust SVC via the

homotopy parameters θ and/or s that governs the influence of outliers. The algorithm we

introduce in this paper allows us to compute a path of solutions when we continuously

change these homotopy parameters. In the top row and the bottom row, we consider paths

of solutions with respect to the homotopy parameter θ and s, respectively.
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(a) Homotopy computation with decreasing θ from 1 to 0.
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θ = 0, |s| =∞ θ = 0, |s| = 1 θ = 0, |s| = 0

(b) Homotopy computation with decreasing s from −∞ to 0.

Figure 14: An illustration of the parameterized class of problems for robust SV regression

(SVR). A loss function in each plot (red one) is characterized by two parameters θ ∈ [0, 1]

and |s| ∈ [0,∞), which we call robustness parameters. When θ = 1 or |s| = 0, the loss

function is identical with the loss function of least absolute deviation (LAD) regression. On

the other hand, when θ = 0 and |s| 6= ∞, the loss function is a robust function in which

the influences of outliers are bounded. In this paper, we also consider a parameterized

formulations of robust SVR which bridges the standard SVR and the robust SVR via the

homotopy parameters θ and/or |s| that governs the influence of outliers. The algorithm

we introduce in this paper allows us to compute a path of solutions when we continuously

change these homotopy parameters. In the top row and the bottom row, we consider paths

of solutions with respect to the homotopy parameter θ and s, respectively.
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Our second contribution is to develop an efficient algorithm for actually computing the

outlier path based on the above theoretical investigation of the geometry of robust SVM

solutions. Here, we use parametric programming technique [48, 49, 50, 51], which is often

used for computing the regularization path in machine learning literature. The main technical

challenge here is how to handle the discontinuous points in the outlier path. We overcome

this difficulty by precisely analyzing the necessary and sufficient conditions for the local

optimality. We develop an algorithm that can precisely detect such discontinuous points,

and jump to find a strictly better local optimal solution.

Experimental results indicate that our proposed method can find better robust SVM so-

lutions more efficiently than alternative method based on CCCP. We conjecture that there

are two reasons why favorable results can be obtained with our method. At first, the outlier

path shares similar advantage as simulated annealing [47]. Simulated annealing is known

to find better local solutions in many non-convex optimization problems by solving a se-

quence of solutions along with so-called temperature parameter. If we regard the homotopy

parameter as the temperature parameter, our outlier path algorithm can be interpreted as

simulated annealing with infinitesimal step size (as we explain in the following sections, our

algorithm represents the path of local solutions as a function of the homotopy parameter).

Since our algorithm provides the path of local solutions, unlike other non-convex optimiza-

tion algorithms such as CCCP, two solutions with slightly different homotopy parameter

values tend to be similar, which makes the tuning parameter selection stable. According to

our experiments, choice of the homotopy parameter is quite sensitive to the generalization

performances. Thus, it is important to finely tune the homotopy parameter. Since our al-

gorithm can compute the path of solutions, it is much more computationally efficient than

running CCCP many times at different homotopy parameter values.

8.3 Organization of the paper

After we formulate robust SVC and SVR as parameterized optimization problems in § 9,

we derive in § 10 the necessary and sufficient conditions for a robust SVM solution to be

locally optimal, and show that there exist a finite number of discontinuous points in the

local solution path. We then propose an efficient algorithm in § 11 that can precisely de-
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tect such discontinuous points and jump to find a strictly better local optimal solution. In

§ 12, we experimentally demonstrate that our proposed method, named the outlier path algo-

rithm, outperforms the existing robust SVM algorithm based on CCCP or DC programming.

Finally, we conclude in § 13.

In this paper, we have extended our robusitification path framework to the regression

problem, and many more experimental evaluations have been conducted. To the best of our

knowledge, the homotopy method [48, 49, 50, 51] is first used in our preliminary conference

paper in the context of robust learning, So far, homotopy-like methods have been (often

implicitly) used for non-convex optimization problems in the context of sparse modeling

[53, 54, 55] and semi-supervised learning [56].

9 Parameterized Formulation of Robust SVM

In this section, we first formulate robust SVMs for classification and regression problems,

which we denote by robust SVC (SV classification) and robust SVR (SV regression), re-

spectively. Then, we use parameterized formulation both for robust SVC and SVR, where

the parameter governs the influence of outlieres to the model. The problem is reduced to

ordinary non-robust SVM at one end of the parameter, while the problem corresponds to

fully-robust SVM at the other end of the parameter. In the following sections, we develop

algorithms for computing the path of local optimal solutions when the parameter is changed

form one end to the other.

9.1 Robust SV Classification

Let us consider a binary classification problem with n instances and d features. We denote

the training set as {(xi, yi)}i∈Nn where xi ∈ X is the input vector in the input space X ⊂ Rd,

yi ∈ {−1, 1} is the binary class label, and the notation Nn := {1, . . . , n} represents the set

of natural numbers up to n. We write the decision function as

f(x) := w>φ(x), (25)
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where φ is the feature map implicitly defined by a kernel K, w is a vector in the feature

space, and > denotes the transpose of vectors and matrices.

We introduce the following class of optimization problems parameterized by θ and s:

min
w

1

2
‖w‖2 + C

n∑
i=1

`(yif(xi); θ, s), (26)

where C > 0 is the regularization parameter which controls the balance between the first

regularization term and the second loss term. The loss function ` is characterized by a pair

of parameters θ ∈ [0, 1] and s ≤ 0 as

`(z; θ, s) :=

 [0, 1− z]+, z ≥ s,

1− θz − s, z < s,
(27)

where [z]+ := max{0, z}. We refer to θ and s as the homotopy parameters. Figure 13 shows

the loss functions for several θ and s. Note that when θ = 1 or s = ∞, the optimization

problem (26) is equivalent to the standard formulation of SVC, in particular, so-called soft-

margin SVC. In this case, the loss function is reduced to the well-known hinge loss function,

which linearly penalizes 1− yif(xi) when yif(xi) ≤ 1, and gives no penalty for yif(xi) > 1

(the left-most column in Figure 13). The input vector xi having yif(xi) ≤ 1 at the final

solution is called a support vector by which the resulting decision boundary is defined, while

the other input vectors do not effect on the boundary because they have no effect on the

objective function. The first homotopy parameter θ can be interpreted as the weight for an

outlier: θ = 1 indicates that the influence of an outlier is the same as an inlier, while θ = 0

indicates that outliers are completely ignored. The second homotopy parameter s ≤ 0 can

be interpreted as the threshold for deciding outliers and inliers. When θ = 0 and s = 0, the

loss function is reduced to the ramp loss function (the right-most column in Figure 13) to

which we have referred as fully robust SVM. A variety of robust loss functions, including the

functions that we employed here, have appeared in [28].

In the following sections, we consider two types of homotopy methods. In the first

method, we fix s = 0, and gradually change θ from 1 to 0 (see the top five plots in Figure 13).

In the second method, we fix θ = 0 and gradually change s from −∞ to 0 (see the bottom five

plots in Figure 13). The optimization (26) is a convex problem when θ = 1 or s = −∞, in
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which ` is the hinge loss, while it is non-convex when θ = 0 and s = 0, in which ` is the ramp

loss. Therefore, each of the above two homotopy methods can be interpreted as the process

of tracing a sequence of solutions when the optimization problem is gradually modified from

convex to non-convex. By doing so, we expect to find good local optimal solutions because

such a process can be interpreted as simulated annealing [47]. In addition, we can adaptively

control the degree of robustness by selecting the best θ or s based on some model selection

scheme.

9.2 Robust SV Regression

Let us next consider a regression problem. We denote the training set of the regression

problem as {(xi, yi)}i∈Nn , where the input xi ∈ X is the input vector as the classification

case, while the output yi ∈ R is a real scalar. We consider a regression function f(x) in the

form of (25). SV regression is formulated as

min
w

1

2
‖w‖2 + C

n∑
i=1

`(yi − f(xi); θ, s), (28)

where C > 0 is the regularization parameter, and the loss function ` is defined as

`(z; θ, s) :=

 |z|, |z| < s,

(|z| − s)θ + s, |z| ≥ s.
(29)

The loss function in (29) has two parameters θ ∈ [0, 1] and s ∈ [0,∞) as the classification

case. Figure 14 shows the loss functions for several θ and s.

10 Local Optimality

In order to use the homotopy approach, we need to clarify the continuity of the local solution

path. To this end, we investigate several properties of local solutions of robust SVM, and

derive the necessary and sufficient conditions. Interestingly, our analysis reveals that the

local solution path has a finite number of discontinuous points. The theoretical results

presented here form the basis of our novel homotopy algorithm given in the next section

that can properly handle the above discontinuity issue. We first discuss the local optimality
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of robust SVC in detail in § 10.1 and § 10.2, and then present the corresponding result of

robust SVR briefly in § 10.3. Here we call a solution to be locally optimal if there is no

strictly better feasible solutions in its neighborhood.

10.1 Conditionally Optimal Solutions (for Robust SVC)

The basic idea of our theoretical analysis is to reformulate the robust SVC learning problem

as a combinatorial optimization problem. We consider a partition of the instances Nn :=

{1, . . . , n} into two disjoint sets I and O. The instances in I and O are defined as Inliers

and Outliers, respectively. Here, we restrict that the margin yif(xi) of an inlier should be

larger than or equal to s, while that of an outlier should be smaller than or equal to 3 s.

We denote the partition as P := {I,O} ∈ 2Nn , where 2Nn is the power set4 of Nn. Given a

partition P , the above restrictions define the feasible region of the solution f in the form of

a convex polytope:

pol(P ; s) :=

{
f

∣∣∣∣∣ yif(xi) ≥ s, i ∈ I
yif(xi) ≤ s, i ∈ O

}
. (30)

Using the notion of the convex polytopes, the optimization problem (26) can be rewritten

as

min
P∈2Nn

(
min

f∈pol(P;s)
JP(f ; θ)

)
, (31)

where the objective function JP is defined as5

JP(f ; θ) :=
1

2
||w||22 + C

(∑
i∈I

[1− yif(xi)]+ + θ
∑
i∈O

[1− yif(xi)]+

)
.

Note that the right hand side depends on P though I and O.

When the partition P is fixed, it is easy to confirm that the inner minimization problem

of (31) is a convex problem.

3Note that an instance with the margin yif(xi) = s can be the member of either I or O.
4The power set means that there are 2n patterns that each of the instances belongs to either I or O.
5Note that we omitted the constant terms irrelevant to the optimization problem.
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Definition 1 (Conditionally optimal solutions). Given a partition P, the solution of the

following convex problem is said to be the conditionally optimal solution:

f ∗P := arg min
f∈pol(P;s)

JP(f ; θ). (32)

The formulation in (31) is interpreted as a combinatorial optimization problem of finding

the best solution from all the 2n conditionally optimal solutions f ∗P corresponding to all

possible 2n partitions6.

Using the representer theorem or convex optimization theory, we can show that any

conditionally optimal solution can be written as

f ∗P(x) :=
∑
j∈Nn

α∗jyjK(x,xj), (33)

where {α∗j}j∈Nn are the optimal Lagrange multipliers. The following lemma summarizes the

KKT optimality conditions of the conditionally optimal solution f ∗P .

Lemma 5. The KKT conditions of the convex problem (32) is written as

yif
∗
P(xi) > 1 ⇒ α∗i = 0, (34a)

yif
∗
P(xi) = 1 ⇒ α∗i ∈ [0, C], (34b)

s < yif
∗
P(xi) < 1 ⇒ α∗i = C, (34c)

yif
∗
P(xi) = s, i ∈ I ⇒ α∗i ≥ C, (34d)

yif
∗
P(xi) = s, i ∈ O ⇒ α∗i ≤ Cθ, (34e)

yif
∗
P(xi) < s ⇒ α∗i = Cθ. (34f)

The proof is presented in § 14.1.

10.2 The necessary and sufficient conditions for local optimality

(for Robust SVC)

From the definition of conditionally optimal solutions, it is clear that a local optimal solution

must be conditionally optimal within the convex polytope pol(P ; s). However, the condi-

6 For some partitions P, the convex problem (32) might not have any feasible solutions.
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tional optimality does not necessarily indicate the local optimality as the following theorem

suggests.

Theorem 6. For any θ ∈ [0, 1) and s ≤ 0, consider the situation where a conditionally

optimal solution f ∗P is at the boundary of the convex polytope pol(P ; s), i.e., there exists at

least an instance such that yif
∗
P(xi) = s. In this situation, if we define a new partition

P̃ := {Ĩ, Õ} as

Ĩ←I\{i ∈ I|yif ∗(xi)=s}∪{i ∈ O|yif ∗(xi)=s}, (35a)

Õ←O\{i ∈ O|yif ∗(xi)=s}∪{i ∈ I|yif ∗(xi)=s}, (35b)

then the new conditionally optimal solution f ∗P̃ is strictly better than the original conditionally

optimal solution f ∗P , i.e.,

JP̃(f ∗P̃ ; θ) < JP(f ∗P ; θ). (36)

The proof is presented in § 14.2. Theorem 6 indicates that if f ∗P is at the boundary of

the convex polytope pol(P ; s), i.e., if there is one or more instances such that yif
∗
P(xi) = s,

then f ∗P is NOT locally optimal because there is a strictly better solution in the opposite

side of the boundary.

The following theorem summarizes the necessary and sufficient conditions for local opti-

mality. Note that, in non-convex optimization problems, the KKT conditions are necessary

but not sufficient in general.

Theorem 7. For θ ∈ [0, 1) and s ≤ 0,

yif
∗(xi) > 1 ⇒ α∗i = 0, (37a)

yif
∗(xi) = 1 ⇒ α∗i ∈ [0, C], (37b)

s < yif
∗(xi) < 1 ⇒ α∗i = C, (37c)

yif
∗(xi) < s ⇒ α∗i = Cθ, (37d)

yif
∗(xi) 6= s, ∀i ∈ Nn, (37e)

are necessary and sufficient for f ∗ to be locally optimal.
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The proof is presented in § 14.3. The condition (37e) indicates that the solution at

the boundary of the convex polytope is not locally optimal. Figure 15 illustrates when a

conditionally optimal solution can be locally optimal with a certain θ or s.

Theorem 7 suggests that, whenever the local solution path computed by the homotopy

approach encounters a boundary of the current convex polytope at a certain θ or s, the

solution is not anymore locally optimal. In such cases, it is better to search a local optimal

solution at that θ or s, and restart the local solution path from the new one. In other words,

the local solution path has discontinuity at that θ or s. Fortunately, Theorem 6 tells us how

to handle such a situation. If the local solution path arrives at the boundary, it can jump

to the new conditionally optimal solution f ∗P̃ which is located on the opposite side of the

boundary. This jump operation is justified because the new solution is shown to be strictly

better than the previous one. Figure 15 (c) and (d) illustrate such a situation.

10.3 Local optimality of SV Regression

In order to derive the necessary and sufficient conditions of the local optimality in robust

SVR, with abuse of notation, let us consider a partition of the instances Nn into two disjoint

sets I and O, which represent inliers and outliers, respectively. In regression problems, an

instance (xi, yi) is regarded as an outlier if the absolute residual |yi − f(xi)| is sufficiently

large. Thus, we define inliers and outliers of regression problem as

I := {i ∈ Nn| |yi − f(xi)| ≤ s},

O := {i ∈ Nn| |yi − f(xi)| ≥ s}.

Given a partition P := {I,O} ∈ 2Nn , the feasible region of the solution f is represented as

a convex polytope:

pol(P ; s) :=

{
f

∣∣∣∣∣ |yi − f(xi)| ≤ s, i ∈ I,
|yi − f(xi)| ≥ s, i ∈ O

}
. (38)
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Then, as in the classification case, the optimization problem (28) can be rewritten as

min
P

(
min

f∈pol(P;s)
JP(f ; θ)

)
, (39)

where the objective function JP is defined as

JP(f ; θ) :=
1

2
||w||22 + C

(∑
i∈I

|yi − f(xi)|+ θ
∑
i∈O

|yi − f(xi)|
)
.

Since the inner problem of (39) is a convex problem, any conditionally optimal solution can

be written as

f ∗P(x) :=
∑
j∈Nn

α∗jK(x,xj). (40)

The KKT conditions of f ∗P(x) are written as

|yi − f ∗P(xi)| = 0 ⇒ 0 ≤ |α∗i | ≤ C, (41a)

0 ≤ |yi − f ∗P(xi)| < s ⇒ |α∗i | = C, (41b)

|yi − f ∗P(xi)| = s, i ∈ I ⇒ |α∗i | ≥ C, (41c)

|yi − f ∗P(xi)| = s, i ∈ O ⇒ |α∗i | ≤ θC, (41d)

|yi − f ∗P(xi)| > s ⇒ |α∗i | = θC. (41e)

Based on the same discussion as § 10.2, the necessary and sufficient conditions for the

local optimality of robust SVR are summarized as the following theorem:

Theorem 8. For θ ∈ [0, 1) and s ≥ 0,

|yi − f ∗P(xi)| = 0 ⇒ 0 ≤ |α∗i | ≤ C, (42a)

0 ≤ |yi − f ∗P(xi)| < s ⇒ |α∗i | = C, (42b)

|yi − f ∗P(xi)| > s ⇒ |α∗i | = θC, (42c)

|yi − f ∗P(xi)| 6= s. (42d)

are necessary and sufficient for f ∗ to be locally optimal.

We omit the proof of this theorem because they can be easily derived in the same way

as Theorem 7.
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Algorithm 2 Outlier Path Algorithm

1: Initialize the solution f by solving the standard SVM.

2: Initialize the partition P := {I,O} as follows:

I ← {i ∈ Nn|yif(xi) ≤ s},

O ← {i ∈ Nn|yif(xi) > s}.

3: θ ← 1 for OP-θ; s← mini∈Nn yif(xi) for OP-s.

4: while θ > 0 for OP-θ; s < 0 for OP-s do

5: if (yif(xi) 6= s ∀ i ∈ Nn) then

6: Run C-step.

7: else

8: Run D-step.

9: end if

10: end while

11 Outlier Path Algorithm

Based on the analysis presented in the previous section, we develop a novel homotopy algo-

rithm for robust SVM. We call the proposed method the outlier-path (OP) algorithm. For

simplicity, we consider homotopy path computation involving either θ or s, and denote the

former as OP-θ and the latter as OP-s. OP-θ computes the local solution path when θ is

gradually decreased from 1 to 0 with fixed s = 0, while OP-s computes the local solution

path when s is gradually increased from −∞ to 0 with fixed θ = 0.

The local optimality of robust SVM in the previous section shows that the path of

local optimal solutions has finite discontinuous points that satisfy (37e) or (42d). Below,

we introduce an algorithm that appropriately handles those discontinuous points. In this

section, we only describe the algorithm for robust SVC. All the methodologies described in

this section can be easily extended to robust SVR counterpart.

11.1 Overview
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The main flow of the OP algorithm is described in Algorithm 2. The solution f is

initialized by solving the standard (convex) SVM, and the partition P := {I,O} is defined

to satisfy the constraints in (30). The algorithm mainly switches over the two steps called

the continuous step (C-step) and the discontinuous step (D-step).

In the C-step (Algorithm 3), a continuous path of local solutions is computed for a

sequence of gradually decreasing θ (or increasing s) within the convex polytope pol(P ; s)

defined by the current partition P . If the local solution path encounters a boundary of the

convex polytope, i.e., if there exists at least an instance such that yif(xi) = s, then the

algorithm stops updating θ (or s) and enters the D-step.

In the D-step (Algorithm 4), a better local solution is obtained for fixed θ (or s) by

solving a convex problem defined over another convex polytope in the opposite side of the

boundary (see Figure 15(d)). If the new solution is again at a boundary of the new polytope,

the algorithm repeatedly calls the D-step until it finds the solution in the strict interior of

the current polytope.

The C-step can be implemented by any homotopy algorithms for solving a sequence of

quadratic problems (QP). In OP-θ, the local solution path can be exactly computed because

the path within a convex polytope can be represented as piecewise-linear functions of the

homotopy parameter θ. In OP-s, the C-step is trivial because the optimal solution is shown

to be constant within a convex polytope. In § 11.2 and § 11.3, we will describe the details

of our implementation of the C-step for OP-θ and OP-s, respectively.

In the D-step, we only need to solve a single quadratic problem (QP). Any QP solver can

be used in this step. We note that the warm-start approach [57] is quite helpful in the D-step

because the difference between two conditionally optimal solutions in adjacent two convex

polytopes is typically very small. In § 11.4, we describe the details of our implementation of

the D-step. Figure 16 illustrates an example of the local solution path obtained by OP-θ.

11.2 Continuous-Step for OP-θ

In the C-step, the partition P := {I,O} is fixed, and our task is to solve a sequence of convex

quadratic problems (QPs) parameterized by θ within the convex polytope pol(P ; s). It has

been known in optimization literature that a certain class of parametric convex QP can be
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Algorithm 3 Continuous Step (C-step)

1: while (yif(xi) 6= s ∀ i ∈ Nn) do

2: Solve the sequence of convex problems,

min
f∈pol(P;s)

JP(f ; θ),

for gradually decreasing θ in OP-θ or gradually increasing s in OP-s.

3: end while

Algorithm 4 Discontinuous Step (D-step)

1: Update the partition P := {I,O} as follows:

I ← I \ {i ∈ I|yif(xi) = s} ∪ {i ∈ O|yif(xi) = s},

O ← O \ {i ∈ O|yif(xi) = s} ∪ {i ∈ I|yif(xi) = s}.

2: Solve the following convex problem for fixed θ and s:

min
f∈pol(P;s)

JP(f ; θ).

exactly solved by exploiting the piecewise linearity of the solution path [51]. We can easily

show that the local solution path of OP-θ within a convex polytope is also represented as a

piecewise-linear function of θ. The algorithm presented here is similar to the regularization

path algorithm for SVM given in [58].

Let us consider a partition of the inliers in I into the following three disjoint sets:

R := {i|1 < yif(xi)},

E := {i|yif(xi) = 1},

L := {i|s < yif(xi) < 1}.

For a given fixed partition {R, E ,L,O}, the KKT conditions of the convex problem (32)

indicate that

αi = 0 ∀ i ∈ R, αi = C ∀ i ∈ L, αi = Cθ ∀ i ∈ O.
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The KKT conditions also imply that the remaining Lagrange multipliers {αi}i∈E must satisfy

the following linear system of equations:

yif(xi) =
∑
j∈Nn

αjyiyjK(xi,xj) = 1 ∀ i ∈ E

⇔ QEEαE = 1−QEL1C −QEO1Cθ, (43)

where Q ∈ Rn×n is an n × n matrix whose (i, j)th entry is defined as Qij := yiyjK(xi,xj).

Here, a notation such as QEL represents a submatrix of Q having only the rows in the index

set E and the columns in the index set L. By solving the linear system of equations (43),

the Lagrange multipliers αi, i ∈ Nn, can be written as an affine function of θ.

Noting that yif(xi) =
∑

j∈Nn αjyiyjK(xi,xj) is also represented as an affine function

of θ, any changes of the partition {R, E ,L} can be exactly identified when the homotopy

parameter θ is continuously decreased. Since the solution path linearly changes for each

partition of {R, E ,L}, the entire path is represented as a continuous piecewise-linear function

of the homotopy parameter θ. We denote the points in θ ∈ [0, 1) at which members of the

sets {R, E ,L} change as break-points θBP .

Using the piecewise-linearity of yif(xi), we can also identify when we should switch to

the D-step. Once we detect an instance satisfying yif(xi) = s, we exit the C-step and enter

the D-step.

11.3 Continuous-Step for OP-s

Since θ is fixed to 0 in OP-s, the KKT conditions (34) yields

αi = 0 ∀ i ∈ O.

This means that outliers have no influence on the solution and thus the conditionally optimal

solution f ∗P does not change with s as long as the partition P is unchanged. The only task

in the C-step for OP-s is therefore to find the next s that changes the partition P . Such s

can be simply found as

s ← min
i∈L

yif(xi).
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11.4 Discontinuous-Step (for both OP-θ and OP-s)

As mentioned before, any convex QP solver can be used for the D-step. When the algorithm

enters the D-step, we have the conditionally optimal solution f ∗P for the partition P :=

{I,O}. Our task here is to find another conditionally optimal solution f ∗P̃ for P̃ := {Ĩ, Õ}
given by (35).

Given that the difference between the two solutions f ∗P and f ∗P̃ is typically small, the

D-step can be efficiently implemented by a technique used in the context of incremental

learning [59].

Let us define

∆I→O := {i ∈ I | yifP(xi) = s},

∆O→I := {i ∈ O | yifP(xi) = s}.

Then, we consider the following parameterized problem with parameter µ ∈ [0, 1]:

fP̃(xi;µ) := fP̃(xi) + µ∆fi ∀ i ∈ Nn,

where

∆fi := yi

[
Ki,∆I→O Ki,∆O→I

] α(bef)
∆I→O

− 1Cθ

α
(bef)
∆O→I

− 1C

 ,
andα(bef) be the correspondingα at the beginning of the D-Step. We can show that fP̃(xi;µ)

is reduced to fP(xi) when µ = 1, while it is reduced to fP̃(xi) when µ = 0 for all i ∈ Nn. By

using a similar technique to incremental learning [59], we can efficiently compute the path

of solutions when µ is continuously changed from 1 to 0. This algorithm behaves similarly

to the C-step in OP-θ. The implementation detail of the D-step is described in § 15.
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(a) Local solution path (b) Local optimum

(c) Not local optimum (d) Local optimum

Figure 15: Solution space of robust SVC. (a) The arrows indicate a local solution path when

θ is gradually moved from θ1 to θ5 (see § 11 for more details). (b) f ∗P is locally optimal if

it is at the strict interior of the convex polytope pol(P ; s). (c) If f ∗P exists at the boundary,

then f ∗P is feasible, but not locally optimal. A new convex polytope pol(P̃ ; s) defined in the

opposite side of the boundary is shown in yellow. (d) A strictly better solution exists in

pol(P̃ ; s).
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Figure 16: An example of the local solution path by OP-θ on a simple toy data set (with

C = 200). The paths of four Lagrange multipliers α∗1, · · · , α∗4 are plotted in the range of

θ ∈ [0, 1]. Open circles represent the discontinuous points in the path. In this simple

example, we had experienced three discontinuous points at θ = 0.37, 0.67 and 0.77.
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12 Numerical Experiments

In this section, we compare the proposed outlier-path (OP) algorithm with conventional

concave-convex procedure (CCCP) [52] because, in most of the existing robust SVM studies,

non-convex optimization for robust SVM training are solved by CCCP or a variant called

difference of convex (DC) programming [37, 38, 39, 40, 42, 43].

12.1 Setup

We used several benchmark data sets listed in Tables 5 and 6. We randomly divided data set

into training (40%), validation (30%), and test (30%) sets for the purposes of optimization,

model selection (including the selection of θ or s), and performance evaluation, respectively.

For robust SVC, we randomly flipped 15%, 20%, 25% of the labels in the training and the

validation data sets. For robust SVR, we first preprocess the input and output variables; each

input variable was normalized so that the minimum and the maximum values are −1 and

+1, respectively, while the output variable was standardized to have mean zero and variance

one. Then, for the 5%, 10%, 15% of the training and the validation instances, we added an

uniform noise U(−2, 2) to input variable, and a Gaussian noise N(0, 102) to output variable,

where U(a, b) denotes the uniform distribution between a and b and N(µ, σ2) denotes the

normal distribution with mean µ and variance σ2.

12.2 Generalization Performance

First, we compared the generalization performance. We used the linear kernel and the radial

basis function (RBF) kernel defined as K(xi,xj) = exp (−γ‖xi − xj‖2), where γ is a kernel

parameter fixed to γ = 1/d with d being the input dimensionality. Model selection was

carried out by finding the best hyper-parameter combination that minimizes the validation

error. We have a pair of hyper-parameters in each setup. In all the setups, the regularization

parameter C was chosen from {0.01, 0.1, 1, 10, 100}, while the candidates of the homotopy

parameters were chosen as follows:

• In OP-θ, the set of break-points θBP ∈ [0, 1] was considered as the candidates (note that
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Table 5: Benchmark data sets for robust SVC experiments

Data n d

D1 BreastCancerDiagnostic 569 30

D2 AustralianCredit 690 14

D3 GermanNumer 1000 24

D4 SVMGuide1 3089 4

D5 spambase 4601 57

D6 musk 6598 166

D7 gisette 6000 5000

D8 w5a 9888 300

D9 a6a 11220 122

D10 a7a 16100 122

n = # of instances, d = input dimension

Table 6: Benchmark data sets for robust SVR experiments

Data n d

D1 bodyfat 252 14

D2 yacht hydrodynamics 308 6

D3 mpg 392 7

D4 housing 506 13

D5 mg 1385 6

D6 winequality-red 1599 11

D7 winequality-white 4898 11

D8 space ga 3107 6

D9 abalone 4177 8

D10 cpusmall 8192 12

D11 cadata 20640 8

n = # of instances, d = input dimension

the local solutions at each break-point have been already computed in the homotopy

computation).

• In OP-s, the set of break-points in [sC , 0] was used as the candidates for robust SVC,

where

sC := min
i∈Nn

yifSVC(xi)
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with fSVC being the ordinary non-robust SVC. For robust SVR, the set of break-points

in [sR, 0.2SR] was used as the candidates, where

sR := max
i∈Nn
|yi − fSVR(xi)|

with fSVC being the ordinary non-robust SVR.

• In CCCP-θ, the homotopy parameter θ was selected from

θ ∈ {1, 0.75, 0.5, 0.25, 0}.

• In CCCP-s, the homotopy parameter s was selected from

s ∈ {sC , 0.75sC , 0.5sC , 0.25sC , 0}

for robust SVC, while it was selected from

s ∈ {sR, 0.8sR, 0.6sR, 0.4sR, 0.2sR}

for robust SVR.

Note that both OP and CCCP were initialized by using the solution of standard SVM.

Table 7 represents the average and the standard deviation of the test errors on 10 different

random data splits. The other results on different noise levels summarized in § 16. These

results indicate that our proposed OP algorithm tends to find better local solutions and the

degree of robustness was appropriately controlled.

12.3 Computation Time

Second, we compared the computational costs of the entire model-building process of each

method. The results are shown in Figure 17. Note that the computational cost of the OP

algorithm does not depend on the number of hyper-parameter candidates of θ or s, because

the entire path of local solutions has already been computed with the infinitesimal resolution

in the homotopy computation. On the other hand, the computational cost of CCCP depends

on the number of hyper-parameter candidates. In our implementation of CCCP, we used

the warm-start approach, i.e., we initialized CCCP with the previous solution for efficiently
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computing a sequence of solutions. The results indicate that the proposed OP algorithm

enables stable and efficient control of robustness, while CCCP suffers a trade-off between

model selection performance and computational costs.

12.4 Stability of Concave-Convex Procedure (CCCP)

Finally, we empirically investigate the stability of CCCP algorithm. For simplicity, we only

considered a linear classification problem on BreastCancerDiagnostic data with the homotopy

parameters θ = 0 and s = 0. Remember that, θ = 1 corresponds to the hinge loss function for

the standard convex SVM, while θ = 0 corresponds to fully robust ramp loss function. Here,

we used warm-start approaches for obtaining a robust SVM solution for θ = 0 by considering

a sequence of θ values: θ(`) := 1− `
L
, ` = 0, 1, . . . , L (another homotopy parameter s was fixed

to be 0). Specifically, we started from the standard convex SVM solution with θ(0) = 1, and

used it as a warm-start initial solution for θ(1), and used it as a warm-start initial solution

for θ(2), and so on.

Table 8 shows the average and the standard deviation of the test errors on 30 different

random data splits for the three warm-start approaches with L = 5, 10, 15 (the performances

of CCCP in Table 7 are the results with L = 5). The results indicate that the performances

(for θ = 0) were slightly better, i.e., better local optimal solutions were obtained when

the length of the sequence L is larger. We conjecture that it is because the warm-start

approach can be regarded as a simulated annealing, and the performances were better when

the annealing step size (= 1/L) is smaller.

It is important to note that, if we consider the above warm-start approach with very

large L, we would be able to obtain similar results as the proposed homotopy approach.

In other words, the proposed homotopy approach can be considered as an efficient method

for conducting simulated annealing with infinitesimally small annealing step size. Table 9

shows the same results as Table 7 for three different CCCP approaches with L = 5, 10, 15.

As we discussed above, the performances tend to be better when L is large, although the

computational cost also increases when L gets large.
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Table 7: The mean of test error by 0-1 loss and standard deviation (linear, robust SVC). The

noise level is 15% in SVC, while it is 5% in SVR. The bold face indicate the better method

in terms of the test error.
Data C-SVC CCCP-θ OP-θ CCCP-s OP-s

D1 .056(.016) .050(.014) .049(.016) .055(.018) .050(.016)

D2 .151(.018) .145(.007) .151(.018) .145(.007) .152(.010)

D3 .281(.028) .270(.033) .270(.023) .262(.013) .266(.013)

D4 .066(.007) .047(.007) .047(.005) .053(.010) .042(.006)

D5 .108(.010) .088(.009) .088(.009) .088(.010) .084(.007)

D6 .072(.005) .058(.006) .064(.003) .061(.007) .060(.003)

D7 .185(.013) .184(.010) .184(.010) .184(.010) .184(.010)

D8 .020(.002) .020(.003) .020(.002) .021(.003) .020(.003)

D9 .173(.004) .181(.009) .173(.005) .165(.004) .164(.004)

D10 .173(.008) .176(.006) .173(.007) .160(.004) .161(.005)

The mean of test error by 0-1 loss and standard deviation (RBF, robust SVC).

D1 .055(.017) .043(.022) .042(.017) .037(.016) .038(.013)

D2 .149(.010) .148(.010) .147(.010) .146(.013) .142(.013)

D3 .276(.024) .267(.026) .266(.024) .271(.015) .261(.020)

D4 .052(.009) .048(.009) .044(.006) .047(.008) .040(.005)

D5 .117(.012) .109(.013) .107(.012) .107(.011) .094(.008)

D6 .046(.007) .045(.007) .045(.007) .045(.007) .043(.006)

D7 .044(.003) .044(.003) .044(.003) .044(.003) .044(.003)

D8 .022(.003) .022(.003) .022(.003) .022(.003) .021(.002)

D9 .169(.003) .170(.005) .169(.004) .168(.005) .162(.003)

D10 .163(.003) .163(.003) .163(.003) .162(.002) .160(.004)

The mean of L1 test error and standard deviation (linear, robust SVR).

D1 .442(.324) .337(.347) .319(.353) .414(.341) .276(.321)

D2 .470(.053) .487(.086) .474(.087) .490(.108) .484(.104)

D3 .414(.038) .351(.025) .350(.036) .414(.105) .372(.043)

D4 .548(.180) .520(.193) .510(.146) .562(.210) .596(.297)

D5 .539(.019) .531(.019) .530(.017) .539(.024) .529(.018)

D6 .685(.028) .664(.026) .655(.027) .685(.044) .686(.040)

D7 .700(.016) .691(.017) .685(.017) .698(.022) .692(.014)

D8 .582(.027) .583(.042) .570(.031) .589(.035) .569(.028)

D9 .518(.015) .510(.019) .501(.021) .522(.026) .516(.019)

D10 .281(.021) .278(.016) .279(.016) .269(.018) .269(.021)

D11 .494(.010) .488(.011) .487(.012) .492(.009) .492(.008)

The mean of L1 test error and standard deviation (RBF, robust SVR).

D1 .077(.049) .069(.054) .065(.056) .070(.053) .051(.040)

D2 .357(.059) .346(.045) .339(.045) .332(.038) .327(.040)

D3 .337(.052) .299(.021) .302(.019) .296(.022) .295(.022)

D4 .390(.046) .350(.025) .349(.023) .357(.022) .343(.024)

D5 .513(.024) .519(.028) .504(.018) .515(.024) .503(.019)

D6 .641(.028) .640(.015) .635(.017) .634(.022) .631(.017)

D7 .671(.011) .669(.009) .669(.007) .674(.011) .671(.009)

D8 .528(.027) .504(.027) .496(.024) .511(.018) .510(.020)

D9 .488(.012) .490(.016) .486(.012) .484(.013) .482(.014)

D10 .198(.015) .198(.027) .196(.025) .194(.015) .189(.017)

D11 .456(.016) .441(.005) .441(.006) .444(.015) .446(.015)
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(c) Elapsed time for CCCP and OP (linear, robust SVR)
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Figure 17: Elapsed time when the number of (θ, s)-candidates is increased. Changing the

number of hyper-parameter candidates affects the computation time of CCCP, but not OP

because the entire path of solutions is computed with the infinitesimal resolution.
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Table 8: The mean of test error by 0-1 loss and standard deviation when the number of

hyperparameter candidates is increased.

θ(L = 5) test error θ(L = 10) test error θ(L = 15) test error

.800 .051(.015) .900 .052(.016) .933 .052(.016)

.600 .047(.014) .800 .051(.015) .867 .052(.015)

.400 .047(.013) .700 .049(.015) .800 .051(.015)

.200 .043(.015) .600 .048(.014) .733 .050(.014)

.000 .043(.013) .500 .047(.014) .667 .049(.014)

.400 .046(.013) .600 .048(.014)

.300 .044(.015) .533 .048(.015)

.200 .043(.013) .467 .047(.013)

.100 .041(.013) .400 .046(.013)

.000 .041(.012) .333 .045(.014)

.267 .043(.012)

.200 .042(.013)

.133 .041(.012)

.067 .040(.012)

.000 .040(.013)
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Table 9: The mean of test error by 0-1 loss and standard deviation (linear, robust SVC).

The noise level is 15% in SVC, while it is 5% in SVR. The bold face indicate the better than

CCCP-θ5 or CCCP-s5.
Data CCCP-θ5 CCCP-θ10 CCCP-θ15 OP-θ CCCP-s5 CCCP-s10 CCCP-s15 OP-s

D1 .050(.014) .049(.019) .048(.017) .049(.016) .055(.018) .045(.012) .046(.009) .050(.016)

D2 .145(.007) .151(.019) .151(.019) .151(.018) .145(.007) .154(.018) .154(.018) .152(.010)

D3 .270(.033) .265(.014) .266(.019) .270(.023) .262(.013) .277(.023) .270(.020) .266(.013)

D4 .047(.007) .048(.005) .049(.005) .047(.005) .053(.010) .046(.004) .046(.004) .042(.006)

D5 .088(.009) .087(.007) .088(.009) .088(.009) .088(.010) .087(.012) .086(.010) .084(.007)

D6 .058(.006) .065(.005) .065(.005) .064(.003) .061(.007) .061(.004) .060(.003) .060(.003)

D7 .184(.010) .184(.010) .184(.010) .184(.010) .184(.010) .184(.009) .184(.008) .184(.010)

D8 .020(.003) .020(.002) .020(.002) .020(.002) .021(.003) .020(.002) .020(.002) .020(.003)

D9 .181(.009) .173(.004) .172(.004) .173(.005) .165(.004) .162(.003) .163(.003) .164(.004)

D10 .176(.006) .175(.006) .174(.007) .173(.007) .160(.004) .160(.003) .162(.003) .161(.005)

The mean of test error by 0-1 loss and standard deviation (RBF, robust SVC).

D1 .043(.022) .043(.013) .042(.015) .042(.017) .037(.016) .047(.016) .048(.014) .038(.013)

D2 .148(.010) .152(.019) .152(.020) .147(.010) .146(.013) .146(.021) .146(.021) .142(.013)

D3 .267(.026) .271(.022) .269(.026) .266(.024) .271(.015) .268(.015) .268(.016) .261(.020)

D4 .048(.009) .045(.006) .045(.005) .044(.006) .047(.008) .044(.004) .044(.006) .040(.005)

D5 .109(.013) .110(.010) .110(.010) .107(.012) .107(.011) .097(.009) .099(.009) .094(.008)

D6 .045(.007) .051(.004) .051(.004) .045(.007) .045(.007) .049(.004) .051(.005) .043(.006)

D7 .044(.003) .044(.003) .044(.003) .044(.003) .044(.003) .044(.003) .044(.003) .044(.003)

D8 .022(.003) .021(.002) .021(.002) .022(.003) .022(.003) .022(.003) .021(.003) .021(.002)

D9 .170(.005) .169(.003) .169(.003) .169(.004) .168(.005) .164(.003) .165(.004) .162(.003)

D10 .163(.003) .163(.003) .163(.003) .163(.003) .162(.002) .160(.004) .161(.004) .160(.004)

The mean of L1 test error and standard deviation (linear, robust SVR).

D1 .337(.347) .343(.349) .317(.329) .319(.353) .414(.341) .421(.346) .400(.371) .276(.321)

D2 .487(.086) .486(.083) .477(.080) .474(.087) .490(.108) .489(.110) .489(.110) .484(.104)

D3 .351(.025) .356(.030) .354(.027) .350(.036) .414(.105) .405(.085) .413(.083) .372(.043)

D4 .520(.193) .484(.117) .532(.270) .510(.146) .562(.210) .539(.128) .559(.193) .596(.297)

D5 .531(.019) .534(.020) .532(.013) .530(.017) .539(.024) .533(.018) .537(.011) .529(.018)

D6 .664(.026) .662(.028) .668(.025) .655(.027) .685(.044) .676(.034) .682(.037) .686(.040)

D7 .691(.017) .688(.016) .687(.016) .685(.017) .698(.022) .693(.013) .700(.021) .692(.014)

D8 .583(.042) .573(.028) .580(.039) .570(.031) .589(.035) .581(.032) .582(.037) .569(.028)

D9 .510(.019) .506(.022) .510(.022) .501(.021) .522(.026) .518(.025) .523(.023) .516(.019)

D10 .278(.016) .279(.016) .283(.019) .279(.016) .269(.018) .274(.020) .271(.020) .269(.021)

D11 .488(.011) .489(.010) .487(.010) .487(.012) .492(.009) .491(.010) .492(.009) .492(.008)

The mean of L1 test error and standard deviation (RBF, robust SVR).

D1 .069(.054) .066(.056) .061(.052) .065(.056) .070(.053) .069(.054) .070(.055) .051(.040)

D2 .346(.045) .341(.044) .341(.044) .339(.045) .332(.038) .324(.026) .324(.026) .327(.040)

D3 .299(.021) .299(.019) .300(.020) .302(.019) .296(.022) .296(.020) .295(.022) .295(.022)

D4 .350(.025) .348(.024) .346(.025) .349(.023) .357(.022) .356(.022) .358(.023) .343(.024)

D5 .519(.028) .508(.019) .501(.019) .504(.018) .515(.024) .506(.021) .506(.021) .503(.019)

D6 .640(.015) .637(.020) .643(.021) .635(.017) .634(.022) .634(.020) .633(.019) .631(.017)

D7 .669(.009) .669(.008) .668(.008) .669(.007) .674(.011) .675(.010) .672(.010) .671(.009)

D8 .504(.027) .504(.028) .500(.025) .496(.024) .511(.018) .514(.019) .512(.017) .510(.020)

D9 .490(.016) .487(.013) .486(.010) .486(.012) .484(.013) .486(.013) .484(.014) .482(.014)

D10 .198(.027) .189(.022) .196(.023) .196(.025) .194(.015) .191(.017) .192(.015) .189(.017)

D11 .441(.005) .441(.005) .440(.006) .441(.006) .444(.015) .445(.015) .448(.016) .446(.015)
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13 Conclusion

In this paper, we proposed a novel robust SVM learning algorithm based on the homotopy

approach that allows efficient computation of the sequence of local optimal solutions when the

influence of outliers is gradually decreased. The algorithm is built on our theoretical findings

about the geometric property and the optimality conditions of local solutions of robust SVM.

Experimental results indicate that our algorithm tends to find better local solutions possibly

due to the simulated annealing-like effect and the stable control of robustness. One of

the important future works is to adopt scalable homotopy algorithms [55] or approximate

parametric programming algorithms [60] for further improving the computational efficiency.

14 Proofs

14.1 Proof of Lemma 5

The proof can be directly derived based on standard convex optimization theory [61] because

the optimization problem (32) is convex if the partition P := {I,O} is fixed.

We denote a n dimensional vector as 1,1I or 1O ∈ Rn: the all elements of 1 are one,

while 1I or 1O indicates the all elements corresponding to I or O are one and the others

are zero, and it can be obtained as 1 := 1I + 1O. In this proof, we use this notation for any

vectors such as α := αI +αO and y := yI + yO.

We rewrite the optimization problem in the conditionally optimal solution (32) as

arg min
w

1

2
‖w‖2

2 + C
∑
i∈I

[1− yif(xi)]+ + Cθ
∑
i∈O

[1− yif(xi)]+

:= arg min
w,ξ

1

2
‖w‖2

2 + C1>I ξI + Cθ1>OξO subject to

1I − yI ◦ (Φw)I ≤ ξI , ξI ≥ 0, yI ◦ (Φw)I ≥ s1I ,

1O − yO ◦ (Φw)O ≤ ξO, ξO ≥ 0, yO ◦ (Φw)O ≤ s1O,

where Φw represents the decision function fP(xi) := (Φw)i as defined (25), and ◦ indicates

the element-wise product of two vectors.
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Let us define Lagrangian as

L :=
1

2
‖w‖2

2 + C1>I ξI + Cθ1>OξO + (αI +αO)>(1− y ◦ (Φw)− ξ)

− (ηI + ηO)>ξ − (νI − νO)>(y ◦ (Φw)− s1).

Using the convex optimization theory [61], the optimality conditions are

∂L

∂w
= w∗ −Φ>(y ◦ (α∗ + ν∗I − ν∗O)) = 0,

∂L

∂ξI
= C1I −α∗I − η∗I = 0,

∂L

∂ξO
= Cθ1∗O −α∗O − η∗O = 0,

1I − yI ◦ (Φw∗)I ≤ ξ∗I , ξ∗I ≥ 0, yI ◦ (Φw∗)I ≥ s1I ,

1O − yO ◦ (Φw∗)O ≤ ξ∗O, ξ∗O ≥ 0, yO ◦ (Φw∗)O ≤ s1O,

α∗I ≥ 0, α∗O ≥ 0, η∗I ≥ 0, η∗O ≥ 0, ν∗I ≥ 0, ν∗O ≥ 0,

α∗>I (1I − yI ◦ (Φw∗)I − ξ∗I) = 0, η∗I ◦ ξ∗I = 0,

α∗>O (1O − yO ◦ (Φw∗)O − ξ∗O) = 0, η∗O ◦ ξ∗O = 0,

ν∗>I (yI ◦ (Φw∗)I − s1I) = 0,

ν∗>O (yO ◦ (Φw∗)O − s1O) = 0.

We rewrite the multipliers α∗ as α∗ ← α∗+ν∗I −ν∗O, and then we obtain w∗ = Φ>(y ◦α∗).
Since both ν∗I and ν∗O are zero when y ◦ (Φw∗) 6= s1, the optimality conditions can be

rewritten as

yif
∗
P(xi) > 1 ⇒ α∗i = 0,

yif
∗
P(xi) = 1 ⇒ α∗i ∈ [0, C],

s < yif
∗
P(xi) < 1 ⇒ α∗i = C,

yif
∗
P(xi) < s ⇒ α∗i = Cθ,

while ν∗i can be positive when yi(Φw
∗)i = s, and thus the following holds:

yif
∗
P(xi) = s, i ∈ I ⇒ α∗i ≥ C,

yif
∗
P(xi) = s, i ∈ O ⇒ α∗i ≤ Cθ,

we finalized the proof. Q.E.D.

67



14.2 Proof of Theorem 6

Although f ∗P is a feasible solution, it is not a local optimum for θ ∈ [0, 1) and s ≤ 0 because

αi ≤ Cθ for i ∈ Ĩ ∩ O, (44a)

αi ≥ C for i ∈ Õ ∩ I, (44b)

violate the KKT conditions (34) for P̃ . These feasibility and sub-optimality indicates that

JP̃(f ∗P̃ ; θ) < JP(f ∗P ; θ), (45)

we arrive at (36). Q.E.D.

14.3 Proof of Theorem 7

Sufficiency: If (37e) is true, i.e., if there are NO instances with yif
∗
P(~xi) = s, then any

convex problems defined by different partitions P̃ 6= P do not have feasible solutions in the

neighborhood of f ∗P . This means that if f ∗P is a conditionally optimal solution, then it is

locally optimal. (37a)-(37d) are sufficient for f ∗P to be conditionally optimal for the given

partition P . Thus, (37) is sufficient for f ∗P to be locally optimal.

Necessity: From Theorem 6, if there exists an instance such that yif
∗
P(~xi) = s, then f ∗P

is a feasible but not locally optimal. Then (37e) is necessary for f ∗P to be locally optimal. In

addition, (37a)-(37d) are also necessary for local optimality, because of every local optimal

solutions are conditionally optimal for the given partition P . Thus, (37) is necessary for f ∗P

to be locally optimal.

Q.E.D.

15 Implementation of D-step

In D-step, we work with the following convex problem

f ∗P̃ := arg min
f∈pol(P̃;s)

JP̃(f ; θ). (46)

where, P̃ is updated from P as (35).
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Let us define a partition Π := {R, E ,L, Ĩ ′, Õ′, Ô′′} of Nn such that

i ∈ R ⇒ yif(xi) > 1, (47a)

i ∈ E ⇒ yif(xi) = 1, (47b)

i ∈ L ⇒ s < yif(xi) < 1, (47c)

i ∈ Ĩ ′ ⇒ yif(xi) = s and i ∈ Ĩ, (47d)

i ∈ Õ′ ⇒ yif(xi) = s and i ∈ Õ, (47e)

i ∈ Õ′′ ⇒ yif(xi) < s. (47f)

If we write the conditionally optimal solution as

f ∗P̃(x) :=
∑
j∈Nn

α∗jyjK(x,xj), (48)

{α∗j}j∈Nn must satisfy the following KKT conditions

yif
∗
P̃(~xi) > 1 ⇒ α∗i = 0, (49a)

yif
∗
P̃(~xi) = 1 ⇒ α∗i ∈ [0, C], (49b)

s < yif
∗
P̃(~xi) < 1 ⇒ α∗i = C, (49c)

yif
∗
P̃(~xi) = s, i ∈ Ĩ ′ ⇒ α∗i ≥ C, (49d)

yif
∗
P̃(~xi) = s, i ∈ Õ′ ⇒ α∗i ≤ Cθ, (49e)

yif
∗
P̃(~xi) < s, i ∈ Õ′′ ⇒ α∗i = Cθ. (49f)

At the beginning of the D-step, f ∗P̃(xi) violates the KKT conditions by

∆fi := yi

[
Ki,∆I→O Ki,∆O→I

] α(bef)
∆I→O

− 1Cθ

α
(bef)
∆O→I

− 1C

 .
where α(bef) is the corresponding α at the beginning of the D-step, while ∆I→O and ∆O→I

denote the difference in P̃ and P defined as

∆I→O := {i ∈ I | yifP(xi) = s},

∆O→I := {i ∈ O | yifP(xi) = s}.
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Then, we consider the following another parameterized problem with a parameter µ ∈
[0, 1]:

fP̃(xi;µ) := fP̃(xi) + µ∆fi ∀ i ∈ Nn.

In order to always satisfy the KKT conditions for fP̃(xi;µ), we solve the following linear

system

QA,A


αE

αĨ′

αÕ′

 =


1

s

s

−QA,L1C −QA,Õ′′1Cθ

−
[
QA,∆I→O QA,∆O→I

] α(bef)
∆I→O

− 1Cθ

α
(bef)
∆O→I

− 1C

µ,
where A := {E , Ĩ ′, Õ′}. This linear system can also be solved by using the piecewise-linear

parametric programming while the scalar parameter µ is continuously moved from 1 to 0.

In this parametric problem, we can show that f ∗P̃(xi;µ) = f ∗P(xi) if µ = 1 and f ∗P̃(xi;µ) =

f ∗P̃(xi) if µ = 0 for all i ∈ Nn.

Since the number of elements in ∆I→O and ∆O→I are typically small, the D-step can be

efficiently implemented by a technique used in the context of incremental learning [59].

16 Generalization Performance on Different Noise Lev-

els

Tables 10 and 11 represent the average and the standard deviation of the test errors on 10

different random data splits with more higher noise level. It seems that our proposed OP

algorithm tends to find better local solutions even if the noisy level is more higher.
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Table 10: The mean of test error by 0-1 loss and standard deviation (linear, robust SVC).

The noise level is 20% in SVC, while it is 10% in SVR. The numbers in bold face indicate

the better method in terms of the test error.
Data C-SVC CCCP-θ OP-θ CCCP-s OP-s

D1 .053(.013) .052(.022) .048(.024) .052(.018) .048(.021)

D2 .152(.018) .152(.018) .152(.018) .157(.021) .163(.013)

D3 .277(.025) .274(.020) .266(.029) .279(.026) .268(.024)

D4 .077(.015) .051(.014) .044(.012) .054(.015) .043(.009)

D5 .124(.014) .102(.014) .099(.013) .099(.009) .097(.010)

D6 .067(.003) .064(.003) .063(.004) .064(.002) .063(.004)

D7 .218(.012) .218(.012) .218(.012) .216(.010) .217(.010)

D8 .021(.003) .021(.003) .021(.003) .022(.003) .022(.002)

D9 .177(.014) .178(.013) .178(.014) .163(.004) .165(.005)

D10 .187(.018) .188(.018) .188(.019) .163(.004) .159(.004)

The mean of test error by 0-1 loss and standard deviation (RBF, robust SVC).

D1 .046(.009) .044(.012) .048(.024) .044(.013) .050(.031)

D2 .157(.023) .161(.023) .161(.023) .161(.028) .166(.026)

D3 .279(.027) .274(.029) .271(.023) .283(.022) .280(.021)

D4 .058(.011) .050(.006) .046(.012) .049(.012) .043(.008)

D5 .129(.016) .124(.015) .124(.015) .126(.016) .105(.009)

D6 .048(.004) .049(.004) .049(.004) .049(.005) .048(.006)

D7 .045(.003) .046(.003) .046(.003) .045(.003) .045(.003)

D8 .024(.003) .023(.003) .023(.003) .024(.003) .024(.003)

D9 .169(.004) .169(.004) .168(.005) .164(.005) .163(.003)

D10 .163(.004) .163(.004) .163(.003) .160(.004) .159(.004)

The mean of L1 test error and standard deviation (linear, robust SVR).

D1 .551(.233) .246(.293) .225(.271) .357(.264) .421(.273)

D2 .547(.183) .496(.074) .511(.108) .542(.186) .486(.041)

D3 .493(.105) .440(.125) .447(.122) .586(.319) .568(.304)

D4 .546(.079) .473(.088) .469(.086) .476(.067) .472(.072)

D5 .561(.034) .549(.029) .543(.029) .547(.028) .548(.027)

D6 .759(.042) .706(.053) .696(.059) .712(.047) .703(.043)

D7 .710(.008) .704(.010) .693(.016) .719(.025) .717(.024)

D8 .595(.030) .571(.014) .568(.012) .583(.021) .576(.017)

D9 .548(.035) .530(.026) .530(.026) .539(.034) .535(.037)

D10 .301(.018) .290(.016) .292(.016) .288(.013) .290(.021)

D11 .505(.020) .501(.008) .501(.007) .502(.016) .501(.016)

The mean of L1 test error and standard deviation (RBF, robust SVR).

D1 .087(.040) .064(.051) .059(.048) .074(.047) .067(.044)

D2 .394(.049) .369(.049) .361(.051) .377(.055) .332(.062)

D3 .374(.039) .345(.044) .346(.043) .342(.043) .328(.029)

D4 .394(.059) .399(.050) .393(.048) .385(.049) .381(.046)

D5 .524(.015) .520(.015) .520(.013) .516(.022) .518(.026)

D6 .667(.027) .655(.025) .656(.023) .668(.028) .661(.024)

D7 .676(.011) .674(.008) .673(.008) .674(.008) .672(.007)

D8 .560(.018) .541(.022) .535(.026) .542(.015) .539(.027)

D9 .499(.016) .493(.014) .491(.012) .495(.017) .492(.015)

D10 .228(.030) .220(.017) .219(.017) .207(.010) .208(.010)

D11 .466(.018) .453(.020) .454(.020) .466(.018) .464(.017)
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Table 11: The mean of test error by 0-1 loss and standard deviation (linear, robust SVC).

The noise level is 25% in SVC, while it is 15% in SVR. The numbers in bold face indicate

the better method in terms of the test error.
Data C-SVC CCCP-θ OP-θ CCCP-s OP-s

D1 .072(.028) .065(.028) .064(.031) .066(.024) .068(.029)

D2 .151(.018) .151(.018) .151(.018) .153(.019) .154(.019)

D3 .275(.020) .272(.018) .274(.015) .271(.017) .275(.013)

D4 .088(.014) .060(.011) .057(.010) .062(.011) .046(.005)

D5 .128(.013) .105(.013) .103(.011) .103(.014) .096(.014)

D6 .071(.003) .067(.005) .066(.006) .067(.004) .066(.005)

D7 .241(.009) .239(.009) .240(.009) .239(.009) .241(.010)

D8 .022(.003) .022(.003) .022(.003) .022(.003) .022(.003)

D9 .201(.019) .201(.019) .201(.018) .169(.007) .168(.007)

D10 .198(.015) .198(.014) .199(.015) .169(.004) .165(.004)

The mean of test error by 0-1 loss and standard deviation (RBF, robust SVC).

D1 .061(.030) .057(.019) .062(.021) .063(.023) .061(.025)

D2 .151(.018) .152(.018) .151(.018) .152(.023) .149(.023)

D3 .277(.020) .275(.018) .275(.017) .270(.022) .263(.017)

D4 .065(.010) .052(.009) .052(.007) .055(.008) .044(.007)

D5 .131(.012) .125(.014) .123(.011) .125(.010) .106(.007)

D6 .059(.007) .058(.007) .057(.006) .061(.007) .061(.007)

D7 .050(.007) .049(.006) .049(.006) .049(.005) .049(.006)

D8 .025(.003) .024(.003) .024(.003) .025(.003) .024(.003)

D9 .172(.007) .173(.007) .172(.006) .168(.004) .166(.006)

D10 .167(.005) .168(.005) .168(.005) .164(.004) .166(.007)

The mean of L1 test error and standard deviation (linear, robust SVR).

D1 .581(.275) .421(.326) .499(.372) .524(.383) .462(.289)

D2 .607(.405) .584(.411) .570(.415) .745(.572) .762(.548)

D3 .547(.190) .531(.210) .492(.186) .716(.360) .640(.242)

D4 .637(.206) .531(.212) .631(.386) .752(.501) .767(.550)

D5 .557(.025) .547(.016) .542(.023) .568(.025) .551(.019)

D6 .757(.038) .672(.054) .671(.064) .722(.064) .711(.047)

D7 .720(.016) .710(.016) .703(.024) .713(.017) .713(.017)

D8 .618(.051) .585(.025) .580(.022) .599(.018) .596(.023)

D9 .561(.025) .515(.020) .519(.021) .552(.047) .540(.036)

D10 .303(.017) .285(.014) .283(.012) .282(.018) .283(.017)

D11 .511(.009) .503(.012) .503(.010) .512(.023) .508(.023)

The mean of L1 test error and standard deviation (RBF, robust SVR).

D1 .237(.151) .164(.140) .153(.138) .202(.163) .190(.155)

D2 .392(.067) .355(.059) .348(.072) .353(.059) .358(.056)

D3 .387(.036) .333(.037) .339(.042) .340(.037) .325(.039)

D4 .435(.069) .428(.077) .420(.075) .415(.072) .416(.058)

D5 .532(.016) .532(.017) .529(.020) .525(.018) .523(.020)

D6 .665(.034) .648(.036) .644(.033) .649(.036) .643(.034)

D7 .700(.027) .687(.024) .683(.025) .682(.013) .682(.016)

D8 .553(.025) .547(.020) .544(.019) .545(.026) .537(.025)

D9 .499(.008) .490(.011) .492(.012) .498(.015) .494(.013)

D10 .243(.021) .241(.016) .238(.015) .228(.023) .228(.022)

D11 .482(.024) .463(.020) .464(.020) .470(.011) .470(.011)
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