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Abstract

The local interaction system is the system in which multiple computing entities communicate locally
to achieve a specific goal, and many models of the local interaction system has been proposed in
relation to a vast class of real complex systems. One of the primary interests in the context
of theoretical computer science is to reveal the computational power of a given local interaction
systems. This dissertation investigates the capability of two models respectively derived from
distributed systems of networked computers and mathematical puzzles.

In the theory of distributed computing, the CONGEST model is a standard computational
model for distributed graph algorithm. A distributed system is represented by a simple undirected
connected graph G = (V (G), E(G)). Let n and m be the numbers of nodes and edges, respectively.
The CONGEST model is defined as a round based synchronous system with bandwidth, where
each link can transfer a small message of O(log n) bits per round. The limited bandwidth in
the CONGEST model precludes a trivial universal solution for every graph problem, where the
leader node collects all the topological information of G and solves the problem using a centralized
algorithm. This approach takes O(n2) rounds in the worst case of m = Ω(n2). The technical
challenge in designing CONGEST algorithms concerns how each node computes a fragment of the
solution without information on the whole input instance. The local interaction system is also
studied in the field of mathematical puzzle. Many of mathematical puzzles such as 15-puzzles and
sokoban can be seen as a transformation problem of a local interaction systems. Transformation
problems can be formulated as “Can we transform configuration A into configuration B, if certain
transformations only are allowed?”. Unfortunately, many problems related to the transformation
problem of a puzzle are known to be NP-hard or PSPACE-complete. Therefore, in the context of
the transformation problems, the existence of an algorithm that solves the transformation problem
in polynomial time is one criteria of efficiency.

In this dissertation, we construct the efficient algorithm for local interaction system. In Chap-
ter 2, we consider the minimum spanning tree (MST) problem in the CONGEST model. It is
known that the lower bound of the MST is Ω̃(

√
n+D) rounds in the CONGEST model. This lower

bounds is derived from special“hard-core”instances, and do not necessarily apply to popular graph
classes such as planar graphs, which evokes the interest of developing efficient distributed graph
algorithms for specific graph classes. In this dissertation, we study the relationship between several
major graph parameters and the running time of MST. In particular, we focus on the following
three parameters, that is: (1) doubling dimension, (2) diameter, and (3) clique width. As a positive
result, we show that there is an Õ(Dx)-round algorithm that constructs a MST for any doubling
dimension-x graph. We show that there exists an algorithm for constructing a MST in Õ(n1/4)
rounds for any graph of diameter three. In addition, we show that there exists an algorithm for
constructing a MST in Õ(n1/3) rounds for any graph of diameter four. These results are similar to
the long-standing complexity gap of the MST construction in graphs with small diameters, which
was originally proposed by Lotker et al. We present a negative instance certifying that bounded
clique-width does not help in the construction of a MST. More precisely, we provide an instance of
clique-width six, where the construction of MST is as expensive as the general case, i.e., Ω̃(

√
n+D)

rounds.
In Chapter 3, we consider the maximummatching algorithm in the CONGEST model. Although

local algorithms for the approximate maximum matching problem have been widely studied, exact
algorithms have not been much studied. In fact, no exact maximum matching algorithm that
is faster than the trivial upper bound of O(n2) rounds is known for general instances. In this



dissertation, we proposed a randomized O(s
3/2
max)-round algorithm in the CONGEST model, where

smax is the size of maximum matching. This is the first exact maximum matching algorithm in
o(n2) rounds for general instances in the CONGEST model.

In Chpater 4, we treat the mathematical pachinko problems as a kind of the transformation
problem. Recently, several mathematical models of Pachinko have been proposed. A number of
pins are spiked in a field. A ball drops from the top of the playfield and the ball falls down. In
the 50-50 model, if the ball hits a pin, it moves to the left or right passage of the pin with an
equal probability. An arrangement of pins generates a distribution of the drop probability for
all of the columns. This problem was considered by generating uniform distributions. Previous
studies have demonstrated that the (1/2a)-uniform distribution is possible for a ∈ {0, 1, 2, 3, 4}
and is conjectured so that it is possible for any positive integer a. We describe the constructive
proof for this conjecture. In other words, for any a ≥ 1, we provide the pin arrangement that
generates the (1/2a)-uniform distribution. This construction consumes O(23a) pins for generating
the (1/2a)-uniform distribution. We also formalizes a natural decision problem yielded by this
model while investigating its computational complexity. More precisely, given any drop-probability
distribution A and any partial drop-probability distribution B, we show that it is non-deterministic
polynomial-time (NP) hardness to determine if there exists a pin arrangement that transforms A
into B.
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Chapter 1

Introduction

1.1 Background and Motivation

The local interaction system is a system in which multiple computing entities communicate locally
to achieve a specific goal, and many models of the local interaction system has been proposed,
which is not limited to the field of computer science: computer network, swarm of robots or wild
animals, chemical reaction, cell interaction in human bodies, and mathematical puzzles. One of
the primary interests in the context of theoretical computer science is to reveal the computational
power of a given local interaction systems. This dissertation investigates two models respectively
derived from distributed systems of networked computers and mathematical puzzles.

In the theory of distributed computing, the CONGEST model is a standard computational
model for distributed graph algorithm. A distributed system is represented by a simple undirected
connected graph G = (V (G), E(G)). Let n and m be the numbers of nodes and edges, respectively.
The CONGEST model is defined as a round based synchronous system with bandwidth, where
each link can transfer a small message of O(log n) bits per round. The limited bandwidth in the
CONGEST model precludes a trivial universal solution for every graph problem, where the leader
node collects all the topological information of G and solves the problem using a centralized algo-
rithm. This approach takes O(n2) rounds in the worst case of m = Ω(n2). The technical challenge
in designing CONGEST algorithms concerns how each node computes a fragment of the solution
without information on the whole input instance. The recent development of design techniques for
CONGEST algorithms has yielded many efficient solutions for various graph problems such as the
minimum spanning tree [37, 44, 49, 55, 57, 63], distance problems including shortest-path computa-
tion [13, 30, 43, 50, 52, 64, 70], and flow and cut [20, 24, 38, 39, 71]. Owing to the existence of the
O(n2)-round universal algorithm, the weakest non-trivial challenge in the design of a CONGEST
algorithms is to achieve a subquadratic o(n2)-round upper bound. In contrast to the universal
upper bound, all the problems listed above belong to the class of global problems exhibiting an
Ω(D)-round lower bound, whereD is the diameter of the input graph G. Thus, the tight round com-
plexities of global problems lie between Θ(n2) and Θ(D). For many of global problems, near-tight
complexity bounds, typically Θ̃(

√
n+D) rounds or Θ̃(n) rounds, have been proved [10,32,76].

The local interaction system is also studied in the field of mathematical puzzle. For example,
in 15-puzzles, the system is defined as a model in which 16 squares are regarded as entities and
each square can communicate (i.e. delivery of pieces) only with adjacent squares. Many of math-
ematical puzzles such as 15-puzzles can be seen as a transformation problem of a local interaction
systems [22,46]. Transformation problems can be formulated as “Can we transform configuration A
into configuration B, if certain transformations only are allowed?”. Unfortunately, many problems
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related to the transformation problem are known to be NP-hard or PSPACE-complete. There-
fore, in the context of the transformation problem, the existence of an algorithm that solves the
transformation problem in polynomial time is one criteria of efficiency.

.

1.2 Overview of This Dissertation

In this dissertation, we investigate the design of distributed algorithms in the CONGEST model
(In Chapter 2 and Chapter 3), and the transformation problem for the mathematical model of
pachinko (In Chpater 4).

1.2.1 Efficient CONGEST Algorithms for Restricted Graph Classes

In Chapter 2, we consider the minimum spanning tree (MST) problem in the CONGEST model.
Given a graph with edge weights, the MST problem is the problem of constructing a spanning tree
with the smallest sum of edge weights. It is known that the lower bound of the MST problem is
Ω̃(
√
n+D) rounds in the CONGEST model [63] (D is the diameter of the graph). The Ω̃(

√
n+D)-

rounds lower bound is derived from special “hard-core” instances, and do not necessarily apply
to popular graph classes such as planar graphs, which evokes the interest of developing efficient
distributed graph algorithms for specific graph classes. In the last few years, the study along this
line has rapidly made progress, where the concepts of partwise aggregation and low-congestion
shortcut play an important role. In the partwise aggregation problem, all nodes in the network are
initially partitioned into a number of disjoint-connected subgraphs known as a part. The goal of
this problem is to perform a certain type of distributed task independently within all the parts in
parallel. The executable tasks cover several standard operations, such as broadcast, convergecast,
leader election, and finding minimum. The low-congestion shortcut is a framework for solving the
partwise aggregation problem, which is initiated by Ghaffari and Haeupler [37]. The key difficulty
of the partwise aggregation problem appears when the diameter of a part is much larger than the
diameter D of the original graph. Because the diameter of a part can become Ω(n) in the worst
case scenario, the naive solution that performs the aggregation task only by in-part communication
causes the expensive Ω(n)-round running time. A low-congestion shortcut is defined as the sets of
links augmented to each part to accelerate the aggregation task there. Its efficiency is characterized
by the following two quality parameters: The dilation is the maximum diameter of all the parts
after the augmentation, whereas the congestion is the maximum edge congestion of all edges e,
where the edge congestion of e is defined as the number of parts augmenting e. In the application
of low-congestion shortcuts, the performance of an algorithm typically relies on the sum of the
dilation and congestion. Hence, we simply refer to the value of dilation plus congestion as the
quality of the shortcut. It is known that any low-congestion shortcut with quality q and O(f)-
round construction time yields an Õ(f + q)-round solution for the partwise aggregation problem,
and Õ(f+q)-round partwise aggregation yields the efficient solutions for several fundamental graph
problems including the MST problem. Precisely, the following meta-theorem holds:

Theorem 1 (Ghaffari and Haeupler [37], Haeupler and Li [50]). Let G be a graph class allowing the
low-congestion shortcut with quality O(q) that can be constructed in O(f) rounds in the CONGEST
model. Then, there exist three algorithms solving (1) the MST problem in Õ(f + q) rounds, (2)
the (1 + ϵ)-approximate minimum cut problem in Õ(f + q) rounds for any ϵ = Ω(1), and (3)
O(nO(log logn)/ log β)-approximate weighted single-source shortest path problem in Ω̃((f+q)β) rounds

2



for any β = Ω(polylog(n))1.

Conversely, if we obtain a time-complexity lower bound for any problem stated above, then it
also applies to the partwise aggregation and low-congestion shortcut (with respect to quality plus
construction time). In fact, the Ω̃(

√
n + D)-round lower bound of shortcuts for general graphs

is deduced from the lower bound of MST. Meanwhile, the existence of efficient (in the sense of
breaking the general lower bound) low-congestion shortcut is known for several major graph classes
as well as its construction algorithms [37,42,43,48,49,51].

We study the relationship between several major graph parameters and the quality of low-
congestion shortcut. In particular, we focus on the following four parameters, that is: (1) doubling
dimension, (2) diameter, and (3) clique width. The precise statement of our results is as follows:

• There is an O(1)-round algorithm that constructs a low congestion shortcut with quality
Õ(Dx) for any doubling dimension-x graph.

• There exists an algorithm for constructing a low-congestion shortcut with quality Õ(n1/4)
in Õ(n1/4) rounds for any graph of diameter three. In addition, there exists an algorithm
for constructing a low-congestion shortcut with quality Õ(n1/3) in Õ(n1/3) rounds for any
graph of diameter four. These results are similar to the long-standing complexity gap of the
MST construction in graphs with small diameters, which was originally proposed by Lotker
et al. [67].

• We present a negative instance certifying that bounded clique-width does not help in the
construction of good-quality shortcuts. More precisely, we provide an instance of clique-
width six, where the construction of MST is as expensive as the general case, i.e., Ω̃(

√
n+D)

rounds.

Table 1.1 summarizes the state-of-the-art upper and lower bounds for low-congestion shortcut. No-
tably, all the parameters considered in this study are independent of the other (known) parameters
admitting good shortcuts (e.g., treewidth and genus) because the graphs of bounded doubling di-
mension, or diameter can contain the clique of an arbitrary size and thus, are not a subclass of
any minor-excluded graphs. Therefore, any result presented in this paper is not a corollary of past
results.

For proving our upper bounds, we propose a novel scheme for shortcut construction, known
as short-hop extension. The simplest form of this scheme is 1-hop extension, where each node in
a part assumes all the incident edges to be the shortcut of its own part. Surprisingly, this very
simple construction admits shortcuts for graphs of bounded doubling dimension. For graphs of
diameters of three or four, the 2-hop extension (that is, each node in a part takes all the two-length
paths starting from itself as the shortcut) clearly yield O(1) dilation, but the second edge in each
path suffers from high congestion. Our algorithm circumvents this matter through random choice
of the second edges based on hash functions, which is simple though far from triviality to bound
the quality of constructed shortcuts. The analytic part includes several new ideas and may be of
independent interest.

1.2.2 Exact Maximum Matching Algorithm in the CONGEST Model

In Chapter 3, we consider the maximum (unweighted) matching problem in the CONGEST model.
For a graph G = (V (G), E(G)), finding a set of disjoint edges that do not share any vertices is

1The statement of the weighted single-source shortest path problem is slightly simplified. See [50] for details.
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Table 1.1: Quality bounds of low-congestion shortcut for specific graph classes.

Graph Family Quality Construction Time Lower bound

General Õ(
√
n+D) [63] Õ(

√
n+D) [63] Ω(

√
n+D) [75]

Planar Õ(D) [37] Õ(D) [37] Ω̃(D) [37]

Genus-g Õ(
√
gD) [49] Õ(

√
gD) [49] Ω̃(

√
gD) [49]

Treewidth-k Õ(kD) [49] Õ(kD) [49] Ω(kD) [49]

Clique-width-6 – – Ω̃(
√
n+D) (this paper)

Expander Õ
(
τ2O(

√
logn)

)
[43]* Õ

(
τ2O(

√
logn)

)
[43] –

Doubling
Õ(Dx) (this paper ) O(1) (this paper ) –

Dimension-x

k-Chordal O(kD) [57] O(1) [57] Ω̃(kD) [57]

Minor Õ(D2) [51] Õ(D2) [51] –

D = 3 Õ(n1/4) (this paper) Õ(n1/4) (this paper) Ω(n1/4) [67,76]

D = 4 Õ(n1/3) (this paper) Õ(n1/3) (this paper) Ω(n1/3) [67,76]

5 ≤ D ≤ log n Õ
(
n(D−2)/(2D−2)

)
[58] Õ

(
n(D−2)/(2D−2)

)
[58] Ω̃

(
n(D−2)/(2D−2)

)
[76]

* τ is the mixing time of network graph G.

called a matching problem, and finding the maximum matching is a fundamental problem in the
theory of distributed graph algorithms. Many studies in the context of approximation algorithms
provide insight into the globality of the maximum matching problem (see Table 1.2). Lotker et
al. [68] presented the first approximation algorithm in the CONGEST model, which is a randomized
algorithm to compute (1− ϵ)-approximate maximum matching in O(log n) rounds for any constant
ϵ > 0. The running time of the algorithm depends exponentially on 1/ϵ. Bar Yehuda et al. [11]
improved the algorithm and proposed an O(log∆/ log log∆)-round algorithm of computing (1−ϵ)-
approximate matching for any constant ϵ > 0, where ∆ is maximum degree of the graph. Kuhn
et al. [60] have shown a lower bound of Ω(log∆/ log log∆) rounds if log∆ ≤

√
log n holds. Ben-

Basat et al. [12] proposed a deterministic Õ(s2max)-round CONGEST algorithm. They also proposed
a (1/2 − ϵ) approximate algorithm in Õ(smax + (smax/ϵ)

2) rounds. Ahmadi et al. [6] proposed a
deterministic (2/3 − ϵ) approximate maximum matching algorithm in general graphs, which runs
in O(log∆/ϵ2 + (log2∆+ log∗ n)/ϵ) rounds. They also presented an Õ(smax)-round algorithm and
O((log2∆+log∗ n)/ϵ)-round (1−ϵ) approximate algorithm in bipartite graphs. However, no o(n2)-
round algorithm for solving the exact maximum matching problem in the CONGEST model has
been proposed so far. In addition, Bacrach et al. [10] pointed out that the bound of Ω̃(

√
n + D)

rounds is a strong barrier because the standard framework of two-party communication complexity
is unlikely to give any improved lower bound. These observations demonstrate the difficulty of
revealing the inherent complexity of the exact maximum matching in the CONGEST model.

The objective of this dissertation is to shed light on the complexity gap of the exact maximum
matching problem in the CONGEST model. We present the main theorem of this paper in the
CONGEST model below.

Theorem 2. For any input graph G, there exists a randomized CONGEST algorithm to compute

the maximum matching that terminates within O
(
s
3/2
max

)
rounds with probability 1− 1/nΘ(1).

Our algorithm follows the standard technique of finding augmenting paths. If an augmenting
path is found, the current matching is improved by flipping the labels of matching edges and non-
matching edges along the path. It is well known that the current matching is the maximum if and

4



Table 1.2: Lower and upper bounds of the maximum matching in the CONGEST model.

Algorithm Time Complexity Approximation Level Remark

Ben-Basat et al. [12] Ω(|smax|) exact LOCAL

Kuhn et al. [60] Ω
(

log∆
log log∆

)
constant ϵ log∆ ≤

√
log n

Ben-Basat et al. [12] Ω
(
1
ϵ

)
1− ϵ LOCAL

Kuhn et al. [61] Ω
(√

logn
log logn

)
1− ϵ LOCAL

Ben-Basat et al. [12] Õ(s2max) exact

Ahmadi et al. [6] Õ (smax) exact bipartite

Bar-Yehuda et al. [11] O
(

log∆
log log∆

)
constant ϵ

Lotker et al. [68] O

(
22ϵ

−2
log smax logn

ϵ4

)
1− ϵ

Ahmadi et al. [6] O
(
log2 ∆+log∗ n

ϵ

)
1− ϵ bipartite

Ben-Basat et al. [12] Õ
(
smax +

(
smax
ϵ

)2) 1
2 − ϵ

Ahmadi et al. [6] O
(
log∆
ϵ2

+ log2 ∆+log∗ n
ϵ

)
2
3 − ϵ

Our result O
(
s3/2max

)
exact

only if there exists no augmenting path in G with respect to the current matching. Hence, the
maximum matching problem is reduced to the task of finding augmenting paths smax times. In the
CONGEST model, this approach faces difficulty in the situation where any augmenting path with
respect to the current matching is long (i.e., consisting of Θ(n) edges). It should be emphasized
that BFS-like approaches do not work for finding augmenting paths in general graphs because the
shortest alternating walk is not necessarily simple because of the existence of odd cycles. The key
ingredient of our approach is two new algorithms for finding augmenting paths. They run in O(ℓ2)
rounds and O(smax) rounds respectively, where ℓ is the length of the shortest augmenting path for
the current matching. Roughly, our algorithm switches between these two algorithms according
to the current matching size. The running-time bound is obtained using the following seminal
observation by Hopcroft and Karp:

Proposition 1 (Hopcroft and Karp [53]). Given a matching M ⊆ E of a graph G, there always
exists an augmenting path of length less than ⌊2smax/k⌋ if the current matching size is at most the
maximum matching size smax minus k.

Our augmenting path algorithms utilize Ahmadi and Kuhn’s verification algorithm of maximum
matching [5], in which each node returns the length of the shortest odd/even alternating paths
from a given source (unmatched) node. The construction of the O(ℓ2)-round algorithm is relatively
straightforward. It is obtained by iteratively finding the predecessor of each node in an augmenting
path by sequential O(ℓ) invocations of the verification algorithm. The technical highlight of the
proposed algorithm is the design of the O(smax)-round algorithm. The O(smax)-round algorithm
constructs a sparse certificate, which is a sparse (i.e., containing O(smax) edges) subgraph of G
preserving the reachability between two nodes by alternating paths. That is, a sparse certificate
contains an augmenting path if and only if the original graph admits an augmenting path. By the
sparseness property, a node can collect all the information on the sparse certificate within O(smax)
rounds, trivially allowing the centralized solution of finding augmenting paths. To establish a
highly parallel construction of sparse certificates, we also propose a new characterization of sparse
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certificates, which might also be of independent interest.

1.2.3 Uniform Distribution for Pachinko

Pachinko is a Japanese mechanical gambling game similar to Pinball [1–3]. The machine stands
vertically and the player shoots a metal ball into the playfield. Many pins are spiked in the playfield
and the ball drops from the top of the field. If the ball goes into a pocket in the field, then the player
earns a reward. Recently, Pachinko was analyzed in the context of discrete mathematics. The origin
of mathematical Pachinko is based on a book written by Akiyama in 2008 [8]. Recently, Akitaya
et al. [7] studied an idealized geometry of a simple form of Pachinko [7]. This study considers one
of the mathematical models presented, which is called the 50-50 model.

The 50-50 model consists of three entities: the field, pins, and a ball. The field is a half-plane
triangle grid with the top-side end. A pin can be placed at any grid point. A row is a horizontal
line where the grid points exist, and a column is a vertical line where the grid points exist. Since a
triangle grid was considered for this investigation, the intersection points of rows and columns do
not necessarily have a grid point (see Figure 1.1). The ball drops from the center of the top-end
and falls down vertically. If the ball hits a pin, then it moves to the left or right passage of the
pin with an equal probability. Immediately afterwards, the ball continues to fall down vertically.
Once the pin arrangement is fixed under the 50-50 model, the probability of dropping the ball in
each column can be calculated. In other words, a pin arrangement defines the drop probability
distribution for all of the columns. Then, the inverse problem of ”deciding if there exists a pin
arrangement that generates a given distribution or not” can be considered.

1/2 1/2

1/41/4

1/8

1/16 1/16
5/8

column

row

1

1/8

Figure 1.1: An example of the 50-50 model. Each value represents the drop probability of each
column.

In [7], it was shown that any probability distribution ⟨p1, p2, ..., pn⟩ in the 50-50 model can be
constructed within an arbitrarily small additive error; thus, the main theoretical challenge is the
generation of the given distribution. The (1/2a)-uniform distribution in the 50-50 model is the
probability distribution. When the ball drops in the center, the probability is 0 and the probability
at the 2a closest coordinates from the center is 1

2a (see Figure 1.2). Akitaya et al. [7] showed that the
(1/2a)-uniform distribution for a ∈ {0, 1, 2, 3, 4} can be constructed. This can also be conjectured
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Figure 1.2: An example of the uniform distributions. The center column has a probability of 0.

such that the (1/2a)-uniform distribution for any positive integer a can be constructed. The first
contribution of this study is to show that this conjecture is true. In other words, for any a ≥ 1,
this study provides the pin arrangement that generates a (1/2a)-uniform distribution. The number
of pins used in the construction is bounded by a polynomial of 2a. To show the result, a new
formulation of the problem is introduced following the notions and terminology of language theory.
Even though the language theory is simple, it is substantially useful for the analysis of the 50-50
model.

As the second contribution, a computational-complexity aspect of the 50-50 model was also
considered. Since the pin arrangement in the 50-50 model corresponds to a transformation from
a given probability distribution (for all x-coordinates (i.e. Z2)) to another one, the matter of its
design naturally yields one decision problem. For any two input distributions A and B, is there a
pin arrangement that transforms A to B? This study focuses on the computational complexity of
this decision problem. Unfortunately, this study does not determine any hardness results for this
problem. Instead, for a slight variant of it, where B can be partial in the sense that B specifies the
drop probability only for a subset of all columns, this study uses non-deterministic polynomial-time
(NP) hardness to decide the transformability from A to B.

1.3 Related Work

1.3.1 Low-Congestion Shortcut and Graph Parameters

The MST problem is one of the most fundamental problems in distributed graph algorithms. As
well as its own importance, MST has several applications for solving other graph problems in
distributed settings (e.g., detecting connected components and minimum cut). Several studies
have addressed the design of efficient MST algorithms in the CONGEST model [34, 35, 40, 45,
47, 55, 63, 73, 74], and the round-complexity of MST construction is a central topic in distributed

2The notation Z is the field of the integer numbers.
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complexity theory [27, 28, 67, 72, 75, 76]. The inherent difficulty of MST construction is solving
the partwise aggregation (minimum) problem efficiently. This viewpoint was first identified by
Ghaffari and Haeupler [37] explicitly, as well as an efficient algorithm for solving MST construction
in planar graphs. The concept of low-congestion shortcut is newly invented herein for encapsulating
the difficulty of partwise aggregation. Recently, several follow-up papers have been published to
extend the applicability of low-congestion shortcut, which break the known general lower bounds of
MST and its applications in specific graph classes: This line covers bounded-genus graphs [37,49],
bounded-treewidth graphs [49], graphs with excluded minors [51], and expander graphs [42, 43]
(see Table 1.1). All the shortcuts stated here belong to the class of tree-restricted shortcuts,
where the shortcut edges augmented to each part are a subgraph of a precomputed spanning tree
(typically a breadth first search (BFS) tree). It is shown that there exists a universal algorithm
for computing tree-restricted shortcuts [48]. To the best of our knowledge, the upper bounds
presented in this paper are the first to exhibit non-trivial shortcuts not belonging to the tree-
restricted class. The application of low-congestion shortcut is not limited to MST. As stated in
Theorem 1, low-congestion shortcut also admits efficient solutions for an approximate minimum
cut, and a single-source shortest path. In addition, a few algorithms utilize low-congestion shortcut
as an important building block, e.g., the depth first search in planar graphs [50], approximate
tree decomposition [65], along with diameter and distance labeling scheme in planar graphs [66].
Haeupler et al. [47] show a message-reduction scheme of shortcut-based algorithms, which drops
the total number of messages exchanged by the algorithm into Õ(m), where m denotes the number
of links in the network. On the negative side, it is known that the hardness of (approximate) a
diameter cannot be encapsulated by low-congestion shortcut. Abboud et al. [4] showed a hard-
core family of unweighted graphs with O(log n) treewidth, where any diameter computation in the
CONGEST model requires Ω̃(n) rounds. Because any graph with O(log n) treewidth admits a
low-congestion shortcut of quality Õ(D), this result implies that it is not possible to compute the
diameter of graphs efficiently by using only the property of low-congestion shortcuts.

Although our results exhibit a tight upper bound for graphs of diameter three or four, a more
generalized lower bound is known for small-diameter graphs. [76]. For any log n ≥ D ≥ 3, it is
proved that there exists a network topology that incurs the Ω̃

(
n(D−2)/(2D−2)

)
-round time complex-

ity for any MST algorithm. In more restricted cases of D = 1 and D = 2, Jurdzinski et al. [55] and
Lotker et al. [67] showed O(1)- and O(log n)-round MST algorithms, respectively. Recently, Kogan
et. al. shows the upper bound of the MST in constant diameter graphs [58].

1.3.2 Maximum Matching Algorithm

The maximum matching has been studied for both the distributed algorithm and the centralized
algorithm. The LOCAL model is a model for distributed graph algorithm and is like the CON-
GEST model with arbitrarily large messages. In the LOCAL model, it is known that no o(1/ϵ)
algorithm exists for the (1 − ϵ)-approximate maximum matching problem [12]. Together with the
Ω(
√
log n/ log log n)-round lower bound reported by Kuhn et al. [61], the lower bound in the LO-

CAL model is obtained as Ω(1/ϵ+
√
log n/ log log n) = ((log n)/ϵ)Ω(1). Ghaffari et al. [41] showed

a ((log n)/ϵ)O(1) upper bound for the (1 − ϵ) approximate maximum matching problem. By com-
bining these results, we infer that the time complexity of solving the (1− ϵ) approximate maximum
matching problem is (log n/ϵ)Θ(1) in the LOCAL model. Ben-Basat et al. also proved the lower
bound of the maximum matching as Ω(smax) in the LOCAL model [12].

In addition to distributed computing, many studies have considered centralized exact maximum
matching algorithms. Edmonds presented the first centralized polynomial-time algorithm for the
maximum matching problem [25, 26] by following the seminal blossom argument. Hopcroft and
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Karp proposed a phase-based algorithm of finding multiple augmenting paths [53]. Their algorithm
finds a maximal set of pairwise disjoint shortest augmenting paths in each phase. They showed that
O(
√
n) phases suffice to compute the maximum matching and proposed an algorithm implementing

one phase in O(m) time for bipartite graphs. Several studies have reported phase-based algorithms
for general graphs that attain O(

√
nm) time [14,33,78].

1.3.3 Uniform Distribution for Pachinko

Many of mathematical puzzles such as 15-puzzles and sokoban can be seen as a transformation
problem of a local interaction systems [22, 46]. In addition, some puzzles can be seen as a recon-
figuration problem which is the kind of the transformation problem. The reconfiguration problem
has been studied not only in the field of the mathematical puzzle but also in the field of the graph
theory [77]. The reconfiguration problems are concerned with relationships among two solutions of
a problem instance, where the reconfiguration of one solution to another is a sequence of steps such
that each step produces an intermediate feasible solution. The reconfiguration problems has been
studied for some well-known problems that includes independent set [15,23,31,56,80], set cover [69],
minimum spanning tree, matching [54] and so on. Unfortunately, many decision problems related
to reconfiguration problems are known to be NP-hard or PSPACE-complete. On the other hand,
some polynomial time algorithms are shown in the restricted case [15,23,31,56].

The origin of mathematical Pachinko is based on a book written by Akiyama in 2008 [8]. Re-
cently, Akitaya et al. [7] studied an idealized geometry of a simple form of Pachinko [7]. In [7], it was
shown that any probability distribution ⟨p1, p2, ..., pn⟩ in the 50-50 model can be constructed within
an arbitrarily small additive error. Akitaya et al. [7] showed that the (1/2a)-uniform distribution
for a ∈ {0, 1, 2, 3, 4} can be constructed. This can also be conjectured such that the (1/2a)-uniform
distribution for any positive integer a can be constructed.

1.4 Structure of This Dissertation

The dissertation is organized as follows. In Chapter 2, we present a low-congestion shortcut con-
struction for graphs of bounding doubling dimensions and graphs of diameters of three or four in
the CONGEST model. Moreover, we show the lower bounds of low congestion shortcut in constant
clique-width graphs in the CONGEST model. In Chapter 3, we present a maximum matching in
the CONGEST model. In Chapter 4, we provide an explicit construction of the (1/2a)-uniform
distribution for any a ≥ 1 and its analysis for the number of pins. Moreover, we present the
NP-hardness results for the transformability of the distributions
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Chapter 2

Low-Congestion Shortcut and Graph
Parameters

2.1 Introduction

In this chapter, we consider the relationship between several major graph parameters and the quality
of low-congestion shortcut in the CONGEST model. In particular, we focus on the following three
parameters, that is: (1) doubling dimension, (2) diameter, and (3) clique width. The precise
statement of our results is as follows:

• There is an O(1)-round algorithm that constructs a low congestion shortcut with quality
Õ(Dx) for any doubling dimension-x graph.

• There exists an algorithm for constructing a low-congestion shortcut with quality Õ(n1/4) in
Õ(n1/4) rounds for any graph of diameter three. In addition, there exists an algorithm for
constructing a low-congestion shortcut with quality Õ(n1/3) in Õ(n1/3) rounds for any graph
of diameter four.

• We present a negative instance certifying that bounded clique-width does not help in the
construction of good-quality shortcuts. More precisely, we provide an instance of clique-
width six, where the construction of MST is as expensive as the general case, i.e., Ω̃(

√
n+D)

rounds.

2.2 Preliminaries

2.2.1 CONGEST model

In this section, we described a general definition of the CONGEST model. The vertex set and
edge set of a given graph G are, respectively, denoted by V (G) and E(G). A distributed system
is represented by a simple undirected connected graph G = (V (G), E(G)). Let n and m be the
numbers of nodes and edges, respectively. The diameter of a given subgraph H ⊆ G is denoted
by D(H). Nodes and edges are uniquely identified by integer values, which are represented by
O(log n) bits. The set of edges incident to v ∈ V (G) is denoted by IG(v). In the CONGEST
model, the computation is done in synchronous rounds. In one round, each node v sends and
receives O(log n)-bit messages through the edges in IG(v) and executes local computation following
its internal state, local random bits, and received messages. It is guaranteed that every message
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sent in a round is delivered to the destination within the same round. Each node has no prior
knowledge of the network topology, except for its neighborhood IDs. We use the labeling of nodes
and/or edges for specifying inputs and outputs of algorithms. Each node has information on
the label(s) assigned to itself and those assigned to its incident edges. Let N(v) be the set of
nodes that are adjacent to v in G, and let N+(v) = N(v) ∪ {v}. We define N(S) = ∪s∈SN(s),
and N+(S) = ∪s∈SN+(s), for any S ⊆ V . For two node subsets X,Y ⊆ V , we also define
E(X,Y ) = {(u, v) ∈ E | u ∈ X, v ∈ Y }. If X (resp. Y ) is a singleton X = {w}, (resp. Y = {w}),
we describe E(X,Y ) as E(w, Y ) (resp. E(X,w)). The distance (that is, the number of edges in
the shortest path) between two nodes u and v in G is denoted by distG(u, v). A walk W of G is an
alternating sequence W = {v0, e1, v1, e2, . . . , eℓ, vℓ} of vertices and edges such that ei = (vi−1, vi)
, vi ∈ V (G), and ei ∈ E(G) holds for any 1 ≤ i ≤ ℓ. The length of the walk W is a number of
edges in W . With a small abuse of notations, we treat a walk W as the sequence of nodes or edges
representing the path, as the set of nodes or edges in the path, or the subgraph of G forming the
path. A walk W = {v0, v1, . . . , vℓ} is called a (simple) path if every vertex in W is distinct. A
path U = {v0, v1 . . . , vℓ} is referred to as chordless if and only if for any two nodes vi, vj ∈ U and
|i− j| ≥ 2, it holds that (vi, vj) /∈ E(G) For any walk W = {v0, v1, . . . , vℓ} of G, we define W ◦u as
the walk obtained by adding u, satisfying (vℓ, u) ∈ E(G), to the tail of W . For any edge e = (vℓ, u),
we also define W ◦ e = W ◦ u. Given a walk W containing a node u, we denote by W p

u and W s
u

the prefix of W up to u and the suffix of W from u, respectively. We also denote the inversion of
the walk W = {v0, v1, . . . , vℓ} (i.e., the walk {vℓ, vℓ−1, . . . , v0}) by W . The length of a walk W is
represented by |W |.

2.2.2 Partwise Aggregation

The partwise aggregation is a communication abstraction defined over a set P = {P1, P2, . . . , PN}
of mutually disjoint and connected subgraphs known as parts, and provides simultaneous fast group
communication among the nodes in each Pi. It is formally defined as follows:

Definition 1 (Partwise Aggregation (PA)). Let P = {P1, P2, . . . , PN} be the set of connected
mutually-disjoint subgraphs of G, and each node v ∈ V (Pi) maintains variable biv storing an input
value xiv ∈ X. The output of the partwise aggregation problem is to assign ⊕w∈Pix

i
w with biv for any

v ∈ V (Pi), where ⊕ is an arbitrary associative and commutative binary operation over X.

The straightforward solution of the partwise aggregation problem in the CONGEST model is to
perform the convergecast and broadcast in each part Pi independently. In particular, we construct
a BFS tree for each part Pi (after the selection of the root by any leader election algorithm). The
time complexity is proportional to the diameter of each part Pi, which can be large (Ω(n) in the
worst case) independently of the diameter of G.

2.2.3 (d, c)-Shortcut

As we stated in the introduction, the notion of low-congestion shortcut is introduced for quickly
solving the partwise aggregation problem (for some specific graph classes). Formal definition of
(d, c)-shortcuts is provided as follows:

Definition 2. [Ghaffari and Haeupler [37]] Given a graph G = (V (G), E(G)) and partition P =
{P1, P2, . . . , PN}, of G into node-disjoint and connected subgraphs, we define a (d, c)-shortcut of G
and P as a set of subgraphs H = {H1,H2, . . . , HN} of G such that;

1. For each i, the diameter of Pi +Hi is at most d (d-dilation).
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Figure 2.1: Example of G(O(ζb), b, ζ, O(log n)).

2. For each edge e ∈ E(G), the number of subgraphs Pi + Hi containing e is at most c (c-
congestion).

The values of d and c for a (d, c)-shortcut H are known as the dilation and congestion of H.
As a general statement, a (d, c)-shortcut that is constructed in f rounds admits the solution of
the partwise aggregation problem in Õ(d + c + f) rounds [36, 37]. Because the parameter d + c
asymptotically affects the performance of the application, we refer to the value of d+c as the quality
of (d, c)-shortcuts. A low-congestion shortcut with quality q is simply known as a q-shortcut.

2.2.4 Lower-Bound Framework

To prove the lower bound of MST, we introduce a simplified version of the framework by Das
Sarma et al. [76]. In this framework, we consider the graph class G(n, b, ζ, c) that is defined below.
A vertex set X ⊆ V (G) is known as connected if the subgraph induced by X is connected.

Definition 3. For n, b, c ≥ 0 and ζ ≥ 3, the graph class G(n, b, ζ, c) is defined as the set of n-vertex
graphs G = (V (G), E(G)) satisfying the following conditions:

• (C1) The vertex set V (G) is partitioned into ζ disjoint vertex sets X = {X1, X2, . . . , Xζ},
such that X1 and Xζ , are singletons (let X1 = {s} and Xζ = {r}).

• (C2) The vertex set V (G)\{s, r} is partitioned into b disjoint connected sets Q = {Q1, . . . , Qb}
such that |E(X1, Qi)| ≥ 1 and |E(Xl, Qi)| ≥ 1 hold for any 1 ≤ i ≤ b.

• (C3) Let Ri =
∪

i+1≤j≤ζ Xj and Li =
∪

0≤j≤ζ−iXj. For 2 ≤ i ≤ ζ/2 − 1, |E(Ri, N(Ri) \
Ri−1)| ≤ c, and |E(Li, N(Li) \ Li−1)| ≤ c.
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Figure 2.1 shows the vertex partition X and Q for the hard-core instances presented in the
original proof by Das Sarma et al. [76]. This graph belongs to G(O(ζb), b, ζ, O(log n)). For class
G(n, b, ζ, c), the following theorem holds, which is just a corollary of the result by Das Sarma et
al. [76]:

Theorem 3 (Das Sarma et al. [76]). For any graph G ∈ G(n, b, ζ, c) and any MST algorithm A,
there exists an edge-weight function wA,G : E → N such that the execution of A in G requires
Ω̃(min{b/c, ζ/2 − 1}) rounds. This bound holds with high probability even if A is a randomized
algorithm.

2.2.5 1-Hop Extension Scheme

Throughout this study we utilize the 1-hop extension scheme for shortcut construction, which is
stated as follows:

For any VPi ⊆ V (G), node v ∈ VPi adds each incident edge (v, u) to Hi and informs u
of (v, u) ∈ Hi.

It is trivial to implement this scheme using only one round in the CONGEST model. Because each
node belongs to one part, the congestion of each edge is at most two. Hence, the technical challenge
of this scheme is bound dilation. For the proof, we introduce the concept of (a, b)-path dominating
set, which characterizes the graphs allowing good shortcuts through 1-hop extension.

Definition 4. Given a path U ⊆ G, a (a, b)-path dominating set S ⊆ VG of U is a node subset
satisfying the following two conditions:

• For any u ∈ VU , there exists s ∈ N+(S) such that distU (u, s) ≤ a holds.

• |S| ≤ b.

It is easy to check that if S is a (a, b)-path dominating set of U , S ∩N+(U) is also a (a, b)-path
dominating set of U . Thus, in the following argument, we assume that any (a, b)-path dominating
set for U is a subset of N+(U) without loss of generality. We say that G is (a, b)-path dominating
if and only if any chordless path U ⊆ G has a (a, b)-path dominating set. By definition, any graph
having a dominating set of size b is (0, b)-path dominating.

Lemma 1. The 1-hop extension constructs an O((a+1)b)-shortcut for any (a, b)-path dominating
graph.

Proof. Because the congestion bound is trivial, we focus on bounding dilation. Let G be any
(a, b)-path dominating graph, Pi be any part of G, and Hi is the shortcut through 1-hop extension
for part Pi. Let U = (s0, s1, . . . , sℓ) be any shortest path in Pi. Because U is the shortest, it is
chordless, and thus it has a (a, b)-path dominating set SU of size b′ ≤ b. Let ZU = (VZU

, EZU
)

be the subgraph of G such that VZU
= U ∪ SU and EZU

= E(U,U) ∪ E(U, SU ) holds. Because
SU ⊆ N+(U) ⊆ N+(Pi), every edge in E(U, SU ) is a shortcut for Hi. Thus, to prove the lemma,
it suffices to show that distZU

(s0, sℓ) = O((a + 1)b′), for any U . The proof is by the induction on
b′, that is, we show that every chordless path in Pi having (a, b′)-path dominating set SU of size
b′ ≤ b satisfying distZU

(si, sj) is at most (2a + 3)b′ for all b′ ≤ b. (Basis) The case of b′ = 1: Let
w be the unique node in SU , i be the minimum index such that si ∈ N+(w) holds, and j be the
maximum index such that sj ∈ N+(w) holds. Because SU = {w} is a (a, 1)-path dominating set,
we obtain distZU

(s0, sℓ) ≤ distZU
(s0, si) + distZU

(sj , sℓ) + 2 ≤ 2a + 2. (Inductive Step) Suppose
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Figure 2.2: Proof of Lemma 1.

as the induction hypothesis that any chordless path U ′ = (s′0, s
′
1, . . . s

′
ℓ′) in Pi having (a, b′′)-path

dominating set of size b′′ < b′ satisfies distZU′ (s
′
0, s

′
ℓ′) ≤ (2a + 3)b′′. Let i be the minimum index

such that si ∈ N+(SU ) holds, w is any node in SU ∩N+(si), and j be the maximum index such that
sj ∈ N+(w) (see Fig. 2.2). If ℓ−j ≤ a, we obtain distZU

(s0, sℓ) ≤ distZU
(s0, si)+distZU

(sj , sℓ)+2 ≤
2a + 2. In the case of ℓ − j > a, any node sh for j + a + 1 ≤ h ≤ ℓ has no node sh′ such that
sh′ ∈ N+(w) and |h′ − h| ≤ a hold. Hence, the vertex set SU\{w} is a (a, b∗)-path dominating set
of (chordless) subpath U∗ = (sj+a+1, . . . , sℓ). Because b∗ < b′ holds, by the induction hypothesis,
we obtain distZU

(sj+a+1, sℓ) ≤ distZU∗ (sj+a+1, sℓ) ≤ (2a + 3)b∗. It follows that distZU
(s0, sℓ) ≤

distZU
(u, si)+distZU

(sj , sj+a+1)+distZU
(sj+a+1, sℓ)+2 ≤ a+(a+1)+(2a+3)b∗+2 ≤ (2a+3)b′.

The lemma holds.

2.3 Low-Congestion Shortcut for Constant Doubling Dimension
Graphs

A pair of a set V (G) and the associated function dist : V (G) × V (G) → R is known as a metric
space if and only if the following three conditions hold: (1) dist(u, v) = 0 if and only if v = u, (2)
dist(u, v) = dist(v, u) for all u, v ∈ V , and (3) dist(u, v) ≤ dist(u,w) + dist(w, v) for all u, v, w ∈
V (G). The doubling dimension of a metric space V is the smallest positive integer x such that it is
possible to cover the ball B(v, r) = {u | dist(v, u) < r} of radius r with the union of at most 2x balls
of radius r/2 for any v ∈ V (G) and r > 0. A graph G = (V (G), E(G)) has a doubling dimension
x if (V (G), distG) is a metric space of the doubling dimension x. The graphs of bounded doubling
dimensions can be assumed to be a generalization of unit disk graphs, and are often considered in
the context of distributed computing [21, 29, 59, 62]. The main results of this section are that the
graphs of bounded doubling dimensions allow a good shortcut. We have the following theorem:

Theorem 4. Let x be the doubling dimension of the graph G. Then, there is an O(1)-round
algorithm that constructs low-congestion shortcut with quality Õ(Dx).

The theorem is obtained by combining the following lemma with Lemma 1. Recall that any
graph having a dominating set of size Õ(Dx) is (0, Õ(Dx))-path dominating.

Lemma 2. Let G be any graph of the doubling dimension x. There is a dominating set of size
Õ(Dx) in graph G.

Proof. We show that G is covered by at most 2ix balls with radius (D/2i) for any 1 ≤ i ≤ logD.
The lemma is obtained by setting i = logD. The proof follows the induction on i. (Basis) The case
of i = 1 is obtained from the definition of the doubling dimension. (Inductive step) Suppose as the
induction hypothesis that there exists at most 2ix balls with radius D/2i that cover the graph G.
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By the definition of the doubling dimension, each ball with radius D/2i can be covered at most by
2x balls with radius D/2i+1. Therefore, there exist at most 2(i+1)x balls with radius D/2i+1 that
cover the graph G. The lemma is proved.

2.4 Low-Congestion Shortcut for Small Diameter Graphs

Let κD = n(D−2)/(2D−2). Note that κ3 = n1/4, and κ4 = n1/3 hold. The main result in this section
is the following theorem:

Theorem 5. For any graph of diameter D ∈ {3, 4}, there exists an algorithm for constructing
low-congestion shortcut with quality Õ(κD) in Õ(κD) rounds.

2.4.1 Centralized Construction

In the following argument, we use terminology “whp.” (with high probability) to mean that the
event considered occurs with probability 1− n−ω(1) (or equivalently 1− e−ω(logn)). For simplicity
of the proof, we treat any whp. event as if it necessarily occurs. (i.e., with P=1). Because the
analysis below handles only a polynomially bounded number of whp. events, the standard union-
bound argument guarantees that everything simultaneously occurs whp; that is, any consequence
yielded by the analysis also occurs whp. Because the proof is constructive, we first present the
algorithms for D = 3 and 4. They are described as a (unified) centralized algorithm, and the
distributed implementation is explained later. Let N ′ be the number of parts whose diameter is
greater than 12κD log3 n (say large part). Assume that P1, P2, . . . , PN ′ are large without loss of
generality. Because each part Pi (1 ≤ i ≤ N ′) contains at least κD nodes, N ′ ≤ n/κD holds clearly.
Our technical challenge is to reduce the dilation of the large part. To this end, we separate the large
part into the subparts whose diameters are Õ(κD), and shows that the shortcut edges establish at
least one length-D path between any two subparts. Note that this separation scheme is introduced
only for the analysis, and the algorithm does not actually construct it. The detailed explanation
of the scheme is explained later. First, each large part computes 1-hop extension. As shown in the
previous section, the 1-hop extension only increases the congestion by O(1). Therefore, it suffices
to show that at least one shortcut path of length D − 2 is established between any two extended
subparts. For the case of D = 3, the independent sampling of each edge with probability 1/n1/2

guarantees the construction of such paths (of length D−2 = 1). For the case of D = 4, we introduce
a new edge sampling scheme based on hash functions of limited independence, which positively
correlates two edges incident to a common vertex, and thus amplifies the probability of establishing
length-2 shortcut paths without too much increase of congestion. The precise description of the
algorithms is stated below. It is applied to each large part Pi for the construction of Hi.

1. Each node v ∈ VPi adds its incident edges to Hi (i.e., compute the 1-hop extension).

2. This step adopts two different strategies according to the value of D. (D = 3) Each node
u ∈ N+(VPi) adds each incident edge (u, v) to Hi with probability 1/n1/2. (D = 4). Let
Y = [1, n1/3/ log n]. We first prepare an (n1/3 log3 n)-wise independent hash function h :
[0, N − 1] × V → Y, 1. At node u ∈ V , each incident edge (u, v) satisfying v ∈ N+(VPi) is
independently sampled with probability 1/h(u, i). All the sampled edges are added to Hi.

1Let X and Y , be two finite sets. For any integer k ≥ 1, a family of hash functions H = {h1, h2, . . . , hp}, where
each hi is a function from X to Y , is known as k-wise independent if for any distinct x1, x2, . . . , xk ∈ X and any
y1, y2, . . . yk ∈ Y , a function h sampled from H uniformly at random satisfies Pr[

∧
1≤i≤k h(xi) = yi] = 1/|Y |k.
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We show that this algorithm provides a low-congestion shortcut of quality Õ(κD). First, we
observe the bound for congestion. LetH1

i be the set of the edges added toHi in the first step, andH2
i

be those added in the second step. Because the congestion of the 1-hop extension is negligibly small,
it suffices to consider the congestion incurred by step 2. Intuitively, we can believe the congestion of
Õ(κD) as the expected congestion of each edge is Õ(κD): Because the total number of large parts is
at most n/κD, the expected congestion of each edge incurred in step 2 is n/κD · (1/n1/2) = O(n1/4)
for D = 3, and (n/κD)

∑
y∈Y(1/y) · (1/|Y|) ≤ (n/κD) · (log n/|Y|) = Õ(n1/3) for D = 4.

Lemma 3. The congestion of the constructed shortcut is Õ(κD) whp.

Proof. It suffices to show that the congestion of any edge e = (u, v) ∈ E(G) is Õ(κD), whp. For
simplicity of proof, we observe an undirected edge e = (u, v) as two (directed) edges (u, v) and
(v, u), and distinguish the events by adding (u, v) to shortcuts by u and that by v; that is, the
former is recognized as adding (u, v), whereas the latter is recognized by adding (v, u). Clearly, the
asymptotic bound holding for directed edge (u, v) also holds for the corresponding undirected edge
(u, v) actually existing in G (which is at most twice of the directed bound). Because the first step
of the algorithm increases the congestion of each directed edge at most by one, it suffices to show
that the congestion incurred by the second step is at most Õ(κD).

Let Xi be the indicator random variable for event (u, v) ∈ H2
i , and X =

∑
iXi. The goal of the

proof is to show that X = Õ(κD) holds whp. The cases of D = 3 and D = 4 are proved separately.
(D = 3) Because at most n/κ3 large parts exist, we have that E[X] ≤ (n/κ3) ·(1/n1/2) = n1/4 = κ3.
The straightforward application of the Chernoff bound to X allows us to bound the congestion of
e by at most 2κ3 with probability 1− e−Ω(n1/4). (D = 4) Let P ′ be the subset of all large parts Pj

such that u ∈ N+(Pj) holds. Consider an arbitrary partition of P ′ into several groups with a size
of at least (n1/3 log3 n)/2 and at most n1/3 log3 n. Let q be the number of groups. Each group was
identified by a number ℓ ∈ [1, q]. We refer to the ℓ-th group as Pℓ. Fixing ℓ, we bound the number
of parts in Pℓ using e = (u, v) as the shortcut edge. Let Yi be the value of h(u, i). For Pi ∈ Pℓ, the
probability that Xi = 1 is

Pr[Xi = 1] =
∑
y∈Y

Pr[Yi = y]
1

y

=
Har (|Y|)
|Y|

,

where Har(x) is the harmonic number of x, i.e.,
∑

1≤i≤x i
−1. Letting Xℓ =

∑
j∈P ℓ Xj , we have

E[Xℓ] = (|P ℓ|Har(|Y|))/|Y|. Because Har(x) ≥ 1, we have E[Xℓ] ≥ |P ℓ|/|Y| = (log4 n)/2. As
the hash function h is (n1/3 log3 n)-wise independent, it is easy to check that X1, X2, . . . , Xpℓ are

independent. We apply Chernoff bound to Xℓ and obtain Pr[Xℓ ≤ 2E[Xℓ]] ≥ 1 − e−Ω(E[Xℓ]) =

1 − e−Ω(log4 n). It implies that for any ℓ, at most 2E[Xℓ] groups use (u, v) as their shortcut edges.
The total congestion of (u, v) is obtained by summing up 2E[Xℓ] for all ℓ ∈ [1, q], which results in
the following: ∑

ℓ

2E[Xℓ] ≤
∑
ℓ

2|P ℓ| log n
|Y|

=
2|P ′| log n
|Y|

= Õ(n1/3).

The lemma is proved.

16



For bounding dilation, we first introduce several preliminary notions and terminologies. Given
a graph G = (V (G), E(G)), a subset S ⊂ V (G) is known as an (α, β)-ruling set if it satisfies the
following: (1) for any u, v ∈ S, distG(u, v) ≥ α holds, and (2) for any node v ∈ V (G), there exists
u ∈ S such that distG(v, u) ≤ β holds. It is known that there exists an (α, α+1)-ruling set for any
graph G [9]. Let P̂i = Pi +H1

i for short. For the analysis of Pi’s dilation, it suffices to consider the
case where the diameter of P̂i is greater than 12κD log3 n. We first consider an (α, α + 1)-ruling
set of P̂i for α = 12κD log3 n, which is denoted by S = {s0, s1, . . . , sz}. Note that this ruling set
is introduced only for the analysis, and the algorithm does not actually construct it. The key
observation of the proof is that for any sj (1 ≤ j ≤ z) Hi contains a path of length Õ(κD) from
s0 to sj whp. It follows that any two nodes u, v ∈ VP̂i

are connected by a path of length Õ(κD) in

Pi +Hi because any node in VP̂i
has at least one ruling set node within distance α+ 1 in Pi +H1

i .
To prove the above-mentioned claim, we further introduce the notion of terminal sets. A

terminal set Tj ⊆ VPi associated with sj ∈ S (0 ≤ j ≤ z) is the subset of VPi satisfying (1)
|Tj | ≥ κD log3 n, (2) distPi+Hi(sj , x) ≤ 6κD log3 n for any x ∈ Tj , and (3) N+(x) ∩N+(y) = ∅ for
any x, y ∈ Tj (note that N+(·) is the set of neighbors in G, not in Pi + H1

i ). We can show that
such a set always exists.

Lemma 4. Let S = {s0, s1, . . . , sz} be any (α, α + 1)-ruling set of P̂i for α = 14κD log3 n, there
always exists a family of the terminal sets T = {T0, T1, . . . , Tz} associated with S.

Proof. The proof is constructive. Let c = 6κD log3 n. We take an arbitrary shortest path Q =
(sj = u0, u1, u2, . . . , uc) of length c in Pi + H1

i , starting from sj ∈ S. Because no two nodes in
N+(VPi) \ VPi are adjacent in Pi + H1

i , Q contains no two consecutive nodes, which are both in
N+(VPi) \ VPi ; implying that at least half of the nodes in Q belong to VPi . Let q

′ = (u′0, u
′
1, . . . u

′
c′)

be the subsequence of Q consisting of the nodes in VPi . Then, we define Tj = {u′0, u′3, . . . , u′3⌊c′/3⌋},
which satisfies the three properties of terminal sets: It is easy to check that the first and second
properties hold. In addition, one can show that distG(u

′
x, u

′
x+a) ≥ 3 (which is equivalent toN+(u′x)∩

N+(u′x+a) = ∅) holds for any a ≥ 3, and x ∈ [1, c′ − a]: Suppose that distG(u
′
x, u

′
x+a) ≤ 2 holds for

some a ≥ 3 and x ∈ [1, c′ − a], the distance between u′x and u′x+a implies N+(u′x)∩N+(u′x+a) ̸= ∅,
and thus distP̂i

(u′x, u
′
x+a) ≤ 2 holds. Then, bypassing the subpath from u′x to u′x+a in Q through a

distance-two path, we obtain a path from sj to uc shorter than Q. This contradicts the fact that
Q is the shortest path.

The second property of terminal sets and the following lemma deduces that distPi+Hi(s0, sj) =
Õ(κD) holds for any j ∈ [0, z].

Lemma 5. Let S = {s0, s1, . . . , sz} be any (α, α + 1)-ruling set of P̂i for α = 14κD log3 n, and
T = {T0, T1, . . . , Tz} be a family of terminal sets associated with S. For any j ∈ [0, z], there exist
u ∈ T0 and v ∈ Tj such that distPi+Hi(u, v) = O(1) holds.

Proof. Because the distances s0 and sj are at least 14κD log3 n, we have N+(T0) ∩ N+(Tj) = ∅.
The proof is divided into the cases of D = 3 and D = 4. (D = 3) Under the conditions of
N+(T0)∩N+(Tj) = ∅ andD = 3, there exists a path of length exactly three from any node a ∈ T0 to
any node b ∈ Tj . Letting ea,b be the second edge in that path, we define F = {ea,b | a ∈ T0, b ∈ Tj}.
By the third property of the terminal sets and because N+(T0) ∩ N+(Tj) = ∅, for any two edges
(x1, y1), (x2, y2) ∈ F , either x1 ̸= x2, or y1 ̸= y2 holds; that is, ea1,b1 ̸= ea2,b2 holds for any
a1, a2 ∈ T0, b1, b2 ∈ Tj and (a1, b1) ̸= (a2, b2). The first property of terminal sets implies that |F | =
|T0||Tj | ≥ (κD log3 n)2. Because each edge in F is added to H2

i , with probability 1/n1/2 = 1/κ2D,

the probability that no edge in F is added to H2
i is at most (1 − 1/κ2D)

(κD log3 n)2 ≤ e−Ω(log6 n);
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that is, an edge ea,b is added to Hi whp. and then distPi+Hi(a, b) ≤ 3 holds. (D = 4) For any
node u ∈ T0 and v ∈ Tj , there exists a path from u to v of length three or four in G. That
path necessarily contains a length-two sub-path P2(u, v) = (auv, buv, cuv) such that auv ∈ N+(u)
and cuv ∈ N+(v) hold (if P2(u, v) is not uniquely determined, an arbitrary length-two sub-path is
chosen). We refer to (auv, buv) and (buv, cuv), the first and second edges of P2(u, v), respectively.
(See Figure 2.3.) Let P2 = {P2(u, v) | u ∈ T0, v ∈ Tj}, G′ is the union of P2(u, v) for all u ∈ T0

and v ∈ Tj , and Pe
2 = {P2(u, v) ∈ P2, | e ∈ P2(u, v)} for any e ∈ EG′ . We first bound the

size of Pe
2 . Assume that e is the first edge of a path in Pe

2 . Let e = (a, b) and u ∈ T0 be the
(unique) node such that a ∈ N+(u) holds. Because at most |Tj | paths in P2 can start from a
node in N+(u), the number of paths in P2 using e as their first edges is at most |Tj |. Similarly,
if e is the second edge of some path in Pe

2 , at most |T0| paths in P2 can contain e as their second
edges. Although some edges may be used as both the first and second edges, the total number of
paths using e is bounded by |T0| + |Tj | = 2κD log3 n, implying that any path P2(u, v) can share
edges with at most 4κD log3 n edges, and thus, P2 contains at least |T0||Tj |/(4κD log3 n + 1) ≥
κD log3 n/5 edge-disjoint paths. Let P ′

2 ⊆ P2 be the maximum-cardinality subset of P2 such that
any P2(u1, v1), P2(u2, v2) ∈ P ′

2 is edge-disjoint. We define B = {b | (a, b, c) ∈ P ′
2}. Let ∆(b) be

the number of paths in P ′
2, containing b ∈ B as the center. Owing to the edge disjointness of

P ′
2, we have |EG(N

+(T0), b)| ≥ ∆(b), and |EG(N
+(Tj), b)| ≥ ∆(b) for any b ∈ B. Let Yb be the

value of h(b, i), and Xb be the indicator random variable that takes one if a path in P2, which
contains b as the center, is added to Hi, and zero otherwise. Let X and Y be the indicator
random variables corresponding to the events of

∨
b∈B(Xb = 1) and

∨
b∈B(Yb ≤ ∆(b)/ log2 n)

respectively. By the definition of ∆(b), the probability of adding no first edge with b and the node

in T0 as the endpoints to Hi is at most (1− 1/h(b, i))∆(b). Similarly, the probability of adding

no second edge with b and the node in Tj as the endpoints to Hi is at most (1− 1/h(b, i))∆(b).

Then, we obtain Pr[Xb = 1 | Yb = y] ≥ 1 − (1− 1/y)∆(b) − (1− 1/y)∆(b) ≥ 1 − 2e−∆(b)/y, and

thus, Pr[Xb = 1 | Yb ≤ max{1,∆(b)/ log2 n}] ≥ 1 − e−Ω(log2 n) holds. Note that, if Yb = 1, then
all incident edges of b included in P ′

2 must be added to Hi, so Xb = 1 always holds. Therefore,

Pr[X = 1 | Y = 1] ≥ 1 − e−Ω(log2 n) holds. Because h is (n1/3 log3 n)-wise independent, Yb for all
b ∈ B are independent. Thus, we obtain the following:

Pr[Y = 1] = 1− Pr[Y = 0]

= 1− Pr

[∧
b∈B

Yb > max

{
1,

∆(b)

log2 n

}]

= 1−
∏

b∈B,∆(b)>2 log2 n

Pr

[
Yb >

∆(b)

log2 n

]
×

∏
b∈B,∆(b)≤2 log2 n

Pr [Yb > 1] ,

= 1−
∏

b∈B,∆(b)>2 log2 n

(
1−

⌊
∆(b)

n
1
3 log n

⌋)

×
∏

b∈B,∆(b)≤2 log2 n

(
1− log n

n
1
3

)
,

= 1−
∏

b∈B,∆(b)>2 log2 n

(
1− ∆(b)

2n
1
3 log n

)
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×
∏

b∈B,∆(b)≤2 log2 n

(
1− 2 log2 n

2n
1
3 log n

)
,

≥ 1− exp

− ∑
b∈B,∆(b)>2 log2 n

∆(b)

2n
1
3 log n


× exp

− ∑
b∈B,∆(b)≤2 log2 n

2 log2 n

2n
1
3 log n

 ,

≥ 1− exp

− ∑
b∈B,∆(b)>2 log2 n

∆(b)

2n
1
3 log n


× exp

− ∑
b∈B,∆(b)≤2 log2 n

∆(b)

2n
1
3 log n

 ,

= 1− exp

(
−
∑
b∈B

∆(b)

2n
1
3 log n

)

≥ 1− exp

(
− |P ′

2|
2n

1
3 log n

)
,

≥ 1− exp(−Ω(log2 n)).

Consequently, we have that Pr[X = 1] ≥ Pr[X = 1 ∧ Y = 1]Pr[Y = 1] ≥
(
1− e−Ω(logn)

)2
. The

lemma is proved.

2.4.2 Distributed Implementation

We explain the above-mentioned implementation details of the algorithm in the CONGEST model
as follows:

• (Preprocessing) In the algorithm stated above, the shortcut construction is performed only
for large parts, which is crucial to bound the congestion of each edge. Thus, as a preprocessing
task, each node has to know if its own part is large (i.e., having a diameter larger than κD)
or not. The exact identification of the diameter is usually a hard task; only an asymptotic
identification is sufficient for achieving the shortcut quality stated above, where the parts of
diameter ω(κD) and diameter o(κD) must be identified as large and small ones, but those
of diameter Θ(κD) are arbitrarily identified. This loose identification is easily implemented
through simple distance-bounded aggregation. The algorithm for part Pi is as follows: (1) In
the first round, each node in Pi sends its ID to all the neighbors, and (2) in the subsequent
rounds, each node forwards the minimum ID received thus far. The algorithm executes this
message propagation during κD rounds. If the diameter is substantially larger than κD, the
minimum ID in Pi does not reach all the nodes in Pi. Then, there exists an edge whose
endpoints identify different minimum IDs. The one-more-round propagation allows those
endpoints to know the part is large. Thereafter, they start to broadcast the signal “large”
using the following κD rounds. If κD is large, the signal “large” is invoked at several nodes
in Pi, and κD-round propagation guarantees that every node receives the signal. That is, any
node in Pi identifies that Pi is large. The running time of this task is O(κD) rounds.
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Figure 2.3: Proof of Lemma 5.

• (Step 1) As we stated, the 1-hop extension is implemented in one round. In this step, each
node v ∈ VPi tells all the neighbors if Pi is large or not. Consequently, if part Pi is identified
as a large one, all the nodes in N+(Pi) know it after this step.

• (Step 2) The algorithm for D = 3 is trivial. For D = 4, there are two non-trivial matters.
The first matter is the preparation of hash function h. We realize it by sharing a random
seed of O(n1/3 log3 n log |Y|)-bit length in advance. A standard construction by Wegman and
Carter [79] allows each node to construct the desired h in common. Sharing the random seed
is implemented by the broadcast of one O(n1/3 log3 n log |Y|)-bit message, i.e., taking Õ(κD)
rounds. The second matter is to address that u does not know whether Pi is large or not,
and/or if v belongs to N+(Pi). It makes u difficult to determine if (u, v) should be added to
Hi. Instead, our algorithm simulates the task of u by the nodes in N(u). More precisely, each
node v ∈ N+(VPi) adds each incident edge (u, v) to Hi with probability 1/h(u, i). Because
v ∈ N+(Pi), v knows if Pi is large or not (informed in step 1), and v can also compute
h(u, i) locally. Thus, the choice of (u, v) is locally decidable at v. Because this simulation is
completely equivalent to the centralized version, the analysis of the quality also applies.

It is easy to check that the construction time of the distributed implementation above is Õ(κD)
in total.

2.5 Low-Congestion Shortcut for Bounded Clique-width Graphs

Let G = (V (G), E(G)) be a graph. A k-graph (k ≥ 1) is a graph whose vertices are labeled by
integers in [1, k]. A k-graph is naturally defined as a triple (V (G), E(G), f), where f is the labeling
function f : V → [1, k]. The clique width G = (V (G), E(G)) is the minimum k such that there
exists a k-graph G = (V (G), E(G), f), which is constructed through repeated application of the
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Figure 2.4: Graph G⊕H.

following four operations: (1) introduce: create a graph of a single node v with label i ∈ [1, k],
(2) disjoint union: take the union G ∪H of two k-graphs G and H, (3) relabel: given i, j ∈ [1, k],
change all the labels i in the graph to j, and (4) join: given i, j ∈ [1, k], connect all vertices labeled
by i, with all vertices labeled by j by edges.

The clique-width is invented first as a parameter to capture the tractability for an easy sub-
class of high treewidth graphs [16, 19]; that is, the class of bounded clique-width can contain
several graphs with high treewidths. In centralized settings, one can often obtain polynomial-time
algorithms for several non-deterministic-polynomial complete (NP-complete) problems under the
assumption of bounded clique-width. Courcelle et al. [18] showed that for some fixed k, any problem
that can be expressed in Monadic second-order logic with quantification over vertices (MSO1) can
be solved in linear time on any class of graphs of clique-width at most k if we obtain k-expressions
that define the input graph. Coudert et al. [17] showed several polynomial dependencies in the
fixed parameter algorithm (P-FPT) in a bounded clique-width graph. The following negative re-
sult, however, states that bounding clique-width does not admit any good solution for the MST
problem (and thus, for the low-congestion shortcut).

Theorem 6. There exists an unweighted n-vertex graph G = (V (G), E(G)) of clique-width six,
where for any MST algorithm A, there exists an edge-weight function wA : E(G) → N such that
the running time of A becomes Ω̃(

√
n+D) rounds.

We introduce the instance stated in this theorem, which is denoted by G(Γ, p) (Γ and p are
the parameters fixed later), using the operations specified in the definition of clique width; that is,
this introduction itself becomes the proof of clique-width six. Let G(Γ) be the set of 6-graphs that
contains one node with label 1, Γ nodes with label 2, and Γ nodes with label 3, and all other nodes
are labeled by 4. Then, we define the binary operation ⊕ over G(Γ). For any G,H ∈ G(Γ), the
graph G ⊕H is defined as the graph obtained through the following operations: (1) Relabel 2 in
G with 5 and relabel 3 in H with 6, (2) take the disjoint union G ∪H, (3) join with labels 5 and
6, (4) relabel 5 and 6 with 4, and then 1 with 5, (5) add a node with label 1 through operation
introduce, (6) join with 1 and 5, and (7) relabel 5 with 4. This process is illustrated in Figure 2.4.

Now we are ready to define G(Γ, p). The construction is recursive. First, we define G(Γ, 1)
as follows: (1) Prepare a (2Γ)-biclique KΓ,Γ, where one side has label 2, and the other side has
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label 3. Notably, two labels suffice to construct KΓ,Γ. (2) Add three nodes with labels 1, 5, and
6 through operation introduce. (3) Join with labels 2 and 5, and with 3 and 6. (4) Join with
label 1 and 5, and with 1 and 6. (5) Relabel 5 and 6 with 4. Thereafter, we define G(Γ, p) =
G(Γ, p−1)⊕G(Γ, p−1). The instance claimed in Theorem 6 is G(

√
n, log n/2), which is illustrated

in Figure 2.5. This instance is very close to the standard hard-core instance used in prior work (for
example, [75,76]. See Figure 2.1). Thus it is not difficult to observe that Ω̃(

√
n)-round lower bound

for MST construction also applies to G(
√
n, log n/2). It suffices to show the subsequent lemma.

Combined with Theorem 3, we obtain Theorem 6.

Lemma 6. G(Γ, p) ∈ G(O(Γ(2p + 2)),Γ, 2p + 2, 3p).

Proof. First, let us formally specify the graph G(Γ, p), which is defined as follows (vertex IDs
introduced below are described in Figure 2.5):

• V (Γ, p) = T ∪
∪

1≤l≤Γ Vl such that T = {uji | 0 ≤ i ≤ 2j − 1, 0 ≤ j ≤ p}, Vl = {vli | 0 ≤ i ≤
2p − 1}.

• E(Γ, p) = E1 ∪ E2 ∪ E3 such that E1 = {(uji , u
j−1

⌊ i
2
⌋ ) | 0 ≤ i ≤ 2j − 1, 1 ≤ j ≤ p}. E2 =

{(upi , v
j
i ) | 0 ≤ i ≤ 2p− 1, 1 ≤ j ≤ Γ}, E3 = {(vji , vki+1) | 0 ≤ i ≤ 2p− 2, 1 ≤ j ≤ Γ, 1 ≤ k ≤ Γ}.

We define X = {X1, X2, . . . , X2p+2} for graph G(Γ, p) as follows:

• Xi = {up0} (i = 1).

• Xi = {vj0 | 1 ≤ j ≤ Γ} (i = 2).

• Xi = {vji−2 | 2 ≤ j ≤ N} ∪ {up−j
(i−1)/2j−1

| 0 ≤ j ≤ p, i− 1 mod 2j = 0} (3 ≤ i ≤ 2p − 1).

• Xi = {vj2p−2 | 1 ≤ j ≤ Γ} ∪ {up2p−2} ∪ {u
j
2j−1

| 0 ≤ j ≤ p− 1} (i = 2p).

• Xi = {vj2p−1 | 1 ≤ j ≤ Γ} (i = 2p + 1)

• Xi = {up2p−1} (i = 2p + 2)

We define Q = {Q1, Q2, . . . , QΓ} for graph G(Γ, p) as follows:

• Qi = V1 ∪ (T\(s ∪ r)) ((i = 1)).

• Qi = Vi ((2 ≤ i ≤ Γ)).

It is easy to check that (C1) and (C2) are satisfied. Thus, we only show that (C3) is satisfied.
Let VRi = Ri ∩

∪Γ
j=1 Vj . For 2 ≤ i ≤ (2p + 2)/2, we have (N(VRi)\Ri−1) = ∅. For any ℓ and

1 ≤ i ≤ 2p−2, if upi is included in Rℓ, then the neighbors of upi are included in Rℓ. For any ℓ,
1 ≤ i ≤ p and 0 ≤ j ≤ 2i− 2, if uij is included in Rℓ, then uij+1 is included in Rℓ. Let u

i(Rℓ) be the

leftmost vertex whose level is i of T and included in Rℓ. For any ℓ, 1 ≤ i ≤ p and 0 ≤ j ≤ 2i− 1, if
uij ̸= ui(Rℓ) and uij are included in Rℓ, then the parent of uij is included in Rℓ. Thus, |(N(Rℓ)\Rℓ−1)|
only includes neighbors of ui(Rℓ) for 1 ≤ i ≤ p and 2 ≤ ℓ ≤ (2p + 2)/2. Because the tree T is
a binary tree, ui(Rℓ) has at most 3 neighbors in T . Therefore we have |E ((N(Ri)\Ri−1)) | ≤ 3p.
Similarly, we have |E ((N(Li)\Li−1)) | ≤ 3p. Therefore, we can prove that the graph G(Γ, p) is
included in G(O(Γ(2p + 2)),Γ, 2p + 2, 3p). By Theorem 3, the lower bound for constructing the
MST in G(O(Γ(2p + 2)),Γ, 2p + 2, 3p) is Ω̃((min{Γ/3p, ((2p + 2) /2 − 1}). When Γ = Θ(

√
n) and

2p = Θ(
√
n), we obtain the Ω̃(

√
n) lower bound.
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Chapter 3

A Subquadratic-Time Distributed
Algorithm for Exact Maximum
Matching

3.1 Introduction

In this chapter, we consider the maximum matching problem in the CONGEST model. We present
the main theorem of this chapter below.

Theorem 7. For any input graph G, there exists a randomized CONGEST algorithm to compute

the maximum matching that terminates within O
(
s
3/2
max

)
rounds with probability 1− 1/nΘ(1).

3.2 Preliminaries

We use the definition of the CONGEST model defined in Section 2.2.1.

3.2.1 Matching and Augmenting Path

For a graph G = (V (G), E(G)), a matching M ⊆ E(G) is a set of edges that do not share endpoints.
A node v is called a matched node if M intersects IG(v), or an unmatched node otherwise. A path
U = {v0, e0, v1, e1, . . . , vℓ} is called an alternating path if IM (ei) + IM (ei+1) = 1 holds for any
1 ≤ i ≤ ℓ−1.1 If the length |U | of U satisfies |U | mod 2 = θ, U is called θ-alternating. The value θ
is called the parity of U . By definition, any 0-alternating (1-alternating) path from an unmatched
node f finishes with a matching (non-matching) edge. Due to a technical issue, we regard the path
of length zero as a 0-alternating path. For any θ ∈ {0, 1} and u, v ∈ V (G), we define rθ(u, v) as the
length of the shortest θ-alternating path between u and v. An augmenting path is an alternating
path connecting two unmatched nodes. Note that the augmenting path must be 1-alternating path.
We say that (G,M) has an augmenting path if there exists an augmenting path in G with respect
to M . The following proposition is a well-known fact in the maximum matching problem.

Proposition 2. Given a matching M ⊆ E(G) of graph G, M is the maximum matching if and
only if (G,M) has no augmenting path.

1The indicator function IX(x) returns one if x ∈ X and zero otherwise.
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3.2.2 Approximate Maximum Matching

Our algorithm uses an O(1)-approximate upper bound for the maximum matching size of the input
graph. To obtain the upper bound, we run the O(smax)-round maximal matching algorithm as
follows. First we suppose each edge has a unique ID and priority associated with the ID. We run a
simple parallel greedy algorithm, where each node adds an edge to the matching if all neighboring
higher priority edges are already known not be in the maximal matching. One iteration of the
algorithm increases the matching size at least by one, and thus O(smax) rounds suffices to obtain
a maximal matching. Since smax = Ω(D(G)) always holds, the termination of maximal matching
construction is detected in O(smax) rounds by checking whether all nodes terminated or not. Note
that the termination detection is executed once in every Θ(D(G)) rounds. Let M∗ be the computed
maximal matching. Since any maximal matching is a (1/2)-approximate maximum matching, one
can obtain the bound 2|M∗| ≥ smax. The size smax is at least half of the diameter D(G), and thus
we can spend O(D(G)) = O(smax) rounds for counting and propagating the number of edges in
M∗. That is, it is possible to provide each node with the value of 2|M∗| in a preprocessing phase
using only O(D(G)) = O(smax) rounds. Let s∗max be the number of maximal matching. In the
following argument, we denote ŝmax = 2s∗max, the value of which is available to each node.

3.2.3 Maximum-Matching Verification Algorithm

Our algorithm uses the algorithm by Ahmadi et al.’s [5] for maximum-matching verification as
a building block. Although the original algorithm is designed for the verification of maximum
matching, it provides each node with information on the length of alternating paths to the closest
unmatched nodes. Precisely, the following lemma holds.

Theorem 8 (Ahmadi et al. [5]). Assume that a graph G = (V (G), E(G)) and a matching M ⊆
E(G) are given, and let W be the set of all unmatched nodes. There exist two O(ℓ)-round randomized
CONGEST algorithms MV(M, ℓ, f) and PART(M, ℓ) that output the following information at every
node v ∈ V (G) with a probability of at least 1− 1/nc for an arbitrarily large constant c > 1.

1. Given M , a nonnegative integer ℓ, and a node f ∈ W , MV(M, ℓ, f) outputs the pair
(θ, rθ(f, v)) at each node v if rθ(f, v) ≤ ℓ holds (if the condition is satisfied for both θ = 0
and θ = 1, v outputs two pairs). The algorithm MV(M, ℓ, f) is initiated only by the node f
(with the value ℓ), and other nodes do not require information on the ID of f and value ℓ at
the initial stage.

2. The algorithm PART(M, ℓ) outputs a partition V 1, V 2, . . . , V N of V (G) (as the label i for each
node in V i) such that (a) For 1 ≤ i ≤ N − 1, the subgraph Gi induced by V i contains exactly
two unmatched nodes f i and gi as well as an augmenting path between f i and gi of length at
most ℓ and (b) the diameter of Gi is O(ℓ). If G contains an augmenting path, PART(M, ℓ)
always returns at least two sets of vertices, otherwise PART(M, ℓ) returns the set of vertices,
that is, V N = V (G). Note that, PART(M, ℓ) can be applied in a subgraph.

While the original paper [5] presents a single algorithm returning the outputs of both MV and
PART, we intentionally separate it into two algorithms with different roles for clarity. Note that
our matching-construction algorithm uses random bits only in the runs of these algorithms. As our
algorithm uses them only O(poly(n)) times as subroutines, we can guarantee that our algorithm has
a high probability of success by taking a sufficiently large c. Hence, we do not pay much attention
to the failure probability of our algorithm. Any stochastic statement in the following argument
also holds with probability 1− nc for an arbitrary constant c > 1.
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Algorithm 1 Constructing a maximum matching in O(n3/2) rounds.

1: for i = 1; i ≤ ŝmax −
√
ŝmax; i++ do

2: run the algorithm A(M, ℓ) with ℓ = ⌈2ŝmax/(ŝmax − i)⌉ for O(ℓ) rounds.
3: if A(M, ℓ) finds a nonempty set of vertex-disjoint augmenting paths within O(ℓ) rounds,

then
4: improve the current matching using the set of vertex-disjoint augmenting paths.
5: for i = 1; i ≤

√
ŝmax; i++ do

6: run the algorithm B(M) for O(ŝmax) rounds.
7: if B(M) finds a nonempty set of vertex-disjoint augmenting paths within O(ŝmax) rounds,

then
8: improve the current matching M using the set of vertex-disjoint augmenting paths.

3.3 Computing the Maximum Matching in CONGEST

As explained in the introduction, the maximum matching problem is reducible to the problem of
finding an augmenting path. We first present two key results below.

Lemma 7. Let M be a matching of G. Provided that (G,M) has exactly two unmatched nodes
f, g ∈ VG and contains an augmenting path of length at most ℓ between f and g, there exists an
O(ℓ2)-round randomized algorithm that outputs an augmenting path connecting f and g.

Lemma 8. Let M be a matching of G. Provided that (G,M) has exactly two unmatched nodes
f, g ∈ VG and contains an augmenting path between f and g, there exists an O(n)-round randomized
algorithm that outputs an augmenting path that includes f .

The outputs of both algorithms are the labels to the edges in the computed augmented path.
If the edge e is included in the augmenting path, then the vertices connecting to e know that e
is included in the augmenting path. Each node adds the edge e to a matching M if the edge e is
included in the augmenting path and is not included in the matching, and removes the edge e from
a matching M if the edge e is included in the augmenting path and the matching. To prove the
lemmas, one can utilize the output of the algorithm PART. We first run the verification algorithm
PART(M, ℓ) (for Lemma 7) or PART(M, ŝmax) (for Lemma 8) as a preprocessing step and then
execute the algorithms of Lemma 7 or 8 for each Gi output by PART independently. Note that
each Gi contains only matched nodes and two unmatched nodes; thus, |V (Gi)| ≤ 2|M | + 2 holds
for any Gi. Then, the following corollary is deduced:

Corollary 1. There exist two randomized algorithms A(M, ℓ) and B(M) satisfying the following
conditions, respectively:

• For any graph G = (V (G), E(G)) and matching M ⊆ E(G), A(M, ℓ) finds a nonempty set
of vertex-disjoint augmenting paths within O(ℓ2) rounds if (G,M) has an augmenting path of
length at most ℓ.

• For any graph G = (V (G), E(G)) and matching M ⊆ E(G), B(M) finds a nonempty set of
vertex-disjoint augmenting paths of (G,M) within O(|M |) rounds if (G,M) has an augment-
ing path.

We present an O
(
s
3/2
max

)
-round algorithm for computing the maximum matching using the

algorithms A(M, ℓ) and B(M). The pseudocode of the whole algorithm is presented in Algorithm 1.
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It basically follows the standard idea of centralized maximum matching algorithms, i.e., finding an
augmenting path and improving the current matching iteratively. The first ŝmax−

√
ŝmax iterations

use A(M, ℓ) (lines 1–4), and the remaining
√
ŝmax iterations use B(M). In the i-th iteration, the

algorithm A(M, ℓ) runs with ℓ = ⌈2ŝmax/(2ŝmax − i)⌉. This setting comes from Proposition 1.
The improvement of the current matching by a given augmenting path is simply a local operation
and is realized by flipping the labels of matching edges and non-matching edges on the path. The
correctness and running time of Algorithm 1 are analyzed below.

Lemma 9. Algorithm 1 constructs a maximum matching with high probability in O
(
s
3/2
max

)
rounds.

Proof. Let ξ(i) be the matching size at the end of i iterations of the algorithm A(M, ℓ). We show
that ξ(ŝmax − smax + j) ≥ j holds for any 0 ≤ j ≤ smax −

√
ŝmax. It implies that the matching

size is at least smax −
√
ŝmax after the application of A(M, ·). Therefore, the maximum matching

is constructed by
√
ŝmax iterations of the algorithm B(M). The proof of the statement above

follows the induction on j. (Basis) If j = 0, the statement trivially holds. (Inductive step) As
the induction hypothesis, suppose ξ(ŝmax − smax + j′) ≥ j′ holds. If ξ(ŝmax − smax + j′) ≥ j′ + 1,
then the statement holds. Therefore, we consider the case in which ξ(ŝmax − smax + j′) = j′

holds. By Proposition 1, there exists an augmenting path of length at most ⌊2smax/(smax − j′)⌋ ≤
2ŝmax/(smax− j′) = 2ŝmax/(ŝmax− (ŝmax− smax + j′)) ≤ 2ŝmax/(ŝmax− (ŝmax− smax + (j′ +1))) at
the end of ŝmax − smax + j′ iterations of the algorithm A(M, ℓ). Hence, the size of the matching is
increased by at least one in the (ŝmax − smax + j′ + 1)-th iteration.

Now, we show the running-time analysis of Algorithm 1. Recall that ŝ = Θ(smax) holds. As
A(M, ℓ) is repeated ŝmax −

√
ŝmax times and B(M) is repeated

√
ŝmax times, the running time of

Algorithm 1 is as follows.

O (smax) +O

ŝmax−
√
ŝmax∑

i=1

(⌈
2ŝmax

ŝmax − i

⌉)2
+O

(
ŝmax

√
ŝmax

)

=O

ŝmax−
√
ŝmax∑

i=1

(
ŝmax

ŝmax − i

)2

+ ŝmax −
√

ŝmax + ŝmax

√
ŝmax


=O

 ŝmax−1∑
i=

√
ŝmax

(
ŝmax

i

)2

+ ŝmax

√
ŝmax


=O

ŝ2max

ŝmax−1∑
i=

√
ŝmax

(
1

i

)2

+ ŝmax

√
ŝmax


=O

(
ŝ2max

1√
ŝmax

+ ŝmax

√
ŝmax

)
=O

(
ŝ3/2max

)
=O

(
s3/2max

)
.

The following sections are devoted to proving Lemmas 7 and 8. Since the presented algorithms
are intended to run in each Gi returned by the preprocessing run of PART(M, ·), without loss of
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Algorithm 2 Construction of the augmenting path CAP((G,M), f, g, ℓ) .

Require: The path U0 is an augmenting path with length ℓ from f to g.
1: U0, U1, . . . , Uℓ: initially ∅.
2: target = g
3: for i = 1; i ≤ ℓ; i++ do
4: if i is even then
5: target chooses the node vℓ−i that satisfies IM ((target, vℓ−i)) = 1.
6: Uℓ−i ← Uℓ−i+1 ∪ {(target, vℓ−i)}.
7: target← vℓ−i.
8: else
9: run the algorithm MV(M, ℓ − i, f) with the subgraph Hℓ−i+1 induced by V (G − Uℓ−i+1)

as the input.
10: for any v ∈ V (G− Uℓ−i+1), the node v sends r0Hℓ−i+1

(f, v) to its neighborhood.

11: target chooses a node vℓ−i that satisfies IM ((target, vℓ−i)) = 0 and r0Hℓ−i+1
(f, vℓ−i) = ℓ− i.

12: Uℓ−i ← Uℓ−i+1 ∪ {(target, vℓ−i)}.
13: target← vℓ−i.

generality, we assume that G has exactly two unmatched nodes f and g with an augmenting path
between them. In addition, it is assumed that one of f and g is elected as a primary unmatched node
(referred to as f hereafter). This election process is easily implemented in O(ℓ) rounds because the
distance between f and g is at most ℓ. When we argue the existence of augmenting or alternating
paths in a subgraph H = (V (H), E(H)) of G, the matching M ∩ E(H) of graph H is considered
without explicit notice. Given a subgraph H ⊆ G, we denote the length of the shortest odd (even)
alternating path from f to v in H by r1H(f, v) (r0H(f, v)). If no odd or even alternating path exists
from f to v in H, then we define r1H(f, v) = ∞ or r0H(f, v) = ∞. As sentinels, we also define
r0H(f, f) as ∞ and r1H(f, f) as 0.

3.4 Construction of Augmenting Path in O(ℓ2) Rounds

3.4.1 Outline

Let U = {v0, e1, v1, . . . , vℓ} be the shortest augmenting path from f to g (i.e., f = v0 and g = vℓ)
and Ui = U s

vi for short. The key idea of the algorithm is to find the predecessor of each node vi
along U sequentially. Note that it does not suffice to choose a neighbor v of vi with rθG(f, v) = i−1
and IM (vi, v) = θ for θ = (i − 1) mod 2 as the predecessor. This strategy is problematic in the
scenario in which there exists two neighbors v and u such that rθG(f, v) = rθG(f, u) = i − 1 and
IM (vi, u) = IM (vi, v) = θ for θ = (i − 1) mod 2, where u is the correct successor. While v is
guaranteed to have the alternating path Q from f to v of length i − 1, it can intersect Ui. Then,
the concatenation Q◦ (vi, v)◦Ui is not simple. That is, it is not an augmenting path. To avoid this
scenario, the algorithm finds the predecessor of vi in the graph G−Ui, where G−Ui is the induced
graph by V (G)\V (Ui). If some neighbor v of vi satisfies r

θ
G−Ui

(f, v) = i− 1 and IM (vi, v) = 1− θ,
the concatenated walk Q ◦ (vi, v) ◦ Ui is guaranteed to be simple.

3.4.2 Algorithm Details

Algorithm 2 details the algorithm for constructing the augmenting path in O(ℓ2) rounds. The
algorithm consists of ℓ steps. In the i-th step, it finds the predecessor of vℓ−i+1. Assume that the
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Figure 3.1: Examples of the alternating base tree. Bold lines are matching edges, and thin lines
are unmatched edges.

algorithm has already found Uℓ−i+1 at the beginning of the i-th step. Any node in V (Uℓ−i+1) \
{vℓ−i+1} quits the algorithm (with the information of the predecessor in Ui), and thus, the nodes
still running the algorithm are given by V (G − Uℓ−i+1). If i is even, the edge (vℓ−i, vℓ−i+1) must
be a matching edge, and thus, the algorithm picks as predecessor of vℓ−i+1 the node at the other
end of the matched edge that vl−i+1 is a part of. Otherwise, the nodes still participating in the
algorithm run MV(M, ℓ− i+1, f) (that is, they run in the graph G−Uℓ−i+1) The algorithm picks
an arbitrary neighbor v of vℓ−i+1 satisfying r0G−Uℓ−i+1

(f, v) = ℓ − i and IM (v, vℓ−i+1) = 0 as the
predecessor of vℓ−i+1.

Lemma 10. Algorithm 2 constructs an augmenting path between f and g with high probability in
O(ℓ2) rounds.

Proof. Let z0 = g and zi be the node that satisfies target = zi at the end of the i-th iteration for
1 ≤ i ≤ ℓ. Let Hi be a subgraph induced by V (G− Ui). We prove the statement that Uℓ−h is a (h
mod 2)-alternating path between z0 and zh. As r

0
G(f, zℓ) ≤ r0H1

(f, zℓ) = 0, zℓ = v holds, and thus,
we obtain U0 as an augmenting path of length ℓ from f to g by setting h = ℓ. The proof follows
the induction on h. (Basis) Since z0 chooses the node z1 that satisfies IM ((target, vℓ−1)) = 0 and
r0Hℓ

(f, vℓ−1) = ℓ − 1 in the first iteration of Algorithm 2, Uℓ−1 = {(z0, z1)} is a 1-alternating path
between z0 and z1. (Inductive Step) As the induction hypothesis, suppose there exists a (h′ mod 2)-
alternating path between z0 and zh′ at the end of the h′-th iteration. Because rh

′ mod 2
Hℓ−h′+1

(f, zh′) =

ℓ − h′ holds by the definition of zh′ , there exists an edge (zh′ , v) that satisfies IM ((zh′ , v)) = h′

mod 2, and r
(h′+1) mod 2
Hℓ−h′

(f, v) = ℓ − h′ − 1 holds. Therefore, zh′ can choose the node zh′+1 that

satisfies IM ((target, zh′+1)) = h′ mod 2 and r0Hℓ−h′
(f, zh′+1) = ℓ−h′− 1 in the (h′+1)-th iteration

of Algorithm 2. Hence, Uℓ−h′ ◦ {(zh′ , zh′+1)} is a ((h+1) mod 2)-alternating path between z0 and
zh′+1 at the end of the (h′ + 1)-th iteration.

We show the running-time analysis of Algorithm 2. The algorithm consists of ℓ iterations. As
each iteration is obviously implemented in O(ℓ) rounds, the running time of Algorithm 2 is O(ℓ2)
rounds.

Theorem 7 trivially follows from Lemma 10.
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3.5 Construction of Augmenting Path in O(n) Rounds

3.5.1 Outline

We first introduce several auxiliary notions and definitions. Given a subgraphH ⊆ G and θ ∈ {0, 1},
a node v ∈ VH is called θ-reachable in H if rθH(f, v) is finite. In addition, v is called bireachable in
H if it is both 1-reachable and 0-reachable in H. A node that is neither 1-reachable nor 0-reachable
in H is called unreachable in H. A node that is θ-reachable for some θ ∈ {0, 1} in H but not
bireachable in H is called strictly θ-reachable in H. Given two spanning subgraphs H1 and H2 of
G, we say that a node v ∈ V (H1) preserves the reachability of H2 in H1 if for any θ ∈ {0, 1}, the
θ-reachability of v in H2 implies that in H1. A graph H1 is said to preserve the reachability of H2 if
any node v ∈ V (H1) preserves the reachability ofH2 inH1, which is denoted byH1 ≻ H2. We define
rH(f, v) = minθ∈{0,1} r

θ
H(f, v) and γH(v) = argminθ∈{0,1}r

θ
H(f, v). Note that r0H(f, v) = r1H(f, v)

does not hold, because r0H(f, v) is even and r1H(f, v) is odd. When r0H(f, v) =∞ and r1H(f, v) =∞
hold, γH(v) is defined as zero. We assume that any node v unreachable from f in G does not join
our algorithm. Therefore, without loss of generality, we assume that none of the nodes v ∈ VG

are unreachable in G without loss of generality. In addition, we assume that any node v ∈ VG

has information on the values of r0G(f, v) and r1G(f, v) at the beginning of the algorithm. This
assumption is realized by activating MV(M,n, f) as a preprocessing step.

The key idea of our proof is to construct a sparse certificate H, which is a spanning subgraph
H ⊆ G of O(n) edges satisfying H ≻ G. If such a graph is obtained, the trivial centralized
approach (i.e., the approach in which f collects the whole topological information of H) yields an
O(n)-round algorithm for constructing the augmenting path. For constructing sparse certificates,
we first introduce a novel tree structure associated with G, M , and f :

Definition 5 (Alternating base tree). An alternating base tree for G, M , and f is a rooted
spanning tree T of G satisfying the following conditions:

• f is the root of T .

• For any v ∈ V (G), the edge from v to its parent in T is the last edge of the shortest alternating
path from f to v in G. Formally, letting parT (v) be the parent of v ∈ V (G) \ {f} in T ,

r
γG(v)
G (f, v) = r

1−γG(v)
G (f, parT (v)) + 1 and IM ((v, parTI

(v))) = 1 − γG(v) hold for any v ∈
V (G) \ {f}.

It is not difficult to check that such a spanning tree always exists. As a node might have
two or more shortest alternating paths, T is not uniquely determined (see Figure 3.1 (1) and (2)
for examples). In the following argument, however, we fix an arbitrarily chosen alternating base
tree T . It should be emphasized that the alternating base tree does not necessarily contain an
alternating path from f to each node v. For example, both alternating base trees in Figure 3.1
have no alternating path from f to v9.

Fixing T , the subscript T of the notation parT (v) is omitted in the following argument. We
define ep(v) as the edge from v to its parent and Tv as the subtree of T rooted by v. We define
the outgoing edges of Tv as the set of edges whose one of endpoint belongs to T (v) and the other
endpoint does not belong to Tv. Any non-tree edge e = (u,w) ∈ E(G) \E(T ) and the unique path
from u to w in T form a simple cycle in G, which is denoted by cyc(e).

The sparse certificate is obtained by incrementally augmenting edges to T . For any 1 ≤ k ≤ n,
we define the level-k edge set Fk as Fk = {(u, v) | (u, v) ∈ E(G) \M ∧ max(r0G(f, u), r

0
G(f, v)) =

k} ∪ {(u, v) | (u, v) ∈ M ∧ max(r1G(f, u), r
1
G(f, v)) = k}. We also define F≤k = ∪0≤i≤kFk and

Gk = T + F≤k. Moreover, we define F0 = ∅ as a sentinel. Let Bk be the set of all the bridges (i.e.,
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all the edges forming a cut of size one) in Gk. Note that Bk is a subset of E(T ) because T is a
spanning tree of G. The following lemma is the key technical ingredient of our construction.

Lemma 11. Let F c
k ⊆ Fk\E(T ) be an arbitrary subset of non-tree edges in Fk satisfying Bk−1\Bk ⊆

∪e∈F c
k
E(cyc(e)). Then, (T + ∪1≤i≤kF

c
i ) ≻ Gk holds.

Lemma 11 naturally yields the following incremental construction of sparse certificates: each
node v identifies k such that ep(v) ∈ Bk−1 \Bk holds, and if Tv has an outgoing edge e belonging to
Fk, v adds e to F c

k (if Fk contains two or more outgoing edges, one is chosen arbitrarily). Because
Gk ⊆ Gk+1 holds for any 0 ≤ k ≤ n − 1, we have Bk+1 ⊂ Bk, which implies that Bk \ Bk+1 for
all k are mutually disjoint. Then,

∑
0≤i≤n−1 |Bk \ Bk+1| = |B0| = n − 1 holds. Since at most

one edge is augmented for each edge in Bk \ Bk+1, the size | ∪0≤i≤n−1 F
c
i | is bounded by n − 1.

Since cyc(e) obviously covers ep(v), the constructed edge set F c
k satisfies the lemma. Consequently,

H = T + ∪1≤i≤nF
c
i ≻ Gn is satisfied, and thus, H is a sparse certificate.

The idea behind our algorithm is the seminal blossom argument by Edmonds [26]. A walk W =
v0, e1, v1, e2, . . . , vℓ is called an odd (even) alternating cycle if it satisfies the following condition:

• IM (ei) + IM (ei+1) = 1 holds for any 1 ≤ i ≤ ℓ− 1.

• v0 = vℓ holds.

• The length of the walk W is odd (even).

If an odd alternating cycle has no consecutive proper subsequence forming an odd alternating cycle,
it is called minimal.2 Note that a minimal odd alternating cycle can still have a consecutive subse-
quence forming an even alternating cycle. The node that is first and last node of odd alternating
cycle is called stem node. An odd alternating cycle C is said to be reachable from an unmatched
node x if either the stem node is x or there exists a node v in C admitting an even alternating
path from x to v not intersecting C. A node u is called x-covered if there exists a minimal odd
alternating cycle C reachable from x such that C contains u as a non-stem node. It is known that
the vertex v is bireachable in G if and only if v is f -covered in G [26]. Our algorithm adds the edges
not in T incrementally with guaranteeing the invariant that v is f -covered in (T +∪1≤i≤kF

c
i ) if and

only if v is included in a 2-edge connected component of size at least two in T + ∪1≤i≤kF
c
i . The

addition of edges from Bk−1\Bk in our algorithm can be seen as the process of f -covering the vertex
v which is bireachable in Gk+1 but not in any 2-edge connected component of (T + ∪1≤i≤kF

c
i ), by

creating new minimal odd alternating cycles reachable from f .
Considering the distributed construction of H, a useful property of Lemma 11 is that one does

not have to wait for the computation of F c
k to start the computation of F c

k+1. As the information

on rθG(f, v) for θ ∈ {0, 1} is available to v, each node can identify the level of each incident edge.
Thus, the construction of F c

k for all k can be executed in parallel. The details of the distributed
construction is explained in Section 3.5.3.

3.5.2 Proof Details

Before proving Lemma 11, we prove an auxiliary lemma.

Lemma 12. For any θ ∈ {0, 1} and v ∈ V (G) \ {f} such that rθG(f, v) ≤ k + 1 holds, rθGk′
(f, v) =

rθG(f, v) holds for all k′ ≥ k.

2Due to some technical reason, we allow W to be non-simple, but this modification does not affect the correctness
of the original argument by Edmonds.
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Figure 3.2: Proof of Lemma 12 for (Case 2b). Bold lines are matching edges, and thin lines
are unmatched edges. The dotted line is the edge included in G but not in Gk. Note that the
edge (vj−1, vj) is actually included in Gk, but it is drawn with a dotted line for explaining the
contradiction.

Proof. The proof is based on induction on k. (Basis) k = 0: Let v be any node satisfying rθG(f, v) ≤
k+1 for some θ ∈ {0, 1}, and let Q be the θ-shortest path from f to v in G. This path is contained
in T because v chooses f as its parent in T . (Inductive Step): As the induction hypothesis, suppose
rθGk−1

(f, u) = rθG(f, u) holds (and also rθGk
(f, u) = rθG(f, u) holds because of Gk−1 ⊆ Gk) for any u

and θ satisfying rθG(f, u) ≤ k. Consider any node v such that rθG(f, v) ≤ k + 1 holds. As the case
of rθG(f, v) < k + 1 is evidently proved by the induction hypothesis, we assume rθG(f, v) = k + 1.
The proof consists of the following two cases depending on whether the shortest alternating path
from f to v is θ-alternating path or not.
(Case 1) γG(v) = θ: By the definition of alternating base trees, we have r1−θ

G (f, par(v)) = rθG(f, v)−
1 = k. In addition, for any w ∈ T , r

γG(w)
G (f, w) = r

1−γG(w)
G (f, par(w)) + 1 > r

γG(par(w))
G (f, par(w))

holds. Therefore any node w ∈ Tv satisfies r
γG(w)
G (f, w) ≥ k+1. Then, any outgoing non-tree edge

of Tv has a level of at least k+ 1. That is, ep(v) is a bridge in Gk. Since r1−θ
G (f, par(v)) = k holds,

the induction hypothesis yields r1−θ
Gk

(f, par(v)) = k and thus there exists a (1− θ)-alternating path
U from f to par(v) in Gk. Due to the fact that ep(e) is a bridge, U does not contain v. Hence the
concatenated path P ◦ ep(e) is a θ-alternating path from f to v in Gk of length k + 1. That is,
rθGk

(f, v) = rθG(f, v) holds.
(Case 2) γG(v) = 1 − θ: Let Q = v0, e1, v1, e2, . . . , ek+1, vk+1 be the shortest θ-alternating path
from f to v in G (f = v0 and v = vk+1). To prove the lemma, it suffices to show that any edge in
Q has a level of at most k or is an edge in E(T ). Suppose for contradiction that a non-tree edge
ej has the level k′ > k. Without loss of generality, we assume that j is the highest value for which
this condition is satisfied. That is, any edge ej′ for j

′ > j has a level at most k or is an edge in T .
We define ρ as IM (ej). We further divide Case 2 into the following three subcases depending on
whether ej is the last edge, and otherwise whether it’s a matching edge or not.
(Case 2a) j = k+1: Since Q is the shortest θ-alternating path of length k+1, ρ = 1−θ holds, and
Qp

vk is a (1− θ)-alternating path from f to vk of length k. From the condition γG(v) = γG(vk+1) =
1− θ for Case 2, r1−θ

G (f, vk) ≤ k and r1−θ
G (f, vk+1) < rθG(f, vk+1) = k+1 hold. That is, the level of

ej = ek+1 is at most k, which is a contradiction.
(Case 2b) j < k + 1 and ρ = 1: Since the length of Qp

vj is j, we have r0G(f, vj) ≤ j ≤ k. From
the induction hypothesis, Gk−1 contains a 0-alternating path Q′ from f to vj . In other words, vj
has a 0-alternating path Q′ such that any non-tree edge in E(Q′) has a level of at most k. The
assumption of ρ = 1 implies that Q′ must terminate with a matching edge incident to vj , i.e., the
edge ej . This is a contradiction because we assume that ej is not contained in Gk−1.
(Case 2c) j < k+1 and ρ = 0: We denote R = Qs

vj as shorthand. As the length of Qp
j is j ≤ k, from

the induction hypothesis, we have r1Gk
(f, vj) = r1G(f, vj) ≤ j, and thus, Gk contains a 1-alternating
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Figure 3.3: Proof of Lemma 12 of (Case 2c). Bold lines are matching edges, and thin lines are
unmatched edges. The dotted line is the edge included in G but not in Gk.

path U from f to vj of shortest length. Let vh ∈ V (R) ∩ V (U) be the first node in U , which also
belongs to R. If eh+1 is a matched edge, Up

vh ◦Qs
vh

is a θ-alternating path in Gk (see Figure 3.3(a)),
the length of which is bounded by |Up

vh ◦Qs
vh
| ≤ |U |+ (k+1− h) ≤ j + (k+1− j) ≤ k+1. Hence,

we obtain rθGk
(f, vk+1) ≤ k + 1 = rθG(f, vk+1), which is a contradiction. If eh+1 is an unmatched

edge, eh is a matched edge. Therefore, Up
vh ◦ R

p
vh is a 0-alternating path from f to vj in Gk (see

Figure 3.3(b)). Since we consider the case of ρ = 0, the edge ej is an unmatched edge. Therefore,
vh ̸= vj holds, and thus vh is not the last node of U . This implies |Up

vh | ≤ j − 1. We obtain

|Up
vh ◦ R

p
vh | ≤ j − 1 + (k + 1 − h) ≤ j − 1 + (k + 1 − j) ≤ k, and thus, r0G(f, vj) ≤ r0Gk

(f, vj) ≤ k.

Since Qs
vj−1

is a 0-alternating path from f to vj−1 of length j− 1, we have r0G(f, vj−1) ≤ j− 1 ≤ k.
This implies that the level of ej is at most k, which is a contradiction.

Now, we present the proof of Lemma 11.

Proof. Let F c
≤k = ∪1≤i≤kF

c
i and Hk = T + F c

≤k. We prove the lemma inductively. For k = 0,
H0 = T ≻ G0 = T evidently holds. Thus, it suffices to show Hk ≻ Gk, assuming Hk′ ≻ Gk′ for
all 0 ≤ k′ < k. For any 0 ≤ h ≤ n, we define Uh = {(v, θ) | v ∈ V (G) ∧ rθGk

(f, v) = h}. If
v is θ-reachable in Hk for all 0 ≤ h ≤ n and (v, θ) ∈ Uh, we can conclude that Hk ≻ Gk. The
proof of this statement follows the (nested) induction on h. (Basis) As U0 contains only (f, 1), the
statement evidently holds. (Inductive Step) As the induction hypothesis, suppose v is θ-reachable
for any (v, θ) ∈ ∪0≤i≤hUi, and consider any pair (v, θ) in Uh+1. Then, we consider the following
two cases.
(Case 1) ep(v) is a bridge in Gk: We have r1−θ

G (f, par(v)) = h from the definition of alternating
base trees. Since the induction hypothesis guarantees that par(v) preserves the reachability of Gk

in Hk, there exists a (1 − θ)-alternating path U from f to par(v) in Hk. In addition, U does not
contain ep(e), because ep(e) is a bridge in Hk ⊆ Gk. From IM (ep(v)) = 1 − θ, which directly
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Figure 3.4: Proof of Lemma 11. Bold lines are matching edges, and thin lines are unmatched edges.

Algorithm 3 Construction of the alternating base tree for vi: ABT((G,M))

Require: The graph induced by the edge set
∪

i:vi∈V Ei is an alternating base tree.
1: Ei: initially ∅.
2: if vi ̸= f then

3: choose edge (u, vi) that is incident on the vertex vi and satisfies r
γ(vi)
G (f, vi) = r

1−γ(vi)
G (f, u)−1

and I((u, vi)) = 1 − γ(vi) (if multiple edges satisfy these conditions, the node arbitrarily
chooses one).

4: Ei ← Ei ∪ (u, v).

follows from the definition of alternating base trees, the concatenated path U ◦ ep(v) becomes a
θ-alternating path from f to v in Hk (see Figure 3.4 (1)). Then, v is θ-reachable in Hk.
(Case 2) ep(v) is not a bridge in Gk: As G0 ⊆ G1 ⊆ . . . ,⊆ Gk holds, there exists 1 ≤ j ≤ k
such that ep(v) ∈ Bj−1 \ Bj holds. Then, F c

j contains an outgoing edge e of Tv belonging to
Fj . Let e = (u,w) and u be the side contained in Tv. We assume that e is not a matching
edge. By symmetry, the case of e ∈ M is proved similarly. From the definition of Fj , we have
max{r1G(f, u), r1G(f, w)} = j ≤ k. Lemma 12 implies that both u and w have 1-alternating paths
from f in Gj−1; from the induction hypothesis Hj−1 ≻ Gj−1, they have 1-alternating paths from f
also in Hj−1, which we refer to as U and Q, respectively. Since ep(v) is a bridge of Gj−1 ⊇ Hj−1,
the suffix U s

v is a subgraph of Tv. In addition, Q does not intersect V (Tv), because both f and w are
outside Tv. Thus, U

s
v and Q are mutually disjoint, and the concatenated path Q′ = Q ◦ (w, u) ◦U s

v

is simple. It is easy to check that Q′ is an alternating path from f to v. As Q, e, and U s
v are all

contained in Hj−1 +F c
j = Hj , U

p
v and Q′ are contained in Hj (see Figure 3.4 (2)). The alternating

paths U s
v and Q′ have different parities because their last edges are adjacent in U . Hence, we

conclude that v is bireachable in Hj .

3.5.3 Distributed Implementation

This section explains how to implement the centralized sparse certificate algorithm, presented
in Section 3.5.1, in the CONGEST model to obtain the algorithm of Theorem 8. It is rela-
tively straightforward to construct the alternating base tree T . From the preprocessing run of
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Algorithm 4 Construction of F c
k for vi: ConstF(k)

Require: The edge ei is an outgoing edge of Tvi if node vi outputs ei; otherwise, Tvi does not have
an outgoing edge.

1: for i = 1; i ≤ d; i++ do
2: if vi is a leaf node then
3: if I(vi) ∩ Fk ∩ E∗(Tv) = ∅ then
4: evi ← dummy edge e such that lca(e) =∞.
5: else
6: evi ← mine∈I(vi)∩Fk∩E∗(Tvi )

e w.r.t. ≤lca.
7: if vi ̸= f then
8: send evi to its parent.
9: else

10: if vi receives the set of edges X from all its children then
11: evi ← mine∈X∪(I(vi)∩Fk∩E∗(Tvi ))

e w.r.t. ≤lca.
12: if lca(evi) ≤ d(vi) then
13: output ev.
14: else
15: output ⊥.

MV(M,n, f), each node v has information on the values of r1G(f, v) and r0G(f, v); thus, it has in-
formation on γG(v) as well. Then, v chooses an arbitrary neighbor u of v satisfying the second
condition of the alternating base tree as its parent (i.e., it chooses (v, u) as an edge of T ). Algo-
rithm 3 presents the pseudocode of the alternative base tree construction. This algorithm is a local
algorithm, which is implemented in zero round.

The main idea of constructing the edge set F c = ∪1≤i≤nF
c
i in the distributed manner is im-

plemented by the CONGEST algorithm ConstF(k), where each node v outputs an outgoing edge
of Tv of level k if it exists (or ⊥ otherwise). Let d be the height of the constructed alternating
base tree T . Given a non-tree edge e = (u,w) ∈ E(G) \ E(T ), the depth of the lowest common
ancestor of u and w is denoted by lca(e). In addition, we introduce the ordering relation ≤lca over
all non-tree edges as e1 ≤lca e2 if and only if lca(e1) ≤ lca(e2). The algorithm ConstF works under
the assumption that for any non-tree edge e = (u, v), u and v have information on the value of
lca(e). This assumption is realized by the following O(d)-round preprocessing.

1. Each node v computes its depth dv in T through a downward message propagation from f
along T . The root f first sends to its children the value 1. The node v receiving message i
decides dv = i and sends the value i+ 1 to its children.

2. Each node v broadcasts the pair of its ID and depth (v, dv) to all the nodes in Tv. First, each
node sends the pair to its children. In the following rounds, each node forwards the message
from its parents to the children. This task finishes within O(d) rounds.

3. The broadcast information of the previous step allows each node v to identify the path pT (v)
from v to f in T . For all non-tree edges e = (u, v), u and v exchange pT (v) (taking O(d)
rounds) and compute the value of lca(e).

The pseudocode of Algorithm ConstF(k) is presented in Algorithm 4. Let E∗(Tv) be the set
of non-tree edges e such that at least one endpoint of e belongs to V (Tv). Each node v computes
the minimum edge ev ∈ E∗(Tv) ∩ Fk with respect to ≤lca. This task is implemented through a
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standard aggregation over T . Each leaf node v sends the minimum edge e in Fk ∩E∗(Tv) together
with lca(e). If Fk ∩ E∗(Tv) = ∅ holds, the leaf sends a dummy edge e such that lca(e) = ∞ holds
. Let X be the set of edges a non-leaf node v received from its children. Then, v chooses ev as
the minimum edge in X ∪ (I(v) ∩ Fk ∩ E∗(Tv)) with respect to ≤lca and sends the chosen edge ev
and lca(ev) to par(v). Finally, v outputs ev if lca(ev) < dv holds or ⊥ otherwise. The correctness of
ConstF(k) follows the proposition below.

Proposition 3. Let e be the minimum edge in E∗(Tv) with respect to ≤lca. Then, e is an outgoing
edge of Tv if and only if lca(e) < dv holds (thus, ep(v) is a bridge if lca(e) ≥ dv holds).

The edge set F c is constructed by running ConstF(k) for all 1 ≤ k ≤ n. As this algorithm
is implemented by one-shot aggregation over T , one can utilize the standard pipelining technique
for completing ConstF(k) for all 1 ≤ k ≤ n, which takes O(n) rounds in total (including the
preprocessing step of computing lca(e)). The result of ConstF provides node v with the information
of the minimum k, such that ep(v) ∈ Bk−1 \Bk, as well as an outgoing edge of Tv in Fk. Following
Lemma 12, each node v can decide the edge e that should be added to F c = ∪1≤i≤nF

c
i .
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Chapter 4

Uniform Distribution for Pachinko

4.1 Introduction

In this section, we consider the mathematical models of Pachinko in the 50-50 model. The formal
definition of the 50-50 model is explained in Section 4.2. The precise statement of our results is as
follows:

• For any integer a, we show the construction of the (1/2a)-uniform distribution in the 50-50
model.

• Given any drop-probability distribution A and any partial drop-probability distribution B,
we show that it is NP hardness to determine if there exists a pin arrangement that transforms
A into B.

4.2 Preliminary

4.2.1 Configuration and Rewriting Rule

The problem was formulated in the 50-50 model using the notion of formal grammar. A Pachinko
machine is represented by a triangle grid on a half plane with an infinite horizontal length and an
infinite downward vertical length. Each horizontal line contains grid points and is called a row.
From the top end, each row is assigned a y-coordinate 1, 2, . . . . Since the field is a triangle grid,
the grid points on an odd row are half-shifted from those on an even row. To fit them into the
standard orthogonal coordinate system, these were assigned even x-coordinates to the grid points
in even rows, and odd x-coordinates to those in odd rows (see Figure 4.1). Let N represent the
field of natural numbers that contains 0. Any coordinate (i, j) ∈ Z×N for i and j with a different
parity is not a grid point, which is the space for the ball to drop down to the lower rows. These
coordinates are called passages. In addition, a ball is a point of radius zero. Initially, the ball
is dropped from the horizontal center from the top. Hence, the probability that the ball passes
through (0, 0) is one. The drop probability of the i-th row is denoted as the probability distribution
that represents the probability that the ball passes each column. The probability that the ball
passes through (i, j) is called the drop probability of (i, j). In addition, dp(i, j) is denoted as the
drop probability of (i, j). A pin can be placed at a grid point (i, j) which satisfies i = j mod 2.
In the 50-50 model, if the dropping ball hits a pin at point (i, j) (i.e., passes through (i, j − 1)),
it moves to (i − 1, j + 1) with a probability of 1/2 and (i + 1, j + 1) with a probability of 1/2.
Therefore, dp(i− 1, j +1) = dp(i− 1, j) + dp(i, j)/2, dp(i, j +1) = 0, and dp(i+1, j +1) = dp(i, j)
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hold. If no pin is spiked at (i, j), the drop probability of (i, j + 1) is equal to (i, j). Therefore,
dp(i, j + 1) = dp(i, j) holds.

A pin arrangement P is a set of grid points where the pins are spiked. It generates the drop
probability distribution for all of the coordinates in the i-th row for all i ≥ 1. The distribution of the
i-th row is called the i-th configuration of P (or simply a configuration). Formally, a configuration
is a finite odd-length sequence of rational values whose sum is equal to one. In addition, the center
of the sequence corresponds to the drop probability at x-coordinate zero and two infinite sequences
of zeros spanning x-coordinates ±∞ are cut off. It is easy to see that the drop probability for any
coordinate (i, j) in a configuration has a form of y/2x, where x is greater than or equal to 0 and
y is a non-negative odd integer. The value x is referred to as the granularity of the configuration.
Given a set P of pin arrangements, its granularity can be defined as the minimum granularity of
all of the configurations generated by the pin arrangements in P. By only considering a set of pin
arrangements with the minimum granularity g, any configuration can be treated as a sequence of
non-negative integer values by multiplying each probability by 2g.

The change of configurations (i.e., the change of the corresponding probability distribution) by
placing a pin at a grid point is expressed as an application of rewriting the rules to the configurations.
Even though two or more can be placed in the same row, the pin placement is equivalently translated
into the placement in a number of rows where each row contains at most one pin. Thus, without
loss of generality, it is assumed that each row contains at most one pin. By the same reason, it
is not necessary to consider the parity of the coordinate (i, j). By inserting a pin coordinate (i, j)
and the parities of i and j are different, then a pin coordinate (i, j+1) can be placed instead. Each
configuration can be regarded as a word over the symbol set [0, 2g]. If a pin is placed at a grid
point with the coordinate (i, j), the probability mass of the coordinate (i, j− 1) is evenly split into
(i− 1, j + 1) and (i+ 1, j + 1). This can be expressed by rewriting the rule as follows.

Definition 6.

uvw →
[
u+

v

2

]
0
[
w +

v

2

]
(Rule R1).

The brackets [ ] represent the single symbol that corresponds to the arithmetic value inside.
The symbols u or w may be an implicit zero value that are omitted in the representation of the
configurations. An example of rewriting is illustrated in Figure 4.1.
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Figure 4.1: An example of the configurations (g = 3 and j is an odd integer) and rewriting.
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1104011$ 1104012104011 

⇔ 

1104020$ 1104020204011 

Figure 4.2: An example of rewriting the symmetric configurations.

4.2.2 Symmetric Configuration

Throughout this study, only the symmetric configurations are considered. In other words, the con-
figurations are mirror-symmetric with respect to the vertical center line. To express the symmetric
configurations, the right side from the center line is not necessary. This is denoted by W [v/2]$,
which is a symmetric configuration W [v]WR. W is a string over the alphabet {0, 1, 2, . . . , [2g]}, v
is a symbol that is evaluated as an even number, WR is the inverted string of W , and $ is a special
symbol that represents the right side from the center line (the boundary). Except for the center,
any rewriting is applied symmetrically. In other words, when transforming symmetric configura-
tions, putting a pin at (i, j) implies putting another pin at (−i, j + 2). The exception to this case
is rewriting at the center, which is handled by a special rule below (note that the drop probability
at the center is expressed by its half).

Definition 7.

vw$→ [v + w] 0$ (Rule R2).

The symbol $ corresponds to the right side from the center line. Figure 4.2 is an example of
how the symmetric configurations are rewritten by rule R2. By generating the configuration W ′$
from W$ through a finite number of applications of rewriting rules, then W ′$ is transformed from
W$, and this is written as W$ ; W ′$. This notion of transformability was also extended into the
substring cases. Let UVW$ and UV ′W$ represent two words such that V and V ′ have the same
length. If UVW$ ; UV ′W$ holds for the strings U and W , then V ′ is transformed from V , and
this is written as V ; V ′.

4.2.3 Formulation of the Problem

This section formalizes the problem of generating uniform distributions. The goal of this problem is
to generate the probability distribution of 1/2a, 1/2a, · · · ,1/2a, 0, 1/2a, 1/2a, · · · , and 1/2a. This
is called the (1/2a)-uniform distribution. In this construction, the minimum granularity 1/2a+1

of the drop probability suffices to generate the (1/2a)-uniform distribution; thus, the problem is
reduced to the transformability of a single number [2a]$ to 2(2

a−1)0$, where 2(2
a−1) represents the

string of 2a−1 repetition of symbol 2. Note that [2b] and 2b are not the same word. The former one
is a word that consists of a single symbol [2b], where 2b represents the arithmetic function of 2 to
the power of b. The problem that this study solves is a recursive version of this transformability.
The main result is stated by the following theorem.

Theorem 9. Let k = 2a−2, 4k0$ ; 22k0$ holds for any a ≥ 5.
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In [7], it has been proven that the (1/2a)-uniform distribution can be generated for a ≤ 4. By
applying theorem 9 iteratively, the (1/2a)-uniform distribution can be generated for any a ≥ 1.

4.3 Generating Uniform Distribution

Section 3 is devoted to the proof of the theorem 9. The proof consists of the following three parts:

1. 4k0$ ; (440)
k
2 $.

2. (440)
k
2 $ ; 42k−302k−14$.

3. 42k−302k+14$ ; 22k0$.

The combination of these transformations results in the theorem 9. The following subsections looks
at the details of each part.

4.3.1 Part 1: From 4k0$ to (440)
k
2 $

First, the preliminary lemma is explained.

Lemma 13. Let u, v and w represent any symbols. For any j ≥ 3, the following transformations
are possible:

uvjw ; [u+ v]0vj−20[w + v]. (4.1)

uvj0$ ; [u+ v]0vj−10$. (4.2)

Proof. The transformation (4.1) was first considered. The proof is based on the induction on j.
(Basis) In the case of j = 3, the following transformation was obtained (each underline represents
the position of rewriting. If there are multiple underlines, these were rewritten from left to right.):

uvvvw ;

[
u+

v

2

]
0[2v]0

[
w +

v

2

]
;

[
u+

v

2

]
v0v

[
w +

v

2

]
;[u+ v]0v0[w + v].

(Inductive step) Suppose for the induction hypothesis that the transformation (4.1) is possible for
j = h ≥ 3. The case of j = h+ 1 is obtained as follows:

uvh+1w = uvhvw

;[u+ v]0yh−20[2v]w (Induction hypothesis)

;[u+ v]0vh−2v0[v + w]

= [u+ v]0vh−10[v + w].

Thus, the transformation (4.1) is possible. The proof of the transformation (4.2) follows by rewriting
the process below:

uvj0$ ;[u+ v]0vj−20v$ (Transformation (4.1))

;[u+ v]0vj−2v0$

= [u+ v]0vj−10$.

The lemma holds.
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For simplicity of the argument, for any word A, an appropriate number of zeros was put to the
left side of A so that the number of zeros in A becomes k/2+1. The i-th run of A (1 ≤ i ≤ k/2) is
the substring between i-th zero and (i+1)-th zero (indexed from the left end of A). The length of
the i-th run in A is denoted by lA(i). Now the notion of the normal forms (NFs) can be defined,
which is the class of configurations that was treated in the proof of part 1.

Definition 8. A word A is in normal form (NF) with respect to k if and only if every run in A
consists of only the symbol 4, the number of runs (4) is at most k/2, and the symbol neighboring
the boundary is 0.

The run-length vector vec(A) of word A is the k/2-dimensional vector whose j-th element
corresponds to lA(j). Let volA(h) =

∑
j∈[1,h] lA(j). Then, strongly-normal form (SNF) is defined

as follows.

Definition 9. A NF word A (with respect to k) is in strongly-normal form (with respect to k) if
and only if it satisfies volA(h) ≤ 2h for any h ∈ [1, k/2].

Note that 4k0$ and (440)k/2$ are both in SNF. For any two SNF words A1 and w2, this study
defines c(A1, A2) to be the minimum index such that lA1(c(A1, A2)) ̸= lA2(c(A1, A2)) holds, and
define Nk as the set for all SNF words with respect to k. Then, the order ⪯ is defined over Nk as
the lexicographic order of the corresponding run-length vectors. In other words, the following is
defined: {

A1 = A2 if A1 = A2,

A1 ≺ A2 if A1 ̸= A2 and lA1(c(A1, A2)) < lA2(c(A1, A2)).

The lexicographic order is known as the total order. For any SNF word A, let t(A) represent
the position of the leftmost run with a length more than two, i.e., t(A) = minj∈[1,k/2],lA(j)≥3 j. If
no run has a length more than two, this is defined as t(A) = k/2 + 1. The rewriting process of
4k0$ ; (440)k/2$ is to iterate the application of lemma 13 (1) with the prefix u of A before the
t(A)-th run and the suffix w of A after the t(A)-th run if t(A) < k/2, or (2) with the prefix u of A
before the t(A)-th run if t(A) = k/2 to the t(A)-th run, until the transformation reaches the word
A′ with t(A′) = k/2 + 1. This process correctly creates (440)k/2$.

Lemma 14. Let A be any SNF word, and A′ is the word obtained by the process above. Then, A′

is also in SNF and A ≺ A′.

Proof. It is easy to check that any run for A′ consists of only 4s and the symbol 0 is the neighbor
of $ in A′. By the definition of SNF, for any SNF word A, lA(1) ≤ 2 holds; thus, t(A) > 1 holds.
This implies that the applications of lemma 13 to the t(A)-th run in A does not change the number
of runs (of 4s). Consequently A′ is in NF. The application of lemma 13 for the i-th run of a word
A increases lA(i − 1) and lA(i + 1) by one, and decreases lA(i) by two. As a result, the value of
volA′ is as follows:

volA′(h) =


volA(h) + 1 if h = t(A)− 1,

volA(h)− 1 if h = t(A),

volA(h) otherwise.

To show that A′ is in SNF, it suffices to prove volA′(t(A)− 1) ≤ 2(t(A)− 1). Because lA(t(A)) ≥ 3,
this results in volA(t(A)−1)+3 ≤ volA(t(A)) ≤ 2t(A); thus, volA(t(A)−1) ≤ 2(t(A)−1)−1 holds.
Since the length of the t(A)-th run increases at most by one after the application of lemma 13, the
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following is obtained: volA′(t(A)− 1) ≤ volA(t(A)− 1) + 1 ≤ 2(t(A)− 1). Therefore, A′ is in SNF.
By the definition, c(A,A′) = t(A)− 1 holds; thus, this leads to: lA(c(A,A

′)) > lA(c(A,A
′)), that is

A ≺ A′. Therefore, the lemma is proven.

Lemma 15. The word (440)k/2$ is the maximum element with respect to ⪯.

Proof. Let A = (440)k/2$. Suppose for the contradiction that a SNF word A′ satisfies A ̸= A′ and
A ≺ A′. Then, volw(c(A,A

′)) < volA′(c(A,A′)) holds. However, since volw(c(A,A
′)) = 2c(A,A′)

holds, this leads to volA′(c(A,A′)) > 2c(A,A′). This contradicts the fact that A′ is in SNF.

The two lemmas above imply that the rewriting process eventually reaches the maximum ele-
ment of SNF words; hence, the following corollary holds.

Corollary 2. Let k ∈ N represent any even positive integer. Then, the following transformation is
possible.

0k/24k0$ ; 0(440)
k
2 $.

4.3.2 Part 2: From (440)
k
2 $ to 42k−302k−14$

This section first introduces a magical string Bi = 42i02i+24$, as well as its properties. Before
showing the properties of Bi, the preliminary lemmas are presented.

Lemma 16. Let u, v, and w represent any symbols, and j can represent any positive integer. Then,
the following transformations are possible:

u[2v]vjw ; [u+ v]vj−10[2v]w. (4.3)

u[2v]vjw ; [u+ v]vj0[w + v]. (4.4)

Proof. This study first considered the transformation (4.3). The proof is based on the induction of
j. (Basis) In the case of j = 1, the following transformation is achieved:

u[2v]vw ;[u+ v]0[2v]w.

(Inductive step) Suppose for the induction hypothesis that the transformation (4.3) is possible for
j = h. The case of j = h+ 1 is shown as follows:

u[2v]vh+1w ;[u+ v]0[2v]vhw

;[u+ v]vvh−10[2v]w. (Induction hypothesis)

= [u+ v]vh0[2v]w.

The transformation (4.4) is obtained by the following rewriting process:

u[2v]vjw ;[u+ v]vj−10[2v]w (Transformation (4.3))

;[u+ v]vj0[w + v].

Therefore, the lemma holds.

Corollary 3 is the symmetric version of the lemma 16. Note that by having W ; W ′, then
WR ; W ′R can also be transformed, where WR and W ′R are inverted strings of W and W ′R,
respectively.
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Corollary 3. Let u, v, and w represent any symbols, and j can be any positive integer. Then, the
following transformations are possible:

uvj [2v]w ; u[2v]0vj−1[w + v]. (4.5)

uvj [2v]w ; [u+ v]0vj [w + v]. (4.6)

Lemma 17. Let j be a positive integer that is greater than or equal to four. Then, 02j4$ ;

2202j−24$ holds.

Proof. In addition, 02j4$ can be rewritten as follows:

02j4$ = 02j−124$

;202j−3044$ (Lemma 13 (4.1), u = 0, v = 2, w = 2)

;202j−3080$

;202j−3404$

;2202j−324$ (Corollary 3 (4.6), u = 0, v = 2, w = 0)

= 2202j−24$.

Therefore, the lemma holds.

The goal of part 2 is to obtain Bk−3 from (440)
k
2 . This study introduces two important prop-

erties of Bi = 42i02i+24$, which is the primary reason why Bi is ”magical.”

Lemma 18. Let w be any symbol, and i is any positive integer. Then, the following transformations
are possible:

w4Bi ; [w + 4]0Bi. (4.7)

0440Bi ; Bi+2. (4.8)

Proof. This study first considered the transformation (4.7). In the case of i = 1, this leads to:

w4B1 = w4420234$

;w6040234$

;w620244$

;w6230224$ (Lemma 17)

;w8020234$ (Lemma 13 (4.1), u = 6, v = 2, w = 0)

;[w + 4]0420234$

= [w + 4]0B1.

In the case of i ≥ 2, the following transformation is obtained:

w4Bi = w442i02i+24$

;w6042i−102i+24$

;w62i02i+34$ (Lemma 16 (4.4), u = 0, v = 2, w = 0)

;w62i+202i+14$ (Lemma 17)

;w802i02i+24$ (Lemma 13 (4.1), u = 6, v = 2, w = 0)

;[w + 4]042i02i+24$

= [w + 4]0Bi.
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The transformation (4.8) is obtained by the following rewriting process:

0440Bi = 044042i02i+24$

;0442i+102i+34$ (Lemma 16 (4.4), u = 0, v = 2, w = 0)

= 04Bi+1

;40Bi+1 (Transformation (4.7), w = 0)

= 4042i+102i+34$

;42i+202i+44$ (Lemma 16 (4.4), u = 0, v = 2, w = 0)

=Bi+2.

As a result, the lemma holds.

Why are these properties so important? Our intuitive understanding of lemma 18 (4.7) is that it
can treat Bi as a $. Precisely, the lemma is presented below.

Lemma 19. Let u and v be any symbols, and i and j can be a positive integer that is greater than
or equal to three. Then, the following transformations are possible.

04j0Bi ; 404j−10Bi.

Proof. The lemma is proven by the following transformation:

04j0Bi ;404j−204Bi (Lemma 13 (4.1), u = 0, v = 4, w = 0)

;404j−240B (Lemma 18 (4.7), w = 0)

= 404j−10B.

Therefore, the lemma holds.

In Part 1, it was proven that any SNF word W with respect to i can be transformed into
(440)i/2$ by only using lemma 13 (4.1) (u = 0, v = 4, w = 0) and lemma 13 (4.2) (u = 0, v = 4).
The two behaviors of lemma 13 (4.2) (u = 0, v = 4) and lemma 19 are the same. This fact yields
the corollary below.

Corollary 4. Let j ∈ N be an even positive integer, W represents a SNF word with respect to j,
and W ′ is the string obtained from W by deleting $. For any positive integer i, W ′Bi ; (440)j/2Bi

holds.

Combining this corollary with lemma 18 (4.8), it can be demonstrated that Bi can recursively
”absorb” substring 440 to make itself mature. The following lemma corresponds to the base case
of this absorption process.

Lemma 20.

(440)4$ ; 44440B1.
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Proof. The lemma is proven by the following transformation:

(440)4$ = (440)2440440$

;(440)2602602$

;(440)2602620$

;(440)2610801$

;(440)2614041$

;(440)2630403$

;(440)2632023$

;(440)2640204$

;(440)2802204$

= 440440802204$

;440444042204$

;440444222024$ (Lemma 16 (4.4), u = 0, v = 2, w = 0)

;440446020224$ (Lemma 13 (4.1), u = 4, v = 2, w = 0)

;440608020224$

;440640420224$

;440804040224$

;444044202224$

= 44404B1

;44440B1. (Lemma 18 (4.7), w = 0)

The following two lemmas are the main body of part 2, which proposes the rewriting process
by absorbing substring 440.

Lemma 21. Let i and j be any positive integer. Then, 0i(440)iBj ; Bj+2i holds.

Proof. The proof is based on the induction on i. (Basis) In the case of i = 1, the following
transformation is obtained:

0440Bj ;Bj+2, (Lemma 18 (4.8))

and in the case of i = 2, the following transformation is achieved:

02(440)2Bj = 02440440Bj

;0244Bj+2 (Lemma 18 (4.8))

;0280Bj+2 (Lemma 18 (4.7), w = 4)

;0404Bj+2

;0440Bj+2 (Lemma 18 (4.7), w = 0)

;Bj+4. (Lemma 18 (4.8))
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(Inductive step) Suppose for the induction hypothesis that lemma 21 holds for i = h (h ≥ 2). The
case of i = h+ 1 is proven by:

0h+1(440)h+1Bj = 0h+1(440)h−2440440440Bj (Because h ≥ 2)

;0h+1(440)h−244044Bj+2 (Lemma 18 (4.8))

;0h+1(440)h−244080Bj+2 (Lemma 18 (4.7), w = 4)

;0h+1(440)h−244404Bj+2

;0h+1(440)h−244440Bj+2 (Lemma 18 (4.7), w = 0)

;0h(440)hBj+2 (Corollary 4,

W ′ = 0(440)h−244440,

j = 2h)

;Bj+2(h+1). (Induction hypothesis)

Therefore, the lemma holds.

Lemma 22. For any even integer k ≥ 8, (440)
k
2 $; Bk−3 holds.

Proof.

(440)
k
2 $ = (440)

k
2
−4(440)4$

;(440)
k
2
−444440B1. (Lemma 20)

The word (440)
k
2
−444440 is in SNF (with respect to k − 2). Thus, it can be rewritten as follows:

(440)
k
2
−444440B1 ;(440)

k
2
−2B1 (Corollary 4, W ′ = (440)

k
2
−444440,

j = k − 4)

;Bk−3. (Lemma 21)

Therefore, the lemma holds.

4.3.3 Part 3: From 42k−302k−14$ to 22k0$

Finally, it is proven that 42k−302k−14$ can be transformed into 22k0$. This section explains the
four preliminary lemmas that were used.

Lemma 23. Let ℓ and j be any positive integers, and i is a positive integer greater than or equal
to two. Then, the following transformation is possible:

02ℓ022i02j ;02ℓ+i−102202j+i−1.

Proof. The proof is based on the induction on i. (Basis) In the case of i = 2, this results in the
following transformation:

02ℓ02402j ;02ℓ+102202j+1. (Lemma 13 (4.1), u = 0, v = 2, w = 0)
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(Inductive step) Suppose for the induction hypothesis that lemma 23 holds for i = h ≥ 2. The case
of i = h+ 1 is proven by:

02ℓ022(h+1)02j ;02ℓ+1022h02j+1 (Lemma 13 (4.1), u = 0, v = 2, w = 0)

;02ℓ+h02202j+h. (Induction hypothesis)

As a result, the lemma holds.

Lemma 24. For any i ≥ 5, 02202i4$ ; 2i−40220244$ holds.

Proof. The proof is based on the induction for i. (Basis) In the case of i = 5, the following
transformation is obtained:

0220254$ ;022220234$ (Lemma 17)

;20220244$. (Lemma 13 (4.1), u = 0, v = 2, w = 0)

(Inductive step) Suppose for the induction hypothesis that lemma 24 holds for i = h ≥ 5. The case
of i = h+ 1 is proven by:

02202h+14$ ;0222202h−14$ (Lemma 17)

;202202h4$ (Lemma 13 (4.1), u = 0, v = 2, w = 0)

;2h−30220244$. (Induction hypothesis)

Therefore, the lemma holds.

Lemma 25. Let w be any symbol, and i can be any positive integer. Then, w2i$;[w + 2]2i−10$
holds.

Proof. The proof is based on the induction on i. (Basis) In the case of i = 1, the following
transformation is achieved:

w2$ ;[w + 2]0$.

(Inductive step) Suppose for the induction hypothesis that lemma 25 holds for i = h ≥ 1. For the
case of i = h+ 1, the following is obtained:

w2h+1$ = w22h$

;w42h−10$ (Induction hypothesis)

;[w + 2]2h−102$ (Lemma 16 (4.4), u = w, v = 2, w = 0)

;[w + 2]2h0$.

The case of i = h+ 1 is proven; therefore, the lemma holds.

Lemma 26.

022022224$ ;222222220$.
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Proof. The lemma is proven by the following transformation:

022022224$ ;022202044$ (Lemma 13 (4.1), u = 0, v = 2, w = 2)

;022202080$

;022202404$

;022202440$

;022202602$

;022202620$

;022210801$

;022214041$

;022230403$

;022232023$

;022240204$

;202222204$ (Corollary 3 (4.6), u = 0, v = 2, w = 0)

;202222240$

;220222222$ (Corollary 3 (4.6), u = 0, v = 2, w = 0)

;222222220$. (Lemma 25, u = 0)

The combination of these four lemmas deduces the main lemma of part 3.

Lemma 27. Let k be any even positive integer that is greater than or equal to eight. The following
transformation is possible:

0042k−302k−14$ ;22k0$.

Proof. This leads to the following transformation:

0042k−302k−14$ ;02k−202k4$ (Lemma 16 (4.4), u = 0, v = 2, w = 0)

;202k−4022k4$ (Lemma 13 (4.1), u = 0, v = 2, w = 0)

;2
k
2
−202202

3k
2
−24$ (Lemma 23, ℓ = 1, i = k − 4, j = 1)

;2
k
2
−22

3k
2
−60220244$ (Lemma 24)

= 22k−80220244$

;22k−8222222220$ (Lemma 26)

= 22k0$.

4.4 Analysis of the Number of Pins for Generating a Uniform
Distribution

This section provides the asymptotic bound for the number of pins used in the construction. The
numbers of pins used in the transformations shown in the presented lemmas and corollaries are
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summarized in Table 4.1. Most of the analyses in the table are easy to check. There are some
exceptions that includes the corollary 2, lemma 21, and lemma 22. These analyses are presented
below.

Table 4.1: The number of pins used in the transformations.
Before After #pins

Lemma 13 uvjw [u+ v]0vj−20[w + v] O(j)

Lemma 13 uvj0$ [u+ v]0vj−10$ O(j)

Corollary 2 0k/24k0$ 0(440)
k
2 $ O(k3)

Lemma 16 u[2v]vjw [u+ v]vj−10[2v]w O(j)

Lemma 16 u[2v]vjw [u+ v]vj0[w + v] O(j)

Corollary 3 uvj [2v]w u[2v]0vj−1[w + v] O(j)

Corollary 3 uvj [2v]w [u+ v]0vj [w + v] O(j)

Lemma 17 02j4$ 2202j−24$ O(j)

Lemma 18 w4Bi [w + 4]0Bi O(i)

Lemma 18 0440Bi Bi+2 O(i)

Lemma 20 (440)4$ 44440B1 O(1)

Lemma 21 0i(440)iBj Bj+2i O(i3 + ij2)

Lemma 22 (440)
k
2 $ Bk−3 O(k3)

Lemma 23 02ℓ022i02j 02ℓ+i−102202j+i−1 O(i2)

Lemma 24 02202i4$ 2i−40220244$ O(i2)

Lemma 25 w2i$ [w + 2]2i−10$ O(i2)

Lemma 26 022022224$ 222222220$ O(1)

Lemma 27 0042k−302k−14$ 22k0$ O(k2)

In the transformation of the corollary 2, the lemma 13 is repeatedly applied until it becomes
inapplicable for any 4s run. Recall that lemma 13 is always applied to the leftmost run of 4 whose
length is more than or equal to 3. In this repetition, the length of the run is 4 where the lemma 13
applied is three, except for the case where the application is for the (k/2)-th run.

Lemma 28. The number of pins used in the transformation of the corollary 2 is O(k3).

Proof. To transform 4k0$ to (440)
k
2 $, this study only used lemma 13. Let ci represent the number

of applications of lemma 13 for the i-th run, A be 0k/24k0$ and A′ be 0(440)
k
2 $. This results in the

following equation:

lA(i) =

{
0 if i ̸= k

2 ,

k if i = k
2 ,

lA′(i) = 2.

By applying the lemma 13 to the i-th run, the lengths of the (i+1)-th and (i−1)-th runs respectively
increase by one, and the length of the i-th run decreases by two. Then, the following equation is
obtained:

lA′(i) =


lA(i)− 2ci + ci+1 if i = 1,

lA(i) + ci−1 − 2ci + ci+1 if 1 ≤ i ≤ k
2 − 1,

lA(i) + ci−1 − ci if i = k
2 .
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This study obtained c1 = 0 and ci = ci−1 + 2(i − 1) for 2 ≤ i ≤ k/2. In the rewriting process,
lemma 13 was applied to the run with a length of three except for the (k/2)-th run. Hence, the
O(1) pins are consumed per one application. This study applied lemma 13 to the (k/2)-th run
where the length is at most equal to k. Thus, the number of pins used in that application is O(k).

The total number of pins used in the corollary 2 is O

(∑ k
2
−1

i=1 ci + kck/2

)
= O(k3).

Lemma 29. The number of pins used in the transformation of lemma 21 is O(i3 + ij2).

Proof. In the cases of i = 1 and i = 2, the number of applications of lemma 18 is one and four,
respectively. Then, O(j) pins are used. Let R(i, j) represent the number of pins that are used in
the transformation from 00(440)i−244440Bj+2 to 0(440)iBj+2. In this transformation, this study
only used lemmas 13, 18, and 19. Let ch be the number of applications of lemmas 13 and 19 to the
h-th run, A is 00(440)h−244440 and A′ is 0(440)h. This results in the following equation:

lA(h) =

{
2 if h ̸= i

2 ,

4 if h = i
2 ,

lA′(h) = 2.

The following equation is obtained:

lA(h) =


lA(h)− 2ch + ch+1 if h = 1,

lA(h) + ch−1 − 2ch + ch+1 if 1 ≤ h ≤ i
2 − 1,

lA(h) + ch−1 − ch if h = i
2 .

Then, the value of ci follows c1 = 0 and ch = ch−1 + 2 = 2(h − 1). Since lemma 18 is applied ci
times, R(i, j) = O(

∑i+1
h=1 ch + j · ci) = O(i2 + ij). When T (i, j) is the number of pins used in the

transformation from 0i(440)iBj to Bj+2i, it satisfies the following equality:

T (i, j) = O(j2) +R(i− 2, j + 2) + T (i− 2, j + 2)

= O

 i
2∑

h=0

((j + 2h)2 +R(i− 2− 2h, j + 2 + 2h)


= O

 i
2∑

h=0

((j + 2h)2 + (i− 2− 2h)2 + (i− 2− 2h)(j + 2 + 2h))


= O(i3 + ij2).

The lemma is proven.

The lemma above deduces the following corollary.

Corollary 5. The number of pins used in the transformation of lemma 22 is O(k3).

Putting all the analyses in Table 4.1 together, it can be concluded that the number of pins used
in the transformation from 4k0$ to 22k0$ is O(k3). Thus, the following theorem is obtained.

Theorem 10. For any a ≥ 5, there exists a pin arrangement generating the (1/2a)-uniform dis-
tribution with O

(
23a
)
pins.
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4.5 Hardness of Deciding Transformability

4.5.1 Problem Definition

As mentioned in the introduction, a pin arrangement for the 50-50 model can be regarded as a
transformer with drop probability distributions. Then, it is a natural question to ask if there exists
a pin arrangement that corresponds to the transformation between two given distributions or not.
The problem is formally defined as follows.

Problem 1. Let A = (p−n, . . . , p0, . . . , pn) and B = (q−m, . . . , q0, . . . , qm) be two configurations
(pi, qi ∈ Q for any i). Does A ; B hold?

Note that the minimum granularity 1/2g is not assumed in the transformability above even
though the number of pins used in the transformation does not need to be bounded by a polynomial
of n and m.

Unfortunately, the computational complexity of the problem 1 is still unclear even though it is
hypothesized to be NP-hard. Instead, a slightly relaxed variant of this problem is introduced, where
some specified subset of columns can have arbitrary drop probabilities. For the formal definition,
a family of drop probability distributions is defined by the configuration with a special wildcard
symbol ∗.

Definition 10. A partial drop probability distribution A = (p−n, . . . , p0, . . . , pn), where pi ∈ Q∪{∗}
for i ∈ [−n, n], is the set of drop probability distributions A = (q−n, . . . , q0, . . . , qn) (qi ∈ Q) such
that pi = qi holds if pi ̸= ∗.

Given a drop probability distribution A, the expression A ; A if the distribution A′ ∈ A exists
such that A ; A′, and if A can be transformed into A. A relaxed version of the problem 1 is
defined as follows:

Problem 2. Given a drop probability distribution A and a partial drop probability distribution A,
does A ; A hold or not?

In this section, it is proven that problem 2 is NP-hard by the reduction from the subset sum
problem.

Definition 11. (Subset sum) Given a set S of non-negative integer values and a target integer
value T , is there a subset S′ ⊆ S such that the sum of all elements in S′ is equal to T?

4.5.2 Reduction

Let I = (S, T ) be any instance of the subset sum problem, where S = {a1, . . . , aN}. Let C =∑N
i=1 ai + T/4. The drop probability distribution A(I) = (p−∞, . . . , p0, . . . , p∞) and the partial
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drop probability distribution A(I) = (q−∞, . . . , q0, . . . , q∞) are constructed as follows:

pi =



0 for any i ∈ [−∞− 1] and [2N + 1,∞],

1−
N∑
i=1

(
1

2i+2
+

ai
23N+6−2iC

)
if i = 0,

1

22+
i
2

for any even i ∈ [1, 2N ],

a(i+1)/2

23N+5−iC
for any odd i ∈ [1, 2N ],

qi =


0 for any i ∈ [−∞,−1] and [2N + 2,∞],

2N∑
i=0

pi
2i

+
T

23N+7C
if i = 0,

∗ for any i ∈ [1, 2N + 1].

Figure 4.3 is an example of the reduction, which illustrates the instance (A(I),A(I)) for the prob-
lem 2 corresponding to the instance S = {3, 7, 1} and T = 4.

distribution

𝐴(𝐼)

1

23
3

213⋅12
00

1

24
1

25
1

29⋅12

7

211⋅12

153506

214⋅12
0

partial

distribution

𝒜(𝐼)
0 0 * * * * * *

𝑥-coordinate 0 2 4 61 3 5-1-2 7

160526

214⋅12 *

Figure 4.3: An example of the instance (A(I),A(I)) for the problem 2 in the case of S =
{3, 7, 1}, T = 4. The pin arrangement corresponds to the solution {3, 1}.

4.5.3 Proof

The correctness of the reduction has been proven in this investigation. It is not difficult to check
that the reduction can be done in polynomial time (each value pi can be a high-order value but
its length is still bounded by the polynomial of N and logC). Thus, it suffices to show that the
proposed reduction preserves the answers between the two problems. First, the sufficiency side is
proven.

Lemma 30. Let I be any yes-instance of the subset sum problem. Then, A(I) ; A(I) holds.
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Proof. Let S′ = {as1 , . . . , asM } be a solution (certificate) of the instance I. Then, a solution can be
constructed (d1, . . . , dM+2N ) for (A(I),A(I)), where di corresponds to the x-coordinate for the i-th
pin (as assumed in the previous section, each row contains one pin. Thus, for any i ∈ [1,M + 2N ],
the i-th pin was placed in the y-coordinate i). The value di is determined as follows:

di =

{
2si − 1 if 1 ≤ i ≤M

2N +M + 1− i if M + 1 ≤ i ≤M + 2N.

The pin arrangement in Figure 4.3 is the construction above for the presented instance. Let p(j, i)
be the drop probability at coordinate (j, i). Let F (i) =

∑2N
j=−∞ p(j, i)/2j . It is not difficult to

check that p(0,M +2N +1) = F (M +1) holds and p(−2,M +2N +1) and p(−1,M +2N +1) are
both zero. Thus, it suffices to show that F (M + 1) = q0. For 2 ≤ i ≤ M , the following equation
holds:

F (i) = F (i− 1)− p(di−1, i− 1)

2di−1
+

p(di−1, i− 1)

(2 · 2di−1−1)
+

p(di−1, i− 1)

(2 · 2di−1+1)

= F (i− 1) +
p(di−1, i− 1)

2di−1+2
.

The expression 1 ≤ i ≤M , p(di, i) = p2si−1 holds. Therefore, the following equation is obtained:

F (M + 1) = F (1) +
M+1∑
i=2

p(di−1, i− 1)

2di−1+2

= F (1) +
M∑
i=1

p(di, i)

2di+2

= F (1) +

M∑
i=1

p(di, i)

22si+1

= F (1) +
M∑
i=1

p2si−1

22si+1

=
2N∑

i=−∞

p(i, 1)

2i
+

p2si−1

22si+1

=
2N∑
i=0

p(i, 1)

2i
+

p2si−1

22si+1

=

2N∑
i=0

p(i, 1)

2i
+

asi
23N+5−2si+1C

· 1

22si+1

=

2N∑
i=0

pi
2i

+
T

23N+7C

= q0.

As a result, the lemma is proven.

Next, the necessity side has been proven, i.e., I is a yes-instance if A(I) ; A(I) holds. Assume
that (A(I),A(I)) has a solution P = (d1, . . . , dL), where di is the x-coordinate of the i-th pin. In
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the following argument, each pin is referred to as an integer value in [1, L]. This study defines
p(i, j) so it is similar to the proof of lemma 30. A solution is minimal if it does not contain any
subsequence, which is also a solution with the same instance. Without loss of generality, it is
assumed that P is minimal. Three properties are presented for any minimal solution.

Lemma 31. If two pins i and j (i ≤ j) have the same x-coordinate a, then there exists a pin k
such that it satisfies i ≤ k ≤ j and has x-coordinate a− 1 or a+ 1.

Proof. Suppose for the contradiction that any pin i, i+ 1, . . . , j − 1 has x-coordinate neither a− 1
or a + 1. Then, p(j, x) = 0 holds; thus, a smaller solution P ′ can be constructed by removing dj
from P . It contradicts the minimality of P .

Lemma 32. For any pin i (i ≥ 2), there exists a pin j such that j ≥ i and dj = di − 1 holds.

Proof. Suppose for the contradiction that a pin i does not satisfy the statement of the lemma.
Since no pin put after i has the x-coordinate (di − 1), the values p(di−1, i), p(di, i), p(di+1, i), . . .
do not affect the values of p(0, L+ 1), p(−1, L+ 1), and p(−2, L+ 1). This implies that a smaller
solution P ′ can be constructed by removing the pin corresponding to di from P , which contradicts
the minimality of P .

Lemma 33. For any i ∈ [1, L], di > 0 holds.

Proof. Let’s suppose for the contradiction in which j is the largest integer value such that dj ≤ 0
holds. Since the solution is minimal, p(dj , j) is non-zero; thus, the value of p(dj − 1, j+1) becomes
non-zero. Since j is the largest, no pin with x-coordinate smaller than dj is put after j. It follows
that the drop probability p(dj − 1, L+ 1) is non-zero. It is a contradiction.

N ′ is denoted by the smallest positive x-coordinate such that no pin has that x-coordinate (i.e.,
the leftmost column where no pin exists). Then, the feasibility of a pin arrangement does not
change even if any pin is removed with a x-coordinate larger than N ′. This is because the pin does
not affect the drop probability of the 0-th column. Since P is minimal, it can be assumed that no
pin has a x-coordinate larger than N ′. A pin arrangement is even-restricted if each even column
contains at most one pin, each odd column contains at most two pins, and the pin arrangement is
minimal. The following shows that if P is an even-restricted solution, then I is a yes-instance.

Lemma 34. Assume that P is even-restricted, and let X represents the set of columns with two
pins in P . Then, this results in p(0, L) =

∑N ′

i=0 pi/2
i +
∑

i∈X pi/2
i+2.

Proof. Let dj1 and dj2 represent the two pins placed at any odd column x (j1 ≤ j2), di, and dk
represents the pins in the (x − 1)-th and (x + 1)-th columns, respectively. By lemmas 31 and 32,
i ≥ j2 ≥ k ≥ j1 holds. This implies that the pin j1 can be moved into any upper row (Figure 4.4)．
Thus, it is assumed that P has the same form as the construction into the sufficiency proof of
lemma 30. That is, the first |X| pins of P correspond to the upper-side pins in each column a ∈ X.

Letting F (i) =
∑N ′

j=0 p(j, i)/2
j by the same argument as the proof of lemma 30, p(0, L + 1) =

F (L− |X|+ 1) holds.

p(0, L+ 1) =F (L− |X|+ 1)

=F (1) +
∑
i∈X

pi
2i+2

=

N ′∑
i=0

pi
2i

+
∑
i∈X

pi
2i+2

.

The lemma is proven.
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Figure 4.4: An example of the pin movement not affecting the output distribution.

The lemma above implies the following lemma.

Lemma 35. Let I = (S, T ) represent any subset sum instance, and (A(I),A(I)) has an even-
restricted solution P . Then, there exists S′ ⊆ S such that

∑
a∈S′ a = T .

Proof. Let X represent the set of columns where two pins are placed. First, it is necessary to show
that N ′ = 2N + 1 holds. Since pi is zero for any i ≥ 2N + 1 and P is minimal, P does not contain
any pin with a x-coordinate larger than 2N + 1. As a result, N ′ ≤ 2N + 1 holds. Let’s consider
the contradiction that N ′ < 2N + 1. By using the lemma 34, the following inequality is obtained:

p(0, L+ 1) =
N ′∑
i=0

pi
2i

+
∑
i∈X

pi
2i+2

≤
2N−1∑
i=0

pi
2i

+
∑
i∈X

pi
2i+2

≤
2N−1∑
i=0

pi
2i

+

N∑
i=0

p2i−1

22i+1

< q0,

which contradicts the fact that P is a solution. Next, the construction of S′ is demonstrated. By
applying the lemma 34 and p(0, L+ 1) = q0, the following equality holds:

T

23N+7C
= q0 −

2N∑
i=0

pi
2i

= p(0, L+ 1)−
2N∑
i=0

pi
2i

=
∑
i∈X

pi
2i+2
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=
∑
i∈X

a i+1
2

23N+7C
.

This implies that S′ = {a(i+1)/2 | i ∈ X} is a solution of I; hence, the lemma is proven.

Finally, let’s prove that P is even-restricted.

Lemma 36. For any k ∈ [1, L] and l ≥ 1,
∑l

j=0 p(j, k − 1)/2j ≤
∑l

j=0 p(j, k)/2
j holds.

Proof. Let ∆(l, k) =
∑l

j=0
p(j,k)
2j
−
∑l

j=0
p(j,k−1)

2j
for short. This results in:

∆(l, k) =



−p(dk, k − 1)

2dk
+

p(dk, k − 1)

2 · 2dk−1
+

p(dk, k − 1)

2 · 2dk+1
if dk ≤ l − 1

−p(dk, k − 1)

2dk
+

p(dk, k − 1)

2 · 2dk−1
if dk = l

p(dk, k − 1)

2 · 2dk+1
if dk = l + 1

0 if dk > l + 1.

In any case, it can be concluded that ∆(l, k) ≥ 0 holds. Therefore, the lemma is proven.

Lemma 37. Let P [i] = (di, · · · , dL). For any dy ∈ P [i], p(0, L) ≥
∑dy

j=0 p(j, i− 1)/2j holds.

Proof. Let’s show by the induction on x that the lemma holds for any x ∈ [1, 2N ] and dy (dy ∈
P [i]) satisfying dy ≤ x. (Basis) Let z be the smallest value such that z ≥ i and dz = x(= 1)
hold. By applying the lemma 36, this results in p(0, z − 1) ≥ p(0, i − 1). This also results in
p(0, z) = p(0, z− 1)+ p(1, z− 1)/2 ≥ p(0, i− 1)+ p(1, i− 1)/2. Since lemma 33 implies that no pin
is put in column zero, p(0, z) ≤ p(0, L+1) holds. It follows p(0, L+1) ≥ p(0, i− 1) + p(1, i− 1)/2.
(Inductive Step)　 Suppose for the induction hypothesis that the lemma holds for some x. Then,
let z be the smallest value such that z ≥ i and dz = x+ 1 holds. Then, this results in:

x∑
j=0

p(j, z)

2j
=

x∑
j=0

p(j, z − 1)

2j
+

p(x+ 1, z − 1)

2 · 2x

≥
x∑

j=0

p(j, i− 1)

2j
+

p(x+ 1, i− 1)

2x+1

=
x+1∑
j=0

p(j, i− 1)

2j
,

where the second inequality is obtained by the repeated application of lemma 36. By using the
lemma 32, y′ exists such that dy′ ∈ P [z + 1] and dy′ = x holds. Combined with the induction

hypothesis, this results in: p(0, L + 1) ≥
∑dy′

j=0 p(j, z)/2
j =

∑x
j=0 p(j, z)/2

j ≥
∑x+1

j=0 p(j, i − 1)/2j .

Lemma 38. Let Ui =
∑

j:dj=i p(i, j − 1)/2. For any even i ∈ [1, 2N ], Ui < 5pi/8 holds.

Proof. Suppose for the contradiction that Ui ≥ 5pi/8 holds for some i. Let l1, l2, . . . , lK be the
values such that dlj = i holds (1 ≤ j ≤ K)．Then, for any lk, this leads to:

i−1∑
j=0

p(j, lk)

2j
=

i−1∑
j=0

p(j, lk − 1)

2j
+

p(i, lk − 1)

2 · 2i−1
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Let x be the largest value such that dx = i holds. By using the lemma 36, this results in:

i−1∑
j=0

p(j, x)

2j
≥

i−1∑
j=0

pj
2j

+

K∑
j=0

p(i, lj − 1)

2i

=
i−1∑
j=0

pj
2j

+
Ui

2i−1

≥
i−1∑
j=0

pj
2j

+
5pi
2i+2

> q0.

Using the lemma 37, this results in p(0, L+ 1) > q0, which is a contradiction.

Lemma 39. Any solution for P is even-restricted.

Proof. Let’s first demonstrate that any even column has at most one pin. Suppose for the contra-
diction that K pins l1, l2, . . . , lK has the same x-coordinate (2i) (K ≥ 2, lj < lj+1 for any j ∈ [1,K],
and i ∈ [1, N ]). Then, p(2i, l1−1) ≥ p2i holds. By applying the lemma 31, there exists a pin l′ that
satisfies l1 < l′ < l2 in either column (2i− 1) or (2i+ 1). Hence, this leads to p(2i, l2 − 1) ≥ p2i/4,
which results in U2i ≥ 5p2i/8, which contradicts the lemma 38. Next, let’s show that any odd
column has at most two pins. Suppose for the contradiction that three or more pins l1, . . . , lK have
the same coordinate (2i−1) (K ≥ 2, lj < lj+1 for any j ∈ [1,K], and i ∈ [1, N ]). Since the solution
P is minimal, there must exist three pins j1, j2, and j3 in either column (2i− 2) or (2i) such that
l1 + 1 ≤ j1 ≤ l2 − 1, l2 + 1 ≤ j2 ≤ l3 − 1 and j3 ≥ l3 + 1 are satisfied. However, it has been
demonstrated that two even columns have at most two pins, which is a contradiction.

Consequently, the following theorem is deduced from lemmas 30, 35, and 39.

Theorem 11. The problem 2 is NP-hard.
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Chapter 5

Conclusion

In this dissertation, we show the efficient algorithm for local interaction system.
In Chapter 2, we have shown the upper and lower bounds for the round complexity of shortcut

construction and MST in doubling dimension-x graphs, diameter-three or four graphs, and bounded
clique-width graphs. We presented an Õ(Dx)-round algorithm for any doubling dimension-x graphs.
We also presented the algorithms for constructing optimal low-congestion shortcut with quality
Õ(κD) in Õ(κD) rounds for D = 3 and 4, which yields the optimal algorithms for MST matching
the known lower bounds by Lotker et al. [67]. On the negative side, O(1)- clique width does not
allow us to have good shortcuts. We conclude this paper by posing three related open problems
as follows: (1) Can we have good shortcuts for the k-clique width where k ≤ 5? (2) While the
bounded clique width does not contribute to solving MST efficiently, it seems to provide several
edge-disjoint paths (not necessarily short). Can we find any problem that can use the benefit of
bounded clique width?

In Chapter 3, we proposed a randomized O(s
3/2
max)-rounds (i.e. O(n3/2)-rounds) algorithm for

computing a maximum matching in the CONGEST model, which is the first one attaining o(n2)-
round complexity for general graphs. Our algorithm follows the standard augmenting-path ap-
proach, and the technical core lies two fast algorithms of finding augmenting paths respectively
running in O(ℓ2) and O(smax) rounds. While we believe that our result is a big step toward the
goal of revealing the tight round complexity of the exact maximum matching problem, the gap
between the upper and lower bounds are still large. It should be noted that we leave the possibility
of much faster augmenting path algorithms. Once an o(ℓ2)-round or o(smax)-round algorithm of
finding an augmenting path is invented, the upper bound automatically improves. This direction
is still promising.

In Chapter 4, this investigation proved that (1/2a)-uniform distributions in the 50-50 model
can be generated for any a ≥ 0. This is a positive answer for the open problem posed in [7]. This
construction consumes O(23a) pins for generating (1/2a)-uniform distribution. It is still open if
more compact generation (with respect to the number of pins) is possible or not. This study did
not pay much attention to the number of rows in the generation process. It is crucial to abandon the
simplification assumption that each row contains exactly one pin for optimization. Unfortunately,
it makes the treatment of the model complicated; however, revealing the minimum number of rows
for generation purposes is an interesting open problem. From the viewpoint of the computational
complexity, it seems like an important open problem to show the NP-hardness (or polynomial-time
decidability) for the Problem 1. In addition, for both problems 1 and 2, it is still open if they
belong to NP or not.
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