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Abstract

Mobile agent is an abstract notion that is widely used to model several distributed
computing systems consisting of mobile computing entities, such as robots, web
crawlers, and a collection of sensor devices. Broadly speaking, those systems are
divided into the two categories: autonomous mobile system and passively mobile
system. The main difference of these categories lies at the type of mobility. In
the autonomous mobile systems, agents can autonomously move in some specified
locations, according to the program (i.e., algorithm) that is installed to agents in
advance. On the other hand, in passively mobile systems, the program of each agent
cannot control its physical behavior (i.e., how they move) because it is a computing
device attached to other moving entities such as cars, animals or humans, i.e., ex-
amples of such passively mobile system are ranging from flock of birds for nature
observation to humans with smartphone or cars with sensor devices for computing
some attributes of the groups. Various computing models are proposed to represent
autonomous/passively mobile systems, and much research has been devoted to reveal
the computational power of these models, as well as complexity analyses for various
problems. In this dissertation, we explore the capabilities of autonomous/passively
mobile systems by focusing on their representative models, namely the population
protocol model and mobile agents on graphs. For the passively mobile system, one
of the promising models is called population protocol model, introduced by Angluin
et al. [12]. A Population protocol consists of 𝑛 anonymous and identical agents,
each of which is defined as a deterministic state machine. The communication among
agents is performed by pairwise interactions, where two interacting agents change
their states following the transition function (algorithm) deployed to all agents. An
interaction corresponds to the physical behavior that two agents get close in the region
and exchange information through their short-range (wireless) communication chan-
nels. An execution of a population protocol is a sequence of pairwise interactions.
Since an interaction is a consequence of the physical movement by agents, the system
cannot control which pair of agents interact. As an autonomous mobile agent system,
this dissertation deals with one of the representative models, so-called the graphical
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mobile agent system. In the model, mobile agents are located at any vertices in a
graph 𝐺 = (𝑉 , 𝐸), and they repeatedly move to an adjacent node to solve a given
task, such as graph traversal and rendezvous.

In this dissertation, we consider the sub-linear time solvability of several problems
in passively/autonomous mobile agent systems. The sub-linear time is namely 𝑜(𝑛)
or 𝑜(𝑚) time, where 𝑛 is the number of vertices of input graph and 𝑚 is the number of
edges. The notion is one of the standard criteria of the efficiency for the parallelism in
several distributed computing systems. Conceptually, the sub-linear time algorithms
are important for the following reasons: The first reason is that the linear time algo-
rithm does not achieve essential optimality in the situation of distributed computing
systems because of their parallelism, while it does in the sequential computing. In
fact, it is not realistic to apply linear time algorithms for a large scale network. Sec-
ond, in principle some specific problems can be solved without scanning the whole
network topology. For those reasons, it is a natural and important question if the
sub-linear time solvability is achievable for a given task. However, it is highly chal-
lenging to reveal such a solvability since in standard computing models the capability
of computing entities is often limited, and/or for a certain kind of the problems their
problem specifications inherently requires the scan of the whole input. Hence to
the goal of sub-linear time algorithms, it is often indispensable to introduce some
additional assumptions and/or the relaxation of problems. The central research ques-
tion of this dissertation is what is the sufficient conditions or minimal assumptions
for achieving sub-linear time solvability. We explore the answer of this question for
the two fundamental problems of distributed computing theory. Specifically, in the
population protocol model, we consider a general form of the aggregation problem
with a base station. The base station is a special agent having the computational
power more powerful than others. In the aggregation problem, the base station has
to sum up for inputs distributed to other agents. We propose an algorithm that solves
the aggregation problem in sub-linear parallel time using a relatively small number of
states per agent. More precisely, our algorithm solves the aggregation problem with
input domain 𝑋 in 𝑂 (√𝑛 log2 𝑛) parallel time and 𝑂 (|𝑋 |2) states per agent (except
for the base station) with high probability.

In the graphical mobile agent system we consider the rendezvous problem. In
the rendezvous problem, two mobile agents located at different vertices in a graph
have to meet at the same vertex. In this dissertation, we consider the synchronous
neighborhood rendezvous problem, where the agents are initially located at two ad-
jacent vertices. While this problem can be trivially solved in 𝑂 (Δ) rounds (Δ is the
maximum degree of the graph), it is highly challenging to reveal whether that prob-
lem can be solved in 𝑜(Δ) rounds, even assuming the rich computational capability
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of agents. The only known result is that the time complexity of 𝑂 (√𝑛) rounds is
achievable if the graph is complete and agents are probabilistic, asymmetric, and can
use whiteboards placed at vertices. Our main contribution is to clarify the situation
(with respect to computational models and graph classes) admitting such a sublinear-
time rendezvous algorithm. More precisely, we present two algorithms achieving fast
rendezvous additionally assuming bounded minimum degree, unique vertex identi-
fier, accessibility to neighborhood IDs, and randomization. The first algorithm runs
within 𝑂̃ (

√
𝑛Δ/𝛿 + 𝑛/𝛿) rounds for graphs of the minimum degree larger than

√
𝑛,

where 𝑛 is the number of vertices in the graph, and 𝛿 is the minimum degree of the
graph. The second algorithm assumes that the largest vertex ID is 𝑂 (𝑛), and achieves
𝑂̃

(
𝑛√
𝛿

)
-round time complexity without using whiteboards. These algorithms attain

𝑜(Δ)-round complexity in the case of 𝛿 = 𝜔(√𝑛 log 𝑛) and 𝛿 = 𝜔(𝑛2/3 log4/3 𝑛)
respectively.

On the negative side, we also present the impossibility of sublinear-time ren-
dezvous when we relax the assumptions. There lie four unconventional assumptions
for our algorithm, which are bounded minimum degrees, the accessibility to neigh-
borhood IDs, initial distance one, and randomization. Interestingly, the time lower
bound of Ω(𝑛) rounds for graphs of Δ = Θ(𝑛) is deduced even if we remove only one
of them; this implies that our algorithm runs under a minimal assumption.
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Chapter 1

Introduction

1.1 Background and Motivation

The distributed computing systems are computing systems in which a collection
of computing entities perform computation through interactions among them and
achieves a certain type of goals. In the systems, one of the problems of the computation
is often lack of the information about other computing entities. Thus it is considered
that the procedures for aggregating information among the entities or gathering a
certain position for moving entities. In principle, such problems are often solvable
if reasonable amount of time is consumed, so technical challenge lies at the time
complexity of the problem (that is, time to solve the problem). Recently, sub-linear
time solvability plays a central role in the problem of time complexity. The sub-linear
time solvability is often to achieve a certain goal without using trivial procedures,
though it differs in the situation that what trivial means. For example, if we want
to aggregate whole information of all processors, one solution for the problem is to
elect a leader among the processors and the leader interact (or communicate) with
all of the other processors. For the sub-linear time solvability, one should design an
algorithm without using such (trivial) procedures.

Mobile agent is an abstract notion that is widely used to model several distributed
computing systems consisting of mobile computing entities, such as robots, web
crawlers, and a collection of sensor devices. Broadly speaking, those systems are
divided into the two categories: autonomous mobile system and passively mobile
system. The main difference of these categories lies at the type of mobility. In
the autonomous mobile systems, agents can autonomously move in some specified
locations, according to the program (i.e., algorithm) that is installed to agents in
advance. On the other hand, in passively mobile systems, the program of each agent
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1.2. OVERVIEW OF THE DISSERTATION 2

cannot control its physical behavior (i.e., how they move) because it is a computing
device attached to other moving entities such as cars, animals or humans, i.e., ex-
amples of such passively mobile system are ranging from flock of birds for nature
observation to humans with smartphone or cars with sensor devices for computing
some attributes of the groups. Various computing models are proposed to represent
autonomous/passively mobile systems, and much research has been devoted to clarify
the computational power of these models and exploring complexities of various prob-
lems. In this dissertation, we explore the capabilities of the autonomous/passively
mobile systems by studying representative models of each systems, namely mobile
agents on a graph and population protocol model.

For the passively mobile system, one of the promising models is called population
protocol model, introduced by Angluin et al. [12]. A Population protocol consists of
𝑛 anonymous and identical agents, each of which is defined as a deterministic state
machine. The communication among agents is performed by pairwise interactions,
where two interacting agents change their states following the transition function
(algorithm) deployed to all agents. An interaction corresponds to the physical behavior
that two agents get close in the region and exchange information through their short-
range (wireless) communication channels. An execution of a population protocol
is a sequence of pairwise interactions. Since an interaction is a consequence of
the physical movement by agents, the system cannot control which pair of agents
interact. Formally, the sequence of interactions is determined by an abstract daemon
called scheduler, which is out of the control by algorithm designers. Throughout this
dissertation, we assume the probabilistic scheduler, which chooses next interacting
pairs uniformly and independently at random from all pairs.

As autonomous mobile agent system, this dissertation deals with one of the
representative models that we call in this dissertation graphical mobile agent system.
In the model, mobile agents are located at any vertices in a graph 𝐺 = (𝑉 , 𝐸), and
they repeatedly move to an adjacent node to solve a given task, such as graph traversal
and rendezvous.

1.2 Overview of The Dissertation
In this dissertation, we consider the sub-linear time solvability of several problems in
passively/autonomous mobile agent systems. The sub-linear time is namely 𝑜(𝑛) or
𝑜(𝑚) time, where 𝑛 is the number of vertices of input graph and 𝑚 is the number of
edges. The notion is one of the standard criteria of the efficiency for the parallelism in
several distributed computing systems. Conceptually, the sub-linear time algorithms
are important for the following reasons: The first reason is that the linear time algo-
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3 CHAPTER 1. INTRODUCTION

rithm does not achieve essential optimality in the situation of distributed computing
systems because of their parallelism, while it does in the sequential computing. In
fact, it is not realistic to apply linear time algorithms for a large scale network. Sec-
ond, in principle some specific problems can be solved without scanning the whole
network topology. For those reasons, it is a natural and important question if the
sub-linear time solvability is achievable for a given task. However, it is highly chal-
lenging to reveal such a solvability since in standard computing models the capability
of computing entities is often limited, and/or for a certain kind of the problems their
problem specifications inherently requires the scan of the whole input. Hence to the
goal of sub-linear time algorithms, it is often indispensable to introduce some addi-
tional assumptions and/or the relaxation of problems. The central research question
of this dissertation is what is the sufficient conditions or minimal assumptions for
achieving sub-linear time solvability. We explore the answer of this question for the
two fundamental problems of distributed computing theory. Specifically, our main
results are summarized as follows.

1.2.1 Sub-linear Time Aggregation in Probabilistic Population
Protocol Model

The dissertation considers a general form of aggregation problems in the population
protocol model with a base station. The base station is a special agent having more
powerful computational power. Precisely, an aggregation problem is specified by any
commutative monoid (𝑋 ,+). Each agent 𝑖 (except for the base station) initially has a
value 𝑥𝑖 ∈ 𝑋 , and eventually the base station must output the value of 𝑥 =

∑
𝑖 𝑥𝑖. It

should be noted that the binary operator + is not necessarily the arithmetic addition
over integers. This problem covers many popular tasks in the population protocol
models, such as total sum, counting, and majority: The total sum is obvious, and
counting and majority are both special cases of the total sum. The counting problem
is the total sum with input 𝑥𝑖 = 1 for any ordinary agent 𝑖, and the majority problem
is the one with input 𝑥𝑖 ∈ {+1,−1}. In addition, the aggregation problem is also used
in some of known algorithms explicitly or implicitly as a building block.

Any aggregation problem can be solved by the coalescence algorithm [12], where
the interaction between two agents with values 𝑎 and 𝑏 respectively results in the
values 𝑎 + 𝑏 and 0. One can see that the coalescence algorithm trivially finishes the
aggregation when only one agent 𝑖 has a non-zero value in 𝑥𝑖. Unfortunately, it needs
Θ(𝑛2) steps of interactions (i.e., Θ(𝑛) parallel time∗) for convergence because the

∗Parallel time is a measurement often adopted in the literature of population protocols with the
probabilistic scheduler, where 𝑛 consecutive steps of interactions are regarded as a unit time.

3



1.2. OVERVIEW OF THE DISSERTATION 4

probability that the last two agents having non-zero values interact is 𝑂 (1/𝑛2).
In this dissertation, we present a new algorithm which solves the aggregation

problem with sub-linear parallel time in the probabilistic population protocol model
with the base station. More specifically, for any monoid (𝑋 ,+), our algorithm achieves
the aggregation in 𝑂 (√𝑛 log2 𝑛) time with high probability. The number of states
used by each agent is 𝑂 (|𝑋 |2) (equivalently, 𝑂 (log |𝑋 |) bits). The comparison with
prior work is shown in Table 1.1. The first result by Angluin et al. [12] is the standard
coalescence algorithm we mentioned above. The second result [13] is the algorithm
for simulating register machines in the population protocol model with the initial
leader. Since the register machine model can count the number of agents with a
specific state, it is possible to solve the aggregation problem for any monoid (𝑋 ,+) by
counting the number of agents with input 𝑥 sequentially for all 𝑥 ∈ 𝑋 . However, this
approach takes the running time depending on the alphabet size |𝑋 |. The algorithm
in [13] takes 𝑂 (polylog(𝑛)) time for counting the number of a given state (or input),
solving the aggregation problem needs 𝑂 (|𝑋 |polylog(𝑛)) time in total. To best of
our knowledge, our algorithm is the first result achieving the sub-linear running time
independent of |𝑋 |.

Table 1.1: Comparison with previous work
Angluin at el. [12] Angluin at el. [13] This dissertation

Time 𝑂 (𝑛) 𝑂 (|𝑋 | · log5 𝑛) 𝑂 (√𝑛 log2 𝑛)
#States 𝑂 ( |𝑋 |) 𝑂 (|𝑋 |) 𝑂 ( |𝑋 |2)

Initial leader no yes
Success

probability 1 1 − 1/𝑛𝑂 (1)

1.2.2 Fast Neighborhood Rendezvous
The rendezvous problem is well-studied in distributed computing theory. A typical
setting of the problem requires two agents located at any vertices in a graph 𝐺 =
(𝑉 , 𝐸) to meet and halt. This is recognized as a fundamental problem for designing
distributed algorithms of mobile agents. The hardness of symmetry breaking is often
seen as an essential difficulty of the rendezvous problem. For example, we consider
a ring network of four vertices, and the situation that the two agents located at two
vertices that are not adjacent to each other. Then, the agents running the same
algorithm symmetrically move and thus their relative distance two is kept forever.

4



5 CHAPTER 1. INTRODUCTION

That is, any deterministic algorithm does not achieve rendezvous in this situation.
To make the rendezvous problem solvable, the system model must be equipped with
some mechanism enabling two agents to move asymmetrically. Much of the previous
work focuses on what models or assumptions provide such a capability [37, 42, 49].

Unlike the viewpoint mentioned above, we assume a model that easily breaks
symmetry, i.e., allowing randomized and/or asymmetric algorithms, and focuses on
the time complexity of the rendezvous problem. When we allow two agents to run
different algorithms, the rendezvous problem can be solved using graph exploration.
Specifically, one of the agents halts at the initial location and the other one traverses all
the vertices. Hence the time complexity of graph exploration is a trivial upper bound
for the rendezvous problem. In contrast, the half of the initial distance between two
agents is a trivial lower bound for the problem. Since both of the bounds can beΘ(𝑛) in
a specific class of 𝑛-vertex instances (e.g., a ring network of 𝑛 vertices) the exploration-
based approach is existentially optimal, but not universally optimal. When the initial
distance is small in terms of 𝑛, the approach based on graph exploration does not
necessarily exhibit optimal algorithms. However, due to the unavailability of the
location information of other agents, achieving rendezvous without exploring all
vertices is a highly non-trivial challenge, even if we assume stronger capability of
agents such as randomization, asymmetry, and non-obliviousness.

Contribution

In this dissertation, we consider what instances and what computational power of
models (oracles) admit efficient algorithms that do not use exhaustive search strategy,
such as graph exploration. As we stated, the key characterization of the instances
is distance of initial location of both agents. We consider the initial distance is
small in terms of 𝑛, to avoid Ω(𝑛) lower bound. In this setting, the meaning of
"without exhaustive search" will be clear, namely presenting algorithms that achieve
rendezvous in 𝑜(𝑛) rounds.

In this dissertation, we consider an extreme variant of the rendezvous problem,
called the neighborhood rendezvous problem, where two agents are initially located
at two adjacent vertices (i.e., initial distance one). This problem can be also seen as a
generalized version of the rendezvous problem in complete graphs [11] because in that
case any two agents always have distance one. Since the neighborhood rendezvous
problem can be trivially solved in 𝑂 (Δ) rounds (Δ is the maximum degree of the
graph), the technical challenge lies in the design of algorithms achieving rendezvous
within 𝑜(Δ) rounds. As well as the algorithm shown in [11], we assume the rich
capability of agents (i.e., randomized, asymmetric, and non-oblivious), unique vertex
identifiers, and the availability of whiteboards placed at each vertex. In addition,

5



1.3. RELATED WORK 6

we assume that agents at a vertex 𝑣 can know the IDs of all 𝑣’s neighbors (which
is analogous to the KT1 model in message passing systems [55]). Specifically, we
present two randomized algorithms. The first algorithm achieves rendezvous within

𝑂

(
𝑛
𝛿 log2 𝑛 +

√
𝑛Δ
𝛿 log 𝑛

)
rounds with high probability for graphs whose minimum

degree is larger than
√
𝑛. Thus, this algorithm achieves fast rendezvous (i.e., sublinear

of Δ) in graphs with minimum degree 𝛿 = 𝜔(√𝑛 log 𝑛). The second algorithm trades
the use of whiteboards into the assumption of tight naming of vertices, that is,
the assumption that the largest vertex ID is 𝑂 (𝑛). It achieves rendezvous within
𝑂

(
𝑛√
𝛿

log2 𝑛
)

rounds with high probability†, and thus fast rendezvous is attained in
the case of 𝛿 = 𝜔(𝑛2/3 log4/3 𝑛). While these algorithms are designed for the specific
case of initial distance one, it is easy to extend them to address general initial distance.
That is, we can obtain the rendezvous algorithms with adaptive running time, which
attains a sublinear time for some nice setting (i.e., 𝑑 = 1 and an appropriate lower
bounds for 𝛿), and even guarantees the rendezvous for any setting.

On the negative side, we also present the impossibility of sublinear-time ren-
dezvous when we relax the assumptions. There lie four unconventional assumptions
for our algorithm, which are bounded minimum degrees, the accessibility to neigh-
borhood IDs, initial distance one, and randomization. Interestingly, the time lower
bound of Ω(𝑛) rounds for graphs of Δ = Θ(𝑛) is deduced even if we remove only one
of them; this implies that our algorithm runs under a minimal assumption.

1.3 Related Work

1.3.1 Sub-linear Time Aggregation in Probabilistic Population
Protocol Model

The population protocol model first appeared in the seminal papers by Angluin et
al. [12, 14], where the main interest is to clarify the class of computable predicates
with inputs distributed over all agents. The authors prove that any predicate stably
computable in the fundamental model of population protocols is semi-linear (or equiv-
alently, definable by Presburger arithmetics). Then several fundamental problems in
the context of distributed computing, such as leader election [4, 18, 27, 58], majority,
plurality consensus [5, 50], self-stabilizing algorithm [15, 19, 20, 45] are explored in
the population protocol model.

†Throughout this dissertation, we say that an event E holds with high probability if Pr[E] ≥
1 − 1/𝑛𝑂 (1) holds

6



7 CHAPTER 1. INTRODUCTION

The paper by Angluin et al. [13] studies the predicate computation in the system
with one unique leader under the probabilistic scheduler. They present a fast (i.e.,
𝑂 (polylog(𝑛)) parallel time) algorithm to simulate an abstract register machine. The
authors also present a technical tool called phase clock, which is also a key tool for
our algorithm. Since this result yields the fast predicate computation by installing a
fast (i.e., polylogarithmic parallel time) leader election algorithm, a number of time-
complexity analyses for the leader election problem are considered. The primary
negative result in this context is by Doty and Soloveichik [40]. It proved that any
stable leader election algorithm utilizing 𝑂 (1) states per agent requires Ω(𝑛) parallel
time to convergence, where the stability means that the system must elect a leader
with probability one. On the positive side, Alistarh and Gelashvili [4] proposed
a polylogarithmic-time leader election algorithm using 𝑂 (log 𝑛) states per agent.
Recently, Alistarh et al. explored the trade-offs between the time to convergence and
the space of states per agent [2] . They show that any protocol which solves leader
election (or majority) using 𝑂 (log log 𝑛) states per agent must take Ω(𝑛/polylog(𝑛))
parallel time. Alistarh et al. [3] shows that any protocol solving stabilizing majority
problem in expected time 𝑜(𝑛1−𝑐) requires Ω(log 𝑛) states for any constant 𝑐 (0 <
𝑐 < 1), and propose space-optimal majority protocol. In [44], a space optimal leader
election protocol which uses 𝑂 (log log 𝑛) states per agent and converges parallel
time 𝑂 (log2 𝑛) is proposed. The model with a base station is first considered in the
context of the counting problem [20]. A few follow-up papers are also published,
where the space-efficient (self-stabilizing) solutions with respect to agent memory
are presented [16, 45].

Recent progress of population protocol model is as follows. Recent results about
considering time/space complexity of majority and leader election problems are
summarized in the survey paper by Elsasser and Radzik [41]. As a new protocol
for majority problem, Berenbrink et al. [21] present a protocol which has 𝑂 (log 𝑛)
states and 𝑂 (log5/3 𝑛) stabilization time with high probability. The state complexity
of population protocol model is initiated in the paper [23], and papers [22, 30] also
consider the problem. Roughly speaking, the problem is the minimal number of
states needed to evaluate systems of linear constraints, which is a large subclass of the
predicates computed by population protocols. In particular, the first paper presents
a protocol for so-called the flock-of-birds problem, namely the family of predicates
{𝑥 ≥ 𝜂 : 𝜂 ∈ N}, where 𝜂 is a fixed constant. This problem is interpreted as
evaluating if the number of agents is larger or equal than the constant 𝜂. The first paper
shows that the state complexity of the protocol is 𝑂 (log 𝜂) for leaderless situation
(without assumption of initial existence of leaders). In the paper [22], Blondin et
al. present a protocol having 𝑂 (log log 𝜂) states with initial existence of leaders. As
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a lower bound, Czerner and Esparza [30] show that the state complexity of 𝑥 ≥ 𝜂
is Ω(log log log 𝜂) for leaderless protocols. On the self-stabilizing leader election
problem, Burman et al. [26] present a time-optimal protocol, which has optimal
𝑂 (𝑛) parallel time and 𝑂 (𝑛) states. A previously known result is presented by Cai,
Izumi, and Wada [28], where the paper presents a protocol having 𝑛 states and 𝑂 (𝑛2)
expected time, and shows that any protocol solving self-stabilizing leader election
with silent property must have at least 𝑛 states. The silent property ensures that after
the system stabilized, all agents do not change their states according to the transition
function. The time/space tradeoffs of loosely stabilizing leader election problem are
also considered. The term "loosely" roughly means that a protocol must stabilize
to the desired configurations (ones with a leader), but allowing a tiny probability
for abandoning the desired configurations. This definition leads an interpretation
that the protocol stabilize to configurations with a leader, and the configurations last
sufficiently large long time (called holding time). For this problem, many papers
improve the stabilizing time and the states needed, or explore the lower bound for
the problem [46, 56, 58, 59]. In paper [56], sudo et al. present a loosely stabilizing
leader election protocol with 𝑂 (polylog(𝑛)) states, 𝑂 (𝜏 log 𝑛) convergence time, and
𝑂 (𝑛𝜏) holding time for a design parameter 𝜏 ≥ 1. This protocol is time-optimal since
leader election requires 𝑂 (log 𝑛) parallel time to stabilize [57]. A general form of
majority problem is also considered [47]. In this paper, Alistarh et al. consider the
comparison problem, where initially fixed but possibly small counts of agents have
opinions 𝑋0,𝑌0 (with a constraint of |𝑋0 | ≥ 𝐶 |𝑌0 | for some constant 𝐶 > 1), and the
system must stabilize a consensus about which opinion has higher initial count. For
the problem, the authors present a protocol that stabilizes 𝑂 (log 𝑛) parallel time and
uses 𝑂 (log 𝑛) states, with properties of self-stabilization and leak-robustness, in the
sense that interactions tend to faulty for the latter property. A problem with opposite
purpose for the majority problem, called partition problem or diversity problem also
considered in the series of the papers [62–64] and [6].

1.3.2 Fast Neighborhood Rendezvous

The solvability and complexity of the rendezvous problem is affected by many factors,
such as synchrony, randomness of algorithms, graph classes, symmetry of agents, and
so on. For that reason it is difficult to compare our results with past literature directly.
Nevertheless, several results aim to achieve sublinear-time rendezvous explicitly or
implicitly. Collins et al. [29] demonstrate that two agents with a common map (i.e.,
whole information of 𝐺), which are initially placed with distance 𝑑, can achieve
rendezvous deterministically within 𝑂 (𝑑 log2 𝑛) rounds, they also show a nearly tight

8



9 CHAPTER 1. INTRODUCTION

Ω(𝑑 log 𝑛/log log 𝑛)-round lower bound. Das et al. [36] assume that two agents
can detect their distance, and present a deterministic rendezvous algorithm within
𝑂 (Δ(𝑑 + log 𝑙)) rounds, where 𝑙 is the minimum value of the IDs of agents. It is
also proven that any algorithm requires Ω(Δ(𝑑 + log 𝑙/logΔ)) rounds in this model.
The result by Anderson et al. [11] is the closest to our result in the sense that it
assumes no oracle such as maps and distance detection stated above. It considers the
model of anonymous vertices with whiteboards, and presents a randomized algorithm
that achieves rendezvous for complete graphs in 𝑂 (√𝑛) expected rounds. As we
mentioned, the neighborhood rendezvous problem can be seen as a relaxation of
rendezvous in complete graphs, and thus we can regard our result as the one extending
the graph classes allowing fast rendezvous (using a stronger assumption of vertex
identifiers). There are also several studies [39, 51, 52] for achieving fast rendezvous
using side information coming from oracles (so-called advice). In this model, agents
cannot see the whole map of 𝐺, but instead can know the (partial) information on
their initial locations.

Due to the interest on hardness of symmetry breaking, the solvability of the
rendezvous problem for ring networks has received much consideration in several
different models [37, 42, 49]. In this context, the analysis of complexity has not
received much attention. The study of rendezvous in trees has focused on time and
space complexities. The paper by Baba et al. [17] presents a linear-time (equivalently,
𝑂 (𝑛) time) algorithm under the assumption that agents have𝑂 (𝑛) bits of memory, and
the authors also show its optimality with respect to space in the class of linear-time
algorithms. Czyzowicz et al. [32] generalized this result, and presented an algorithm
achieving rendezvous in Θ(𝑛 + 𝑛2/𝑘) rounds for agents having 𝑘 bits of memory.
Fraigniaud et al. [43] presents the rendezvous algorithm in trees with the optimal
memory complexity (Θ(log 𝑛) bits). The feasibility of rendezvous in general graphs
are also considered in several papers [24, 31, 33, 38]. In paper [31], the memory
requirement for the rendezvous of uniform agents is considered, which presents that
Θ(log 𝑛) bits are necessary and sufficient for two agents in any anonymous graph.
Recently, Miller et al. [53] consider the trade-offs between time and cost (the number
of edges traversed by agents).

The rendezvous problem allowing randomization is often considered as a part of
the theory of random walks. The time taken for two tokens to meet at a common vertex
is called the meeting time [25,60]. The rendezvous problem in the analyses of Markov
chain theory is also considered in the context of operations research [1,8,11,34,61,65].

A comprehensive overview of the rendezvous problem can be found in the books
by Alpern and Gal [10] and Alpern et al. [9], and several surveys [7, 48, 54].

9
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1.4 Organization
This dissertation consists of four chapters. In Chapter 2, we deal with sublinear-
time aggregation in probabilistic population protocol model, which is one of the
promising model for the passively mobile agent system. In chapter 3, we consider
the rendezvous problem in graphical autonomous mobile agent system, and show the
minimal assumption for the sublinear solvability of the problem. We conclude this
dissertation in Chapter 4.

10



Chapter 2

Sub-linear time Aggregation in
Probabilistic Population Protocol
Model

A passively mobile system is an abstract notion of mobile ad-hoc networks. It is
a collection of agents with computing devices. Agents move in a region, but the
algorithm cannot control their physical behavior (i.e., how they move). The population
protocol model is one of the promising models in which the computation proceeds by
the pairwise communication between two agents. The communicating agents update
their states by a specified transition function (algorithm).

In this chapter, we consider a general form of the aggregation problem with a
base station. The base station is a special agent having the computational power
more powerful than others. In the aggregation problem, the base station has to sum
up for inputs distributed to other agents. We propose an algorithm that solves the
aggregation problem in sub-linear parallel time using a relatively small number of
states per agent. More precisely, our algorithm solves the aggregation problem with
input domain 𝑋 in 𝑂 (√𝑛 log2 𝑛) parallel time and 𝑂 (|𝑋 |2) states per agent (except
for the base station) with high probability.

This chapter organized as follows. In section 2.1 we give the definition of the
model, notations, and several useful tools presented by other papers. In section 2.2
we present our protocol for aggregation.

11
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2.1 Preliminaries

2.1.1 Population Protocol Model with Base Station
A population protocol with a base station consists of 𝑛 anonymous agents, which
contains one special agent called the base station. In what follows, the agents other
than the base station are called ordinary agents. Each agent is defined as a bounded-
space random access machine and updates its state by interactions. An interaction is
a pairwise communication with other agents in the system. Note that an interacting
pair of two agents is represented as an ordered pair. That is, they have the mechanism
of symmetry breaking and thus even if two agents with the same states interact their
resultant states can be different. For any interacting pair (𝑟1, 𝑟2), we call the first
agent 𝑟1 the sender of that interaction, and call 𝑟2 the receiver. A directed interaction
graph 𝐺 = (𝑉 , 𝐸) of 𝑛 nodes defines a capability of interactions. Each node in 𝐺
corresponds to an agent, and each edge in 𝐺 indicates the possibility of interactions
between two endpoints. Throughout this chapter we assume that 𝐺 is complete (i.e.,
any pair of agents can interact). For reference, we give each node an integer identifier
{1, 2, . . . , 𝑛}, but identifiers are not accessible to algorithms.

In this chapter, we assume that the agents know a common upper bound 𝑁 for
the number of agents 𝑛. More precisely, an algorithm is defined as an infinite
sequence of concrete algorithms 𝑃1, 𝑃2, . . . , 𝑃𝑁 , . . . . A concrete algorithm 𝑃𝑁 with
parameter 𝑁 is a 6-tuple (𝑄𝑁 , 𝛿𝑁 , 𝐼𝑁 ,𝑂𝑁 , 𝜄𝑁 , 𝛾𝑁 ), where 𝑄𝑁 is a finite set of the
states, 𝛿𝑁 : 𝑄𝑁 ×𝑄𝑁 → 𝑄𝑁 ×𝑄𝑁 is a transition function, 𝐼𝑁 is a finite set of input
symbols, 𝑂𝑁 is a finite set of output symbols, 𝜄𝑁 : 𝐼𝑁 → 𝑄𝑁 is an input function, and
𝛾𝑁 : 𝑄𝑁 → 𝑂𝑁 is an output function. The number of states in 𝐼𝑁 ,𝑄𝑁 , and 𝑂𝑁 can
depend on 𝑁 . Initially, each agent 𝑖 has an input 𝑥𝑖 ∈ 𝐼𝑁 , which is converted to the
initial state 𝜄𝑁 (𝑥𝑖). When two agents interact with each other, they update their states
according to the function 𝛿𝑁 . The output function 𝛾𝑁 decodes an output value from
the current state of an agent. Since the parameter 𝑁 implies the upper bound for the
number of agents 𝑛. the algorithm 𝑃𝑁 must work correctly when it is deployed to the
system with at most 𝑁 agents.

A configuration 𝐶 : Z+ → 𝑄 of 𝑃𝑁 with 𝑛 agents (𝑁 ≥ 𝑛) is defined as a
𝑛-dimensional vector where each element𝐶 [𝑖] corresponds to the state of agent 𝑖. An
execution is an infinite sequence of configurations 𝐶1,𝐶2, . . . such that 𝐶𝑖 is obtained
from 𝐶𝑖−1 by making some two agents interact with each other. The next interacting
pair is determined by the probabilistic scheduler. Formally, for any algorithm 𝑃
with transition function 𝛿, let 𝛿(𝐶, 𝑗 , 𝑘) be the configuration obtained from 𝐶 by the
interaction of pair ( 𝑗 , 𝑘). Letting 𝐶0,𝐶1, . . . ,𝐶𝑖, . . . be the execution of 𝑃, for any
𝑖 ≥ 1, 𝐶𝑖+1 is chosen uniformly at random from the set {𝛿(𝐶𝑖, 𝑗 , 𝑘) | ( 𝑗 , 𝑘) ∈ 𝐸}.

12
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The 𝑖-th interaction in an execution is called the 𝑖-th step of the execution. In the
literature of population protocols, the measurement of parallel time is often adopted.
One parallel time is a consecutive 𝑛 steps of the execution. That is, the length of a
finite (sub)execution with 𝑚 steps with respect to parallel time is 𝑚/𝑛. For short, we
use terminology “time” as the meaning of parallel time in the following argument.

2.1.2 Aggregation Problem

Let (𝑋 ,+) be an arbitrary commutative monoid whose identity element is zero (where
+ is not necessarily the standard arithmetic sum), and 𝑋̂ = 𝑋 \ {0}. In the aggregation
problem for (𝑋 ,+), each ordinary agent 𝑖 initially has a value 𝑥𝑖, and the goal of
the task is that the base station computes the value 𝑥 =

∑
𝑖 𝑥𝑖. We assume that

the base station is equipped with an output register storing a value in 𝑋 . The
value of the output register must be converged into 𝑥 with high probability ( the
probability at least 1 − 1/𝑛) with respect to the distribution of possible executions.
More precisely, an aggregation algorithm is correct if the execution of the algorithm
has an infinite-length suffix where the output register of the base station always stores
𝑥 with high probability. The computation time of an aggregation algorithm is defined
as the parallel time taken until the convergence of the output register. Note that
the requirement of commutativity naturally arises in the population protocol model
because the anonymity of agents implies that any permutation of input values cannot
affect the output.

2.1.3 Epidemics

The algorithm called epidemics (or propagation) is a simple subroutine used in many
algorithms. The abstract structure of the epidemics is as follows: At first there is at
least one agent with value v, which wishes to propagate v to all other agents, and
other agents initially have value ⊥. The transition rule is to change (𝑣,⊥) or (⊥, 𝑣)
into (𝑣, 𝑣). The analysis by Angluin et al. [13] shows that under the random scheduler
the epidemics algorithm finishes within 𝑂 (log 𝑛) parallel time with high probability:

Theorem 1 ( [13]) At any step 𝑡0, suppose there is at least one agent which wishes to
start the epidemics algorithm. Then there exists a constant 𝑐 such that the epidemics
finishes at step 𝑡0 + 𝑐𝑛 log 𝑛 or earlier with probability at least 1 − 1/𝑛3.

13
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2.1.4 Phase Clock

Specification The phase clock, introduced by Angluin et al. [13], allows the base
station to count approximately 𝑂 (log 𝑛) time. The phase clock tells the base station
that 𝑂 (log 𝑛) time has passed from the last activation, which is informed through a
special one-bit variable named Clock-Pulse. The Clock-Pulse basically keeps value
zero, and periodically activated (i.e., changes to value one). We call the activation of
the bit a signal of the phase clock. The (value-one) signal is immediately deactivated
to 0 at the interaction next to the activation. A configuration 𝐶𝑖 in an execution
of the phase clock is said to be in the 𝑘-th round when the base station already
outputted 𝑘 signals but does not activate the (𝑘 + 1)-th. The algorithm proposed
in [13] implements the phase clock mechanism only using 𝑂 (1) states per agent. We
use it as a black box. Note that the extra cost (with respect to the number of states) is
(asymptotically) negligible because it consumes a constant number of states.

Theorem 2 ( [13]) Let 𝑡 (𝑖) be the step when 𝑖-th signal is activated, and 𝑐 be the fixed
constant from Theorem 1. Then there exists a a constant 𝑑 (𝑐)(> 2𝑐) such that with
probability at least 1−1/𝑛3 for all 𝑖 ∈ [1, 𝑛] 2𝑐𝑛 log 𝑛 ≤ |𝑡 (𝑖 +1) − 𝑡 (𝑖) | ≤ 𝑑 (𝑐)𝑛 log 𝑛
holds.

Simulation of Round-Based Synchrony Intuitively, in each interval of two con-
secutive signals (i.e., in one round), with high probability the system can complete
two times of epidemics. It yields the simulation of round-based synchrony to the pop-
ulation protocol. In each round, the base station propagates the clock-pulse message
as the first epidemics. When an agent receives the clock-pulse message, it can perform
a message propagation by the second epidemics (specified by the algorithm). We can
probabilistically guarantee that the message propagation always finishes within the
round. In the following argument, the notification to each (ordinary) agent is also
modeled by the variable named Clock-Pulse. We assume that our algorithm runs the
round-based synchrony mechanism as an underlying process of our algorithm. That
is, in our algorithm, each agent performs message exchange following the signal of the
Clock-Pulse. For simplicity of the arguments, we also assume that the round-based
synchrony always succeeds (at least until round 𝑛). The high success probability of
the round-based synchrony is achieved by taking the union bound over the low failure
probabilities of the phase clock and epidemics.

14
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2.2 Fast Aggregation Algorithm

2.2.1 Outline
Consider the aggregation problem (𝑋 ,+) where each ordinary agent 𝑖 initially has
an input value 𝑥𝑖. A trivial algorithm for the aggregation problem (𝑋 ,+) is the
coalescence algorithm defined by the transition rules (𝑎, 𝑏) → (𝑎 + 𝑏, 0) for any pair
(𝑎, 𝑏) ∈ 𝑋̂2. Running the coalescence algorithm over all agents, an agent obtains
the value 𝑥 =

∑
𝑖 𝑥𝑖 in 𝑂 (𝑛) expected parallel time. When the base station interacts

with the ordinary agent with a non-zero value 𝑘 , it copies the value 𝑘 to its output
register. This algorithm guarantees that the output value of the base station eventually
converges into 𝑥. It is not difficult to see that𝑂 (𝑛)-round upper bound for the running
time of the coalescence algorithm is tight. The advantage of our algorithm achieves
much faster convergence. More precisely, it finishes in 𝑂 (√𝑛 log2 𝑛) parallel time
with high probability.

The idea of our algorithm is very simple: The bottleneck of the coalescence
algorithm lies in the situation where the number of ordinary agents with non-zero
values becomes small. If only 𝑚 (𝑚 ≪ 𝑛) agents have non-zero values, an interac-
tion selected by the scheduler makes no progress of the algorithm with probability
1−Θ((𝑚/𝑛)2). That is, if 𝑚 = 𝑂 (1), the system wastes Ω(𝑛2) interactions in expec-
tation. Circumventing this situation, we utilize another mechanism called sequential
absorption when only𝑂 (√𝑛) agents have non-zero values. The sequential absorption
first elects a unique ordinary agent having a non-zero value by spending 𝑂 (log 𝑁)
rounds. We call the elected agent an absorption agent. The absorption agent runs
the epidemics for propagating its own value, which reaches the base station within
one round. Repeating this procedure Θ(√𝑛) times, we can complete the aggregation.
Since the election and epidemics take 𝑂 (log2 𝑛) parallel time, the total running time
of the sequential absorption algorithm is 𝑂 (√𝑛 log2 𝑛). The remaining issue is to
combine the sequential absorption mechanism with the coalescence algorithm. While
the sequential composition is obviously correct, it requires the timer for (exactly or
approximately) counting Θ(√𝑛) parallel time. To avoid consuming extra memory
space, we choose fair composition, that is, simply running them concurrently. We
refer ordinary agents with value zero as zero agents, and others as non-zero agents.

2.2.2 Election of an Absorption Agent
Before specifying the whole of the algorithm, we present an election algorithm used in
the sequential absorption algorithm as a subroutine. While we can utilize previous fast
leader election algorithms for this part, we newly introduce a space-efficient ((𝑂 (1)
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states per agent) algorithm with the help of the base station. The proposed algorithm
elects an absorption agent in 𝑂 (log 𝑛) rounds using random coin flipping. While the
coin flip is not available in our model, it does not matter because we can create local
random bits from the randomness of the scheduler. The simplest way of creating
one random bit is that the sender and receiver of each interaction get values one and
zero respectively as the result of the coin flip. Since the choice by the scheduler is
uniformly at random, this mechanism obviously implements a perfect (i.e., unbiased)
coin flipping. It should also be mentioned that another technique for generating
longer random bits is also introduced in [2]. However, only one random bit is enough
to implement our election algorithm. Since the space required for the random-bit
generation is one, this mechanism does not affect the asymptotic complexity for the
number of states used by each agent.

The algorithmic idea of our election algorithm is to eliminate a constant fraction of
the candidates by coin flipping. The run of our algorithm consists of 𝑂 (log 𝑛) rounds
managed by the round-based synchrony. The algorithm starts with the epidemic of a
signal from the base station. When a non-zero agent receives the signal, it becomes a
candidate of a leader. At the beginning of each round, the surviving candidates flip a
coin and get a random value. The agent getting value one is still alive and propagates
the value-one information using epidemics. On the other hand, the agents getting
value zero do nothing. They are killed when the propagated value-one information
is received. Note that if there is no agent with value one in some round, the number
of candidates does not decrease and thus that round is wasted. This mechanism
is necessary for guaranteeing that at least one candidate survives. In expectation,
it suffices to iterate the elimination process 𝑂 (log 𝑛) times for electing a unique
absorption agent. The number of iterations is counted by the base station.

In order to prevent candidate agents from receiving expired value-one information
propagated in past rounds, the base station detects the termination of the propagation in
each round. The termination detection simply follows the timeout mechanism. When
the synchrony notifies the end of the round, the base station starts the propagation of the
clean-up message in the next round. Any agent receiving the clean-up message stops
the propagation of the value-one information. The termination of the clean-up process
also follows the notification by the synchronization mechanism. Consequently, one
elimination process is implemented using two rounds.

2.2.3 Sequential Absorption Algorithm

Utilizing the election algorithm shown in the previous section, we can construct the
sequential-absorption side of our algorithm. As we explained its outline, one iteration
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of the sequential absorption consists of the following tasks:

1. Select an absorption agent by the election algorithm,

2. The absorption agent propagates its value using the epidemics algorithm.

3. At the end of the round when the absorption agent propagates the value (notified
by the clock pulse of the round-based synchrony), all agents delete the message
in propagation.

Note that the third task is to guarantee that no propagated value is left in the next
iteration as an expired one. It should also be noted how the sequential absorption and
the coalescence are composed. As we stated, it is simply achieved by running them in
parallel. A point to be careful is that we have to avoid the value kept by an absorption
agent is doubly accumulated in both mechanisms. This issue is easily resolved by
excluding the absorption agent from the coalescence process. That is, when an agent
𝑖 is elected as an absorption agent, the value stored in the coalescence side of 𝑖 is reset
to zero.

2.2.4 Algorithm Details
The transition rules of ordinary agents and the base station are presented in Algorithm
1. We explain its details below.

Variables

The state of each agent (including the base station) is a 5-tuple (v, buf, exec, rand, BST).
We denote the variables of agent 𝑖 by v𝑖, buf𝑖, exec𝑖, rand𝑖, and BST𝑖) respectively.
The role of the variables is summarized as follows.

• The variable v stores a partial sum of input values in the coalescence algorithm.
The initial value of the variable v𝑖 is 𝑥𝑖.

• The variable buf is a buffer to store the value propagated by an absorption agent
or the value of a random bit.

• The variable exec represents the current mode in the run of the sequential
absorption algorithm, which stores one of five values E (electing), CE (cleanup
of electing) S1, S2 (spreading), and CS (cleanup of spreading).
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• The variable rand stores the random bit used in the election algorithm. For
simplicity, we also use this variable for indicating whether agent 𝑖 is currently
joining the election process or not. If 𝑖 does not join the process (i.e., it is a
zero agent or a non-zero but already killed), rand𝑖 stores ⊥.

• The variable BST is the fixed one-bit flag which stores one only at the base
station. The ordinary agents have zero.

These variables are initially set to v𝑖 = 𝑥𝑖, buf𝑖 = 0, exec = S, rand = 0 for each
ordinary agent 𝑖. The base station has initial values as v = 0, buf = 0, exec = S,
rand = 0. These initial values enable the base station to be regarded as a zero
agent, thus the variables of the base station do not affect the computation. The space
requirement for each agent is summarized as follows: Variables exec𝑖 and rand𝑖 use
𝑂 (1) states, and variables v𝑖 and buf𝑖 use 𝑂 (|𝑋 |) states respectively. The total space
complexity for ordinary agents is 𝑂 ( |𝑋 |2) states.

The base station also has additional variables 𝑚, round and coalesced for the
special operations of the base station.

• The variable 𝑚 = log 𝑁 is the upper bound for the value of log 𝑛. Since 𝑚
is only used for detecting the termination of the election algorithm, the gap
between 𝑁 and 𝑛 does not affect the correctness of the algorithm.

• The variable round counts the number of rounds passed in the E (electing)
mode.

• The variable coalesced is a flag indicating whether the base station has already
accumulated the propagated value of an absorption agent in the mode of S2.

Transition Rules of Coalescence Algorithm

In this algorithm, all the agents naively aggregate non-zero values of v by pairwise
interactions between non-zero agents. The algorithm consists of two rules: If two
non-zero agents interact then one of the agents gets the coalesced value and the other
agent becomes a zero agent (lines 3-4). Another rule specifies operations between the
base station and one of the non-zero agents. If the base station and a non-zero agent
interact, then the base station aggregates the values, and the ordinary agent becomes
zero agent (lines 5-6).
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Transition rules of Sequential Absorption Algorithm

As mentioned in subsection 2.2.3, this algorithm iteratively accumulates the value held
by a non-zero agent to the base station. The algorithm runs with alternately switching
two subalgorithms called election and spreading respectively. In the election, agents
elect an absorption agent from non-zero agents using the election algorithm stated in
subsection 2.2.2. In the spreading, the elected absorption agent propagates its value
of v, and the base station aggregates it. The mode of each agent is determined by the
value of exec. More precisely, an agent with exec ∈ {E, CE} runs the election, and
one with exec ∈ {S1, S2, CS} runs the spreading. The run of each mode is globally
synchronized by the round-based synchrony. The election subalgorithm consists of
𝑂 (log 𝑛) rounds, and that of the spreading subalgorithm consists of two rounds. The
details of the two modes are explained below.

Election Algorithm In the election algorithm, we divide ordinary agents into four
types: zero agents satisfying v = 0, killed agents satisfying v ≠ 0 and rand =⊥,
weak candidates satisfying v ≠ 0 and rand = 0, and strong candidates satisfying
v ≠ 0 and rand = 1. The run of this subalgorithm starts when agents with mode C𝑆

(i.e., in the previous spreading) receives the signal of Clock-Pulse. By that trigger,
non-zero agents changes the mode to E, and flip random coins. If the value of rand
is one, it also writes the value one to buf (lines 22-25) for informing the existence of
strong candidates (i.e., the value-one information). The propagation of the value-one
information is equivalant to the epidemics for variable buf (line 8,9). Also, if an agent
𝑖 is a weak candidate and gets the value-one information, it becomes a killed agent
(line 11). Note that even killed agents support the propagation. Agents proceed to the
next round when the activations of the Clock-Pulse occurs again. Then agents change
its mode to C𝐸 (line 26). Agents utilize this mode for cleaning variables buf. Each
agent 𝑖 resets buf𝑖 to zero (line 27), and waits until the next trigger of the phase clock
is activated. At the activation, the agent returns to the mode E. In addition to the
operations above, the base station executes the special operation of incrementing the
variable round and checking if round exceeds the bound 96𝑚 = 𝑂 (log 𝑛) (line 36-37,
44-45). If it exceeds the bound, the base station initiates the subalgorithm spreading.
Otherwise, it continues to the election with changing the state to E (lines 38,39, 46,
and 47).

Spreading Algorithm The Spreading subalgorithm starts when the base station
enters this mode (i.e., exec = S1). The base station propagates the termination signal
(of the election subalgorithm) in the first round. In this propagation, an ordinary agent

19



2.2. FAST AGGREGATION ALGORITHM 20

receiving that signal changes its mode to S1 (line 16). At the interaction of the mode
change, the agent sets up variables buf and rand according to its type in the election
algorithm. Any zero agent or killed agent resets buf to zero (line 16). If the agent
is still a candidate (regardless of weak or strong), it becomes an absorption agent.
That is, it stores the value of v to buf, and becomes a zero agent by setting v = 0 and
rand =⊥ (line 18). Then, all agents wait for the next triggers of the phase clock. In
the next round, they proceed to the mode S2 and conduct the propagation of the value
of the absorption agent (line 20). Agents except for the absorption agent overwrite
buf to the value of the absorption agent (lines 13-14). When the value reaches the
base station, the aggregation finishes (lines 33,34, 41, and 42). In order to avoid
multiple accumulation, the base station set a flag coalesced to one and ignores values
of buf afterward (lines 34 and 42). This flag is reset when the base station enters the
next iteration (lines 39 and 47). After the propagation, according to the trigger of the
phase clock, they go back to the mode CS and reset buf to zero (line 21).

2.2.5 Correctness Proof
Lemma 3 Let 𝑟 be the round where round = 0 holds at the base station. Then at
round 𝑟 + 96 log 𝑁 , with probability at least 1 − 1/𝑛3, the system has exactly one
agent 𝑖 such that rand𝑖 ≠⊥.

Proof 1 By the structure of the algorithm, at least one agent survives the election
process because if all surviving agents take random value zero, no agent is further
killed in that round. Hence it suffices to show that the number of candidates decreases
quickly. More precisely, we show that a constant fraction of surviving agents are killed
with a constant probability at each iteration of the elimination process.

Assume that at least 𝑙 ≥ 2 agents still survive as candidates at the beginning of
a round. We first handles the case of 2 ≤ 𝑙 ≤ 4 exceptionally. In this case, with
protability 1/4 or more, at least ⌈𝑙/2⌉ candidates get random value 0 and at least
one candidate gets value one. Consider the case of 𝑙 > 4. Let 𝑋𝑏 be the number of
candidates getting the value 𝑏 ∈ {0, 1}. It is obvious that E[𝑋1] = 𝑙/2 holds. By
Markov’s inequality, we have

Pr[𝑋1 ≥ (3𝑙)/4] ≤ 2/3
⇒ Pr[𝑋0 ≥ 𝑙/4] ≥ 1/3.

Hence with probability at least 1/4, a quarter of all surviving agents are killed in
each elimination process. We call an elimination process good if it successfully kills
a 1/4 fraction of candidates. Let 𝑌 be the number of good elimination processes
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during 96 log 𝑁 times of iterations. The expectation E[𝑌 ] is 24 log 𝑁 . By Chernoff
bound, the probability that 𝑌 ≤ 12 log 𝑛 holds is bounded by

Pr[𝑌 ≤ 12 log 𝑛] ≤ e3 log 𝑛 ≤ 1/𝑛3.

It follows that the algorithm elects a unique agent after 𝑟 + 96 log 𝑁 rounds with
probability at least 1− 1/𝑛3 because the number of candidates at the first round is at
most 𝑁 . and each iteration consists of exactly two rounds. 2

Lemma 4 The output register of the base station eventually stores 𝑥 =
∑𝑛

𝑖 𝑥𝑖 with
probability at least 1 −𝑂 (1/𝑛2).

Proof 2 By Theorem 3, the election of an absorption agent succeeds with probability
at least 1 −𝑂 (1/𝑛3). Since one election increases the number of zero agents by one,
the election process is activated at most 𝑛 times. By taking the union bound, we can
show that all the election processes succeed with probability at least 1 −𝑂 (1/𝑛2).
Then, we can see that the value of the output register converges to 𝑥 by the following
observation: At any configuration 𝐶, the value of buf𝑖 for each agent 𝑖 is either 0
or the value in propagation (which is common among all agents). Let 𝑏(𝐶) be the
non-zero value stored in buf in 𝐶. If all buffers store zero, we define 𝑏(𝐶) = 0. Then
we obtain the following invariant:

∑𝑛−1
𝑗 𝑣 𝑗 + 𝑏(𝐶) + out = 𝑥. It is easy to check that

this equation is actually an invariant (that is, no interaction breaks it). It obviously
follows that the output of the base station is equals to 𝑥 when any ordinary agent
becomes a zero agent. 2

Lemma 5 After 𝑂 (√𝑛 log2 𝑛) parallel time, each ordinary agent 𝑖 satisfies 𝑣𝑖 = 0
with high probability.

Proof 3 We first show that the coalescence algorithm decreases the number of non-
zero agents to

√
𝑛 after 𝑂 (√𝑛 log 𝑛) parallel time with high probability. Suppose that

there exists 𝑘 non-zero agents in the system. Then, the probability that any two non-
zero agents interact with each other is 𝑘 (𝑘 − 1)/𝑛(𝑛 − 1), and the expected time taken
to decrease the number of non-zero agents by one is its inverse 𝑛(𝑛 − 1)/𝑘 (𝑘 − 1).
Thus the expected number of steps taken until the number of non-zero agents becomes
less than

√
𝑛 is

𝑛∑
𝑘=⌊√𝑛⌋

𝑛(𝑛 − 1)
𝑘 (𝑘 − 1) = 𝑛(𝑛 − 1)

𝑛∑
𝑘=⌈√𝑛⌉

(
1

𝑘 − 1
− 1
𝑘

)
≤ 2𝑛1.5.
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Furthermore, by Markov’s inequality, after 4𝑛1.5 interactions, the number of non-
zero agents becomes less than

√
𝑛 with probability at least 1/2. Consequently, the

probability that the number of non-zero agents is still more than
√
𝑛 after 8𝑛1.5 log 𝑛

interactions is at most (1 − 1/2)2 log 𝑛 ≤ 1/𝑛2.
Next, we bound the time taken to eliminate

√
𝑛 non-zero agents. Since each

iteration of the sequential absorption takes Θ(log2 𝑛) parallel time and decreases the
number of non-zero agents by one with high probability, 𝑂 (√𝑛 log2 𝑛) parallel time
suffices to eliminate all non-zero agents. Putting the two case analyses together, we
have the lemma. 2

Theorem 6 The proposed algorithm solves the aggregation problem with high prob-
ability. Its running time is 𝑂 (√𝑛 log2 𝑛) and the space complexity of ordinary agents
is 𝑂 (|𝑋 |2) states.

Proof 4 By Lemma 4, the algorithm aggregates all the inputs with high probability
and by Lemma 5 the algorithm converges in 𝑂 (√𝑛 log2 𝑛) time with high probability.
We focus on the space complexity of the algorithm. Ordinary agents have variables
(v, buf, exec, rand). The variables exec and rand use only 𝑂 (1) states respectively.
Since the variables v and buf are used for storing the input and coalesced inputs,
each of the variables uses𝑂 ( |𝑋 |) states. Hence the space complexity of the algorithm
is 𝑂 (|𝑋 |2) states. 2
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Algorithm 1 Fast Aggregation Algorithm(1/2)
Variables
5-tuples (v𝑖, buf𝑖, exec𝑖, rand𝑖, BST𝑖)
Variables of the base station
𝑚: the upper bound of log 𝑛
round: to count the round in electing mode
coalesced: a flag that determines whether a value of an absorption agent is coalesced
in spreading mode
𝑜𝑢𝑡: the output register
Auxiliary procedures and signals
Clock-Pulse: of phase clock
coin-flip(): a function that output 𝑏 ∈ {0, 1} with probability 1/2 for each value
Algorithm

1: The transitions when an ordinary agent 𝑖 interacts with an agent 𝑗
2: // rules for the coalescence algorithm
3: if BST𝑖 = 0∧BST 𝑗 = 0∧ v𝑖 > 0∧ v 𝑗 > 0 then
4: if agent 𝑖 is sender then v𝑖 ← 0; else v𝑖 ← v𝑖 + v 𝑗 ;
5: if BST𝑖 = 1∧BST 𝑗 = 0∧ v 𝑗 > 0 then
6: 𝑜𝑢𝑡 ← 𝑜𝑢𝑡 + v 𝑗 ; v 𝑗 ← 0;
7: // rules for the sequential absorption algorithm
8: if exec𝑖 = 𝐸 ∧ exec 𝑗 = 𝐸 ∧ buf𝑖 = 0 then
9: buf𝑖 ← buf 𝑗 ; // propagation of random bit

10: // changing zero-agent
11: if buf𝑖 = 1∧ rand𝑖 = 0 then rand𝑖 ←⊥;
12: // propagation of a value of an absorption agent
13: if exec𝑖 = S2 ∧ exec 𝑗 = S2 ∧ buf𝑖 = 0∧ buf 𝑗 ≠ 0 then
14: buf𝑖 ← buf 𝑗 ;
15: // shifts to the S mode
16: if exec𝑖 = E∧ exec 𝑗 = S1 then exec𝑖 = S1; buf𝑖 ← 0;
17: // changing to the absorption agent
18: if v𝑖 > 0∧ rand𝑖 ≠⊥ then buf𝑖 ← v𝑖; v𝑖 ← 0; rand𝑖 ←⊥;
19: if Clock-Pulse is triggered then
20: if exec𝑖 = S1 then exec𝑖 ← S2;
21: if exec𝑖 = S2 then buf𝑖 ← 0; exec𝑖 ← CS;
22: if exec𝑖 = CS then exec𝑖 ← E;
23: // changing to a candidate
24: if v𝑖 > 0 then rand𝑖 ← coin-flip();
25: if rand𝑖 = 1 then buf𝑖 ← 1;
26: if exec𝑖 = E then
27: buf𝑖 ← 0; exec𝑖 ← CE;
28: if exec𝑖 = CE then
29: if v𝑖 > 0∧ rand𝑖 ≠⊥ then rand𝑖 ← coin-flip();
30: if rand𝑖 = 1 then buf𝑖 ← 1;
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Algorithm 2 Fast Aggregation Algorithm(2/2)
1: // rules for the base station
2: if BST𝑖 = 1 then
3: if exec𝑖 = S2 ∧ exec 𝑗 = S2 ∧ buf 𝑗 ≠ 0∧ coalesced = 0 then
4: 𝑜𝑢𝑡 ← 𝑜𝑢𝑡 + buf 𝑗 ; coalesced← 1;
5: if Clock-Pulse is triggered then
6: if exec𝑖 = 𝐸 then round + +; exec𝑖 ← CE;
7: if exec𝑖 = CE then exec𝑖 ← E;
8: if round ≥ 96𝑚 then
9: exec𝑖 ← S1; round← 0; coalesced← 0;

10: if BST 𝑗 = 1 then
11: if exec 𝑗 = S2 ∧ exec𝑖 = S2 ∧ buf𝑖 ≠ 0∧ coalesced = 0 then
12: 𝑜𝑢𝑡 ← 𝑜𝑢𝑡 + buf𝑖; coalesced← 1;
13: if Clock-Pulse is triggered then
14: if exec 𝑗 = 𝐸 then round + +; exec 𝑗 ← CE;
15: if exec 𝑗 = CE then exec 𝑗 ← E;
16: if round ≥ 96𝑚 then
17: exec 𝑗 ← S1; round← 0; coalesced← 0;
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Chapter 3

Fast Neighborhood Rendezvous

In the rendezvous problem, two computing entities (called agents) located at different
vertices in a graph have to meet at the same vertex. In this chapter, we consider the
synchronous neighborhood rendezvous problem, where the agents are initially located
at two adjacent vertices. While this problem can be trivially solved in 𝑂 (Δ) rounds
(Δ is the maximum degree of the graph), it is highly challenging to reveal whether
that problem can be solved in 𝑜(Δ) rounds, even assuming the rich computational
capability of agents. The only known result is that the time complexity of 𝑂 (√𝑛)
rounds is achievable if the graph is complete and agents are probabilistic, asymmetric,
and can use whiteboards placed at vertices. Our main contribution is to clarify the
situation (with respect to computational models and graph classes) admitting such
a sublinear-time rendezvous algorithm. More precisely, we present two algorithms
achieving fast rendezvous additionally assuming bounded minimum degree, unique
vertex identifier, accessibility to neighborhood IDs, and randomization. The first
algorithm runs within 𝑂̃ (

√
𝑛Δ/𝛿 + 𝑛/𝛿) rounds for graphs of the minimum degree

larger than
√
𝑛, where 𝑛 is the number of vertices in the graph, and 𝛿 is the minimum

degree of the graph. The second algorithm assumes that the largest vertex ID is
𝑂 (𝑛), and achieves 𝑂̃

(
𝑛√
𝛿

)
-round time complexity without using whiteboards. These

algorithms attain 𝑜(Δ)-round complexity in the case of 𝛿 = 𝜔(√𝑛 log 𝑛) and 𝛿 =
𝜔(𝑛2/3 log4/3 𝑛) respectively. We also prove that four unconventional assumptions
of our algorithm, bounded minimum degree, accessibility to neighborhood IDs,
initial distance one, and randomization are all inherently necessary for attaining fast
rendezvous. That is, one can obtain the Ω(𝑛)-round lower bound if either one of them
is removed.
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3.1 Preliminaries

3.1.1 Model and Notations
In this chapter, we consider the rendezvous problem of two agents in any undirected
graph 𝐺 = (𝑉 , 𝐸) of 𝑛 vertices. Each vertex in 𝐺 has a distinct integer identifier in
[0, 𝑛′ − 1], where 𝑛′ satisfies 𝑛′ ≥ 𝑛 and 𝑛′ = 𝑛𝑂 (1) . The value of 𝑛′ is available to
each agent. We denote the identifiers of 𝑛 vertices by 𝑣0, 𝑣1, . . . , 𝑣𝑛−1. The minimum
and maximum degrees of 𝐺 are respectively denoted by 𝛿𝐺 and Δ𝐺 . For any vertex 𝑣,
𝑁𝐺 (𝑣) represents the set of vertices adjacent to 𝑣, i.e., 𝑁𝐺 (𝑣) = {𝑣′ | (𝑣, 𝑣′) ∈ 𝐸}. We
define 𝑁+𝐺 (𝑣) = 𝑁𝐺 (𝑣) ∪ {𝑣}, and also define 𝑁𝐺 (𝑋) =

∪
𝑣∈𝑋 𝑁𝐺 (𝑣) and 𝑁+𝐺 (𝑋) =

𝑁𝐺 (𝑋) ∪ 𝑋 for any vertex set 𝑋 ⊆ 𝑉 . We often omit subscript 𝐺 if it is clear from
the context.

In the system, two computing entities, called agents, are placed at two vertices in
𝐺, which are modeled as probabilistic random access machines. The two agents have
distinct names denoted by 𝑎 and 𝑏 respectively, and can exhibit asymmetric behavior
in executions, that is, they can run two different algorithms. Agents are equipped with
memory space as their internal states. While we do not assess any assumption on
time/space complexity for internal computation of agents, our proposed algorithms
terminate within polynomial time, and use 𝑂 (𝑛 log 𝑛)-bit memory. We denote by
𝑀 ⊆ {0, 1}∗ the set of possible internal states of two agents. When two agents visit
the same vertex, they are aware of the presence of each other. On neighborhood
knowledge, we define the local port numbering of each vertex 𝑣𝑖, which is a bijective
function 𝑃̂𝑣𝑖 : [0, |𝑁 (𝑣𝑖) | − 1] → 𝑁 (𝑣𝑖). We also define the accessible local port
number 𝑃𝑣𝑖 : [0, |𝑁 (𝑣𝑖) | − 1] → N. Agents can see only 𝑃𝑣𝑖 and have no access
to 𝑃̂𝑣𝑖 . The model supporting the access to neighborhood IDs is defined as the
assumption that 𝑃̂𝑣𝑖 and 𝑃𝑣𝑖 are the same function for any 𝑣𝑖 ∈ 𝑉 . On the lower-bound
side, we also consider the case where each agent has no access to its neighborhood
IDs. It is defined as the model such that 𝑃𝑣𝑖 for any 𝑣𝑖 is the identity mapping from
[0, |𝑁 (𝑣𝑖) | − 1] to [0, |𝑁 (𝑣𝑖) | − 1] (i.e., it does not provide any information of 𝑃̂𝑣𝑖 ).

Each vertex is equipped with a memory space called whiteboards, and an agent at
vertex 𝑣 can access/write to the whiteboard of 𝑣 in its internal computation. Formally,
we define𝑊 ⊆ {0, 1}∗ to be the set of possible contents written in each whiteboard. A
state of all the whiteboards in𝐺 is represented by an 𝑛-dimensional vector𝑊𝑛 indexed
by elements in 𝑉 . While we have no assumption on the size of each whiteboard,
𝑂 (log 𝑛) bits per vertex suffice for our algorithms.

Executions of two agents follow synchronous and discrete time steps 𝑡 = 0, 1, 2, . . .
called rounds. In every round, an agent at vertex 𝑣 either stays at the present location or
moves to one of its neighbors. An algorithmA determines which action to take based
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on the information stored in its internal memory, IDs in 𝑁+(𝑣) through the access to
𝑃𝑣, and the contents of the whiteboard at 𝑣. We assume that a movement to a neighbor
necessarily completes within the current round. In other words, we do not consider
the situation where agents are located on edges at the beginning of each round. At
each round, agents can modify the whiteboards of their current vertices∗. Formally,
an algorithm is a function A : {𝑎, 𝑏} × 𝑀 ×𝑉 × 2N ×𝑊 × {0, 1}∗ → 𝑀 ×N ×𝑊 .
The inputs respectively correspond to the ID of the agent, its internal memory, the
IDs of its current location and neighbors (with respect to accessible port number-
ing functions), the content of the whiteboard at the current location, and random
bits. The outputs correspond to the internal state of the agent after the compu-
tation, the destination in the following movement (with respect to accessible local
port numbers), and the content of the whiteboard left at the current vertex. Note
that deterministic algorithms (only used in Section 3.4.4) are defined as the ones
such that its behavior is independent of random bits. A configuration 𝐶 at round
𝑡 is a tuple in 𝐶 ∈ (𝑉 × 𝑀)2 ×𝑊𝑛. An execution is an infinite sequence of con-
figurations 𝐶0,𝐶1,𝐶2, . . . . Precisely, letting 𝑣𝑧𝑖 be the location of agent 𝑧 ∈ {𝑎, 𝑏}
at round 𝑖, 𝑚𝑧

𝑖 be the internal memory of agent 𝑧 at round 𝑖, and 𝑤
𝑗
𝑖 be the con-

tent of the whiteboard of vertex 𝑣 𝑗 at round 𝑖, a configuration 𝐶𝑖 is described as
𝐶𝑖 = (𝑣𝑎𝑖 ,𝑚𝑎

𝑖 , 𝑣𝑏𝑖 ,𝑚𝑏
𝑖 ,𝑤0

𝑖 , . . . ,𝑤𝑛−1
𝑖 ). For any 𝑖 ∈ N, every execution must satisfy the

following conditions: For any 𝑗 ∈ 𝑉 \ {𝑣𝑎𝑖 , 𝑣𝑏𝑖 } 𝑤
𝑗
𝑖 = 𝑤

𝑗
𝑖+1 holds. For each 𝑖, there

exists 𝐵𝑎
𝑖 , 𝐵𝑏

𝑖 ∈ {0, 1}∗ such that A(𝑎,𝑚𝑎
𝑖 , 𝑣𝑎𝑖 , 𝑃𝑣𝑎𝑖

,𝑤𝑣𝑎𝑖
, 𝐵𝑎

𝑖 ) = (𝑚𝑎
𝑖+1, 𝑃̂−1

𝑣𝑎𝑖
(𝑣𝑎𝑖+1),𝑤

𝑖
𝑣𝑎𝑖
)

and A(𝑏,𝑚𝑏
𝑖 , 𝑣𝑏𝑖 , 𝑃𝑣𝑎𝑖

,𝑤𝑣𝑏𝑖
𝑖 , 𝐵𝑏

𝑖 ) = (𝑚𝑏
𝑖+1, 𝑃̂−1

𝑣𝑏𝑖
(𝑣𝑏𝑖+1),𝑤

𝑣𝑏𝑖
𝑖 ) hold, where 𝑃−1

𝑣𝑎𝑖
and 𝑃−1

𝑣𝑏𝑖
are

the inverse mappings of 𝑃𝑣𝑎𝑖
and 𝑃𝑣𝑏𝑖

respectively.

3.1.2 Rendezvous Problem
In the rendezvous problem, two agents initially located at two different vertices are
required to visit the same vertex simultaneously and halt. Formally, the rendezvous
problem is as follows.

Definition 1 We say that an algorithm completes rendezvous at round 𝑡 if the two
agents are located at the same vertex at the beginning of that round.†

∗Strictly, we need to define formally the behavior of agents when they are located at the same vertex
and attempt to modify the (common) whiteboard. In the rendezvous problem of two agents, however,
such a case can be seen as the completion of the algorithm without loss of generality. Thus, we do not
care about simultaneous and parallel write operation for the same whiteboard.

†In the synchronous system, we can assume that once two agents meet at a vertex then they
halt without loss of generality. That is, agents that complete rendezvous at round 𝑡 also complete
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This chapter considers the rendezvous problem with the constraint on initial
locations of agents and graph parameters.

Definition 2 (Specific Rendezvous) For graph 𝐺 = (𝑉 , 𝐸), let 𝐼 ⊆ 𝑉 × 𝑉 be a
possible set of initial locations (𝑣𝑎0 , 𝑣𝑏0 ) of two agents. We say that an algorithm
A solves the rendezvous problem for an instance (𝐺, 𝐼) with probability 𝑝 within 𝑡
rounds, if for any (𝑣𝑎0 , 𝑣𝑏0 ) ∈ 𝐼, the execution ofA in 𝐺 completes rendezvous at round
𝑡 with probability 𝑝. Moreover, letting I = {(𝐺0, 𝐼0), (𝐺1, 𝐼1), . . . } be a (possibly
infinite) class of instances, we say that an algorithmA solves the rendezvous problem
for class I with probability 𝑝 within 𝑓 (𝑛) rounds for some non-decreasing function
𝑓 : N→N if for every instance ((𝑉 , 𝐸), 𝐼) ∈ I, algorithmA solves the rendezvous
problem with probability 𝑝 within 𝑓 (|𝑉 |) rounds.

In this chapter we are interested in the case where the distance between two
initial locations of agents is upper bounded by 𝑑. For any graph 𝐺 we define
𝐼𝐺𝑑 = {(𝑣, 𝑣′) | 𝑑𝑖𝑠𝑡𝐺 (𝑣, 𝑣′) ≤ 𝑑}, where 𝑑𝑖𝑠𝑡𝐺 (𝑣, 𝑣′) represents the (hop-)distance of
vertices 𝑣 and 𝑣′ in𝐺. In addition, we also define the classG(Δ̂(𝑛), 𝛿(𝑛)) for functions
𝛿 : N → N, Δ̂ : N → N as the set of graphs 𝐺 = (𝑉 , 𝐸) such that 𝛿𝐺 ≥ 𝛿( |𝑉 |)
and Δ𝐺 ≤ Δ̂(|𝑉 |) hold. The (Δ̂, 𝛿, 𝑑)-rendezvous problem is defined as that for the
instance class I𝑑 = {(𝐺, 𝐼𝐺𝑑 ) | 𝐺 ∈ G(Δ̂(𝑛), 𝛿(𝑛))}. In particular, we focus on the
instance class I1 in Sections 3.2 and 3.3. In Section 3.4 we show the lower bounds
on the problem for I2.

3.2 Rendezvous Algorithm

3.2.1 Algorithm Overview
In this section, we present an overview of our rendezvous algorithm. For ease of pre-
sentation, we assume that each agent has the precise values of 𝛿 and log 𝑛, but it is not
essential. Those values can be replaced with their constant-factor approximate values
without increasing the asymptotic running time. A constant factor approximation of
log 𝑛 can be estimated from the upper bound 𝑛′ of vertex IDs. The approximation of
𝛿 can be obtained by standard doubling estimation, explained in Section 3.3.

First, we introduce several definitions and terminologies used in the following
argument.

Definition 3 (𝛼-heaviness, 𝛼-lightness) For any 𝑇 ⊆ 𝑉 , 𝑣 ∈ 𝑉 , and 𝛼 ∈ R+, 𝑣 is

rendezvous at any round 𝑡 ′ > 𝑡.
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called 𝛼-heavy for 𝑇 if |𝑇 ∩ 𝑁+(𝑣) | ≥ 𝛼 holds ‡. Similarly we say that 𝑣 is 𝛼-light for
𝑇 if |𝑇 ∩ 𝑁+(𝑣) | < 𝛼 holds.

The following proposition is a trivial fact deduced from the definition above.

Proposition 1 Let 𝑣 ∈ 𝑉 be an 𝛼-heavy vertex for 𝑇 ⊆ 𝑉 . For any 𝑇 ′ such that
𝑇 ′ ⊇ 𝑇 holds, 𝑣 is also 𝛼-heavy for 𝑇 ′.

Given a vertex set 𝑇 ⊆ 𝑉 and 𝛼 ∈ R+, we define 𝐻𝛼 (𝑇), 𝐿𝛼 (𝑇) ⊆ 𝑉 as the sets of
vertices that are respectively 𝛼-heavy and 𝛼-light for 𝑇 .

Definition 4 ((𝑧,𝛼, 𝛽)-dense condition) Given 𝑧 ∈ {𝑎, 𝑏}, 𝑇 ⊆ 𝑉 , and 𝛼, 𝛽 ∈ R+, 𝑇
is called (𝑧,𝛼, 𝛽)-dense if the following three conditions hold:

• 𝑣𝑧0 ∈ 𝑇 ,

• for any 𝑤 ∈ 𝑇 , 𝑑𝑖𝑠𝑡𝐺 (𝑣𝑧0,𝑤) ≤ 𝛽, and

• 𝑁+(𝑣𝑧0) ⊆ 𝐻𝛼 (𝑇).

The main idea of our rendezvous algorithm is that agent 𝑎 constructs an (𝑎, 𝛿/8, 2)-
dense vertex set 𝑇𝑎. Since 𝑣𝑏0 ∈ 𝑁+(𝑣𝑎0) ⊆ 𝐻𝛿/8(𝑇𝑎), 𝑣𝑏0 is an (𝛿/8)-heavy vertex
for 𝑇𝑎. Then a sublinear number of random vertex samplings from 𝑇𝑎 by agent 𝑎
and those from 𝑁 (𝑣𝑏0 ) by 𝑏 ensure that a vertex is commonly sampled with high
probability. In this sampling process, agent 𝑏 leaves the ID of 𝑣𝑏0 at the whiteboards
of all the sampled vertices. When agent 𝑎 visits the common sample, it knows the
initial location of 𝑣𝑏0 . Then agent 𝑎 moves to 𝑣𝑏0 and meets 𝑏.

In the following argument, we divide our algorithm into two sub-algorithms.
The first one, called Main-Rendezvous, achieves rendezvous provided that agent 𝑎
knows an (𝑎, 𝛿/8, 2)-dense set 𝑇𝑎 ⊆ 𝑁+(𝑁+(𝑣𝑎0)). The second sub-algorithm is for
agent 𝑎 to construct such an (𝑎, 𝛿/8, 2)-dense set 𝑇𝑎, which is called Construct. The
combination of these two sub-algorithms yields the algorithm we claim.

3.2.2 Rendezvous with 𝑇𝑎

We present the algorithm Main-Rendezvous, which solves the rendezvous problem
using the initial knowledge of an (𝑎, 𝛿/8, 2)-dense set 𝑇𝑎 ⊆ 𝑁+(𝑁+(𝑣𝑎0)) by agent 𝑎.
Here the “knowledge” implies that (1) 𝑎 has the list of all vertices in𝑇𝑎 in its memory,

‡R+ is the set of all positive real values.
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Algorithm 3 Main-Rendezvous : Rendezvous with 𝑇𝑎

𝑤(𝑣) : whiteboard at vertex 𝑣. Initially 𝑤(𝑣) =⊥ for all 𝑣 ∈ 𝑉
𝑞𝑎, 𝑞𝑏 : local variables of agents 𝑎 and 𝑏
Operations of Agent 𝑎

1: construct 𝑇𝑎 satisfying (𝑎, 𝛿/8, 2)-dense condition
2: repeat
3: choose 𝑣 in 𝑇𝑎 uniformly at random, and move to 𝑣
4: 𝑞𝑎 ← 𝑤(𝑣)
5: return to 𝑣𝑎0
6: until 𝑞𝑎 ≠⊥
7: visit 𝑞𝑎 and halt

Operations of agent 𝑏
1: repeat
2: move to 𝑣 ∈ 𝑁+(𝑣𝑏0 ) chosen uniformly at random
3: 𝑤(𝑣) ← 𝑣𝑏0
4: return to 𝑣𝑏0
5: until achieve rendezvous

and (2) also has the shortest paths to all vertices in 𝑇𝑎 from 𝑎’s initial location§. The
pseudocode of Main-Rendezvous is presented in Algorithm 3. First, agent 𝑎 samples
a vertex 𝑣 in 𝑇𝑎 uniformly at random, and visits there. At vertex 𝑣, 𝑎 checks if 𝑏 has
written the ID 𝑣𝑏0 in the whiteboard of 𝑣. If so, then 𝑎 moves to 𝑣𝑏0 and halts. The agent
𝑏 iteratively visits a vertex 𝑢 in 𝑁+(𝑣𝑏0 ) chosen uniformly at random, and writes down
the ID of 𝑣𝑏0 into the whiteboard of 𝑢. If it meets 𝑎 at vertex 𝑣𝑏0 , then the algorithm
terminates. We present the following lemma for the correctness of Main-Rendezvous.

Lemma 7 Let 𝐺 = (𝑉 , 𝐸) be any graph such that 𝛿𝐺 ≥
√
𝑛 holds. Suppose that

agent 𝑎 constructs an (𝑎, 𝛿/8, 2)-dense set 𝑇𝑎 in 𝑡𝑎 rounds. Then, Algorithm Main-

Rendezvous completes rendezvous within 𝑡𝑎 +𝑂
(√

𝑛Δ
𝛿 log 𝑛

)
rounds with high prob-

ability.

Proof 5 We say that a vertex 𝑣 ∈ 𝑁+(𝑣𝑏0 ) ∩ 𝑇
𝑎 is informed at round 𝑡 if 𝑤(𝑣) = 𝑣𝑏0

at 𝑡, and define 𝑍𝑡 ⊆ 𝑁+(𝑣𝑏0 ) ∩ 𝑇
𝑎 as the set of all informed vertices at 𝑡. Let ℎ =

⌊(1/16)
√
𝑛𝛿/Δ⌋ for short. We first show that |𝑍𝑡 | ≥ ℎ holds for 𝑡 ≥ 𝑡𝑎 +8

√
𝑛Δ/𝛿 log 𝑛.

§Since the length of these shortest paths are at most two by the definition of (𝑎, 𝛿/8, 2)-dense sets,
the space for storing this information is asymptotically same as the space for the list of vertices.
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Let 𝑡𝑖 be the first time that 𝑍𝑡𝑖 ≥ 𝑖 holds, and 𝑋𝑖 be 𝑋𝑖 = 𝑡𝑖 − 𝑡𝑖−1 (1 ≤ 𝑖 ≤ ℎ). By the
assumption of 𝛿 >

√
𝑛, we have the following inequality.

ℎ =

⌊
1
16

√
𝑛𝛿

Δ

⌋
≤ 1

16
√
𝑛 <

1
16

𝛿

< |𝑁+(𝑣𝑏0 ) ∩𝑇
𝑎 |.

For any 1 ≤ 𝑖 ≤ ℎ, the variable 𝑋𝑖 follows the geometric distribution with success
probability 𝑝𝑖 = (|𝑁+(𝑣𝑏0 ) ∩𝑇

𝑎 | − 𝑖 + 1)/|𝑁+(𝑣𝑏0 ) |. Then we have

E[𝑋𝑖] =
|𝑁+(𝑣𝑏0 ) |

|𝑁+(𝑣𝑏0 ) ∩𝑇𝑎 | − 𝑖 + 1

≤
|𝑁+(𝑣𝑏0 ) |

|𝑁+(𝑣𝑏0 ) ∩𝑇𝑎 | − ℎ + 1
.

This deduces the following bound.

E [𝑡ℎ] = 𝑡𝑎 + E

[ ⌊ℎ⌋∑
𝑖=2

𝑋𝑖

]
≤ 𝑡𝑎 +

ℎ∑
𝑖=2

|𝑁+(𝑣𝑏0 ) |
|𝑁+(𝑣𝑏0 ) ∩𝑇𝑎 | − ℎ

≤ 𝑡𝑎 + ℎ
(Δ + 1)
𝛿/16

≤ 𝑡𝑎 +
⌊

1
16

√
𝑛𝛿

Δ

⌋
16(Δ + 1)

𝛿

≤ 𝑡𝑎 + 2
√

𝑛Δ
𝛿

.

By Markov’s inequality, the probability of |𝑍𝑡 | < ℎ for 𝑡 = 𝑡𝑎 + 4
√
𝑛Δ/𝛿 is at most

1/2. Thus the probability of |𝑍𝑡 | < ℎ for 𝑡 = 𝑡𝑎 + 8
√
𝑛Δ/𝛿 log 𝑛 is at most 1/𝑛2.

Assume that |𝑍𝑡 | ≥ ℎ holds for 𝑡 = 𝑡𝑎 + 8
√
𝑛Δ/𝛿 log 𝑛. At 𝑡 or later, the probability

that agent 𝑎 visits an informed vertex is at least ℎ/|𝑇𝑎 |. Bounding the tail bound
using Markov’s inequality, we can conclude that agent 𝑎 visits at least one informed

vertex by the time 𝑡𝑎 +𝑂
(√

𝑛Δ
𝛿 log 𝑛

)
with probability 1− 1/𝑛2 or more. That is, two

agents meet within 𝑡𝑎 +𝑂
(√

𝑛Δ
𝛿 log 𝑛

)
rounds with probability at least 1 −𝑂 (1/𝑛2).

Hence, the lemma is proven. 2
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3.2.3 Construction of 𝑇𝑎

In what follows, we simply say that a vertex is heavy or light if it is 𝛿/8-heavy or 𝛿/2-
light respectively. By Lemma 7, it suffices that agent 𝑎 constructs a (𝑎, 𝛿/8, 2)-dense
set 𝑇𝑎 to achieve rendezvous. The algorithm Construct takes the role of constructing
𝑇𝑎, which utilizes a subroutine called Sample. The pseudocode of Sample and
Construct are presented in Algorithms 4 and 5 respectively. In algorithm Construct,
agent 𝑎 manages a set 𝑆𝑎 ⊆ 𝑁+(𝑣𝑎0), and iteratively adds a vertex to 𝑆𝑎. In the
following argument, we refer to the process of adding the 𝑖-th vertex to 𝑆𝑎 as the 𝑖-th
iteration. Eventually, the algorithm outputs 𝑁+(𝑆𝑎) as the constructed set 𝑇𝑎 when
it satisfies the termination condition (which is explained later). Let 𝑆𝑎𝑖 be the set
stored in 𝑆𝑎 at the beginning of the 𝑖-th iteration, and 𝑥𝑖 be the vertex added in the
𝑖-th iteration. The principle of choosing 𝑥𝑖 is very simple: Agent 𝑎 selects a vertex
𝑥𝑖 such that the volume of 𝑁+(𝑥𝑖) \ 𝑁+(𝑆𝑎𝑖 ) is large. Specifically, it searches a vertex
𝑤 ∈ 𝑁+(𝑣𝑎0) that is light for 𝑁+(𝑆𝑎𝑖 ). If such a vertex exists, it is added to 𝑆𝑎𝑖 as 𝑥𝑖.
Otherwise, any vertex in 𝑁+(𝑣𝑎0) is heavy for 𝑁+(𝑆𝑎𝑖 ), i.e., 𝑁+(𝑣𝑎0) ⊆ 𝐻𝛿/8(𝑁+(𝑆𝑎𝑖 )).
This implies that 𝑁+(𝑆𝑎𝑖 ) satisfies (𝑎, 𝛿/8, 2)-dense condition, and the algorithm can
return it as 𝑇𝑎. Adding a light vertex to 𝑆𝑎𝑖 increases the cardinality of 𝑁+(𝑆𝑎) by
at least Θ(𝛿), and thus the algorithm Construct obviously terminates within 𝑂 (𝑛/𝛿)
iterations (because if 𝑁+(𝑆𝑎) = 𝑉 holds, any vertex becomes heavy for 𝑁+(𝑆𝑎)).

For expanding 𝑆𝑎𝑖 by adding a light vertex, the algorithm has to check the heaviness
of each vertex in 𝑁+(𝑣𝑎0) (for 𝑁+(𝑆𝑎𝑖 )). The algorithm Sample takes this role. More
precisely, the run of Sample(Γ,𝛼) probabilistically checks whether or not each vertex
in 𝑁+(𝑣𝑎0) is 𝛼-heavy for Γ within𝑂 (|Γ|/𝛼) rounds. The algorithm outputs the vertex
set consisting of the vertices concluded as 𝛼-heavy for Γ. A straightforward approach
of identifying 𝑥𝑖 in the construction of 𝑇𝑎 is to run Sample(𝑁+(𝑆𝑎𝑖 ), 𝛿/8) in every
iteration. However, then the total running time of Construct becomes 𝑂 ((𝑛/𝛿)2)
rounds. To save time, our algorithm finds a light vertex 𝑥𝑖 using the following
two-step strategy:

• (Step 1) Optimistic decision: In the 𝑖-th iteration, agent 𝑎 runs Sample(Γ, 𝛿/8)
for Γ = 𝑁+(𝑆𝑎𝑖 ) \ 𝑁+(𝑆𝑎𝑖−1). If it detects that a vertex 𝑢 ∈ 𝑁+(𝑣𝑎0) is heavy for
Γ, Proposition 1 guarantees that 𝑢 is heavy for 𝑁+(𝑆𝑎𝑖 ) ⊇ Γ. On the other
hand, vertex 𝑢 can be heavy for Γ even if the algorithm says that 𝑢 is light.
Then adding a vertex 𝑢 as 𝑥𝑖 prevents the algorithm from working correctly as
intended.

• (Step 2) Strict decision: To resolve the matter of step 1, agent 𝑎 checks if
the candidates of 𝑥𝑖 are actually light for 𝑁+(𝑆𝑎𝑖 ). More precisely, the agent
samplesΘ(log 𝑛) vertices uniformly at random from the set output by the run of
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Sample(Γ, 𝛿/8), and then it checks the heaviness of each sample 𝑣 by actually
visiting there and computing |𝑁+(𝑆𝑎𝑖 ) ∩ 𝑁+(𝑣) |. If the agent finds a light vertex
from the Θ(log 𝑛) samples, that vertex is selected as 𝑥𝑖. Otherwise, it finds that
a constant fraction of whole candidates for 𝑥𝑖 in the optimistic decision is heavy
for 𝑁+(𝑆𝑎𝑖 ) with high probability. Then the agent runs Sample(𝑁+(𝑆𝑎𝑖 ), 𝛿/8)
for strict checking. If a vertex 𝑢 is found light for 𝑁+(𝑆𝑎𝑖 ), the agent selects 𝑢
as 𝑥𝑖. Otherwise, the algorithm terminates.

In the following argument, we refer to the runs of Sample in step 1 and 2 as
optimistic/strict runs of Sample(Γ,𝛼) respectively. Since the running time of each
optimistic run depends on the size of difference set 𝑁+(𝑆𝑎𝑖 ) \ 𝑁+(𝑆𝑎𝑖−1), the total sum
of the running time incurred by optimistic runs is 𝑂 ((𝑛 log 𝑛)/𝛿). While each strict
run of Sample needs at most 𝑂 ((𝑛 log 𝑛)/𝛿) rounds, we can show that strict runs are
executed at most 𝑂 (log 𝑛) times. It comes from the two facts that 1) one strict run
corrects the identification of a constant fraction of heavy vertices in 𝑁+(𝑆𝑎𝑖 ) which
are wrongly identified as light ones, and 2) a vertex identified as a heavy one is never
identified as light. Consequently the total running time of Construct is bounded by
𝑂 (𝑛 log2 𝑛/𝛿) steps. We explain the details of Sample(Γ,𝛼) and Construct in the
following paragraphs.

Sample(Γ,𝛼)

For the decision of lightness/heaviness of each vertex in 𝑁+(𝑣𝑎0) for Γ, this algorithm
conducts random samplings and visits. The agent uses an array 𝐶 ⊆ Z |𝑁

+ (𝑣𝑎0 ) |, which
counts for each 𝑢 ∈ 𝑁+(𝑣𝑎0) the number of visited vertices having 𝑢 as a neighbor.
The initial value of 𝐶 [𝑢] for each 𝑢 ∈ 𝑁+(𝑣𝑎0) is 𝐶 [𝑢] = 0. Let 𝑙 be a threshold value
𝑙 = ⌈150 ln 𝑛⌉. In the run of Sample(Γ,𝛼), the agent repeatedly visits a vertex 𝑣 in Γ
chosen uniformly at random (with duplication) 96⌈|Γ| (ln 𝑛)/𝛼⌉ times. At the visited
vertex 𝑣, it increments 𝐶 [𝑢] for each vertex 𝑢 in 𝑁+(𝑣𝑎0) ∩ 𝑁+(𝑣) (for this process,
the agent carries the information of 𝑁+(𝑣𝑎0)). After processing all samples, the agent
concludes that 𝑢 is heavy for Γ if 𝐶 [𝑢] ≥ 𝑙 holds, or light otherwise. The algorithm
outputs the vertex set 𝐻′ consisting of the vertices concluded as a heavy one.

Construct

In this algorithm agent 𝑎 has the following sets as its internal variables: 𝑆𝑎𝑖 , 𝑅𝑖, 𝐻𝑖, and
NS𝑎𝑖 . The subscript 𝑖 corresponds to the number of iterations in the algorithm. The set
𝑅𝑖 is a set of candidates for 𝑥𝑖. The set𝐻𝑖 stores the vertices that turned out to be (𝛿/8)-
heavy for 𝑁+(𝑆𝑎𝑖 ) at the 𝑖-th iteration. The variable NS𝑎𝑖 keeps track of the set 𝑁+(𝑆𝑎𝑖 ).
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Algorithm 4 Sample(Γ,𝛼)
𝑙: threshold value 𝑙 = ⌈150 ln 𝑛⌉

1: for 𝑖 = 1 to 96
⌈
|Γ| ln 𝑛

𝛼

⌉
do

2: choose a vertex 𝑣 in Γ uniformly at random
3: visit 𝑣
4: for all 𝑢 ∈ 𝑁+(𝑣) ∩ 𝑁+(𝑣𝑎0) do
5: 𝐶 [𝑢] + +
6: end for
7: end for
8: for all 𝑢 ∈ 𝑁+(𝑣𝑧0) do
9: if 𝐶 [𝑢] ≥ 𝑙 then

10: 𝐻′← 𝐻′ ∪ {𝑢}
11: end if
12: end for
13: return 𝐻′

The initial value of these sets are 𝑆𝑎1 = {𝑣𝑎0 }, 𝑅1 = 𝑁+(𝑣𝑎0), 𝐻1 = ∅, and NS𝑎𝑖 = 𝑁+(𝑣𝑎0)
respectively. The agent 𝑎 iterates the following operations until 𝑅𝑖 = ∅. First, the
agent executes the optimistic run of Sample(𝑁+(𝑆𝑎𝑖 ) \ 𝑁+(𝑆𝑎𝑖−1), 𝛿/8), and for the
returned set 𝐻′ it updates 𝐻𝑖 and 𝑅𝑖 with 𝐻𝑖+1 ← 𝐻𝑖 ∪ 𝐻′ and 𝑅𝑖 ← 𝑁+(𝑣𝑎0) \ 𝐻𝑖+1.
Based on the updated set 𝑅𝑖+1, the agent randomly chooses ⌈4 log 𝑛⌉ vertices from
𝑅𝑖+1 and visits each sampled vertex. If a visited vertex is actually light for 𝑁+(𝑆𝑎𝑖 )
(this is checked by using the information of NS𝑎𝑖 ), then the agent adds it to 𝑆𝑎𝑖 as 𝑥𝑖.
Otherwise, (i.e., all of the vertices are heavy for 𝑁+(𝑣𝑎0)), then the agent executes the
strict run of Sample(𝑁+(𝑆𝑎𝑖 ), 𝛿/8) and updates the set 𝐻𝑖+1 and 𝑅𝑖+1 in the same way
as the optimistic run. After that, the agent selects any vertex in 𝑅𝑖+1 and adds it to 𝑆𝑎𝑖 .

3.2.4 Correctness Proof of Algorithm Sample(Γ,𝛼)
Lemma 8 below shows that the algorithm Sample(Γ,𝛼) probabilistically checks if a
vertex 𝑢 ∈ 𝑁+(𝑣𝑎0) is approximately heavy or light for Γ.

Lemma 8 Let 𝛼 > 0 and Γ ⊆ 𝑁+(𝑣𝑎0) satisfy |Γ| ≥ 𝛼. The following statements hold
for any 𝑢 ∈ 𝑁+(𝑣𝑎0) and the output set 𝐻′ of Sample(Γ,𝛼) with probability at least
1 − 1/𝑛8:

1. If 𝑢 ∈ 𝐻′ then 𝑢 is 𝛼-heavy for Γ.

2. if 𝑢 ∈ 𝑁+(𝑣𝑎0) \ 𝐻
′ then 𝑢 is 4𝛼-light for Γ.
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Proof 6 We prove that 1) if 𝑢 ∈ 𝑁+(𝑣𝑎0) is 𝛼-light for Γ, then after the execution of the
algorithm, 𝐶 [𝑢] < 𝑙 holds with high probability., and 2) if the vertex 𝑢 is 4𝛼-heavy
then 𝐶 [𝑢] ≥ 𝑙 with high probability. This trivially implies the lemma. Consider
the proof of the first statement. Suppose that 𝑢 is 𝛼-light for Γ. Then we have
|𝑁+(𝑢) ∩ Γ| < 𝛼. Let 𝑋1 be the random variable corresponding to the value stored in
𝐶 [𝑢] after the execution of Sample(Γ,𝛼). Since 𝑋1 follows the binomial distribution
𝐵(𝑚, 𝑝) with parameter 𝑝 = |𝑁+(𝑢) ∩ Γ|/|Γ| < 𝛼/|Γ| and 𝑚 = 96⌈(|Γ| ln 𝑛)/𝛼⌉,
E[𝑋1] ≤ 96⌈(|Γ| ln 𝑛)/𝛼⌉ · 𝛼/|Γ| ≤ (96 ln 𝑛) + 1 holds. Let 𝜇1 = (96 ln 𝑛) + 1 for
short. Using Chernoff bound, we have

Pr[𝑋1 ≥ 𝑙] ≤ Pr[𝑋1 ≥ (1 + 1/2)𝜇1]
≤ e−𝜇1/(3·22) ≤ 1/𝑛8.

We next consider the second statement. Suppose that 𝑢 is 4𝛼-heavy for Γ. Then
we have |𝑁+(𝑢) ∩ Γ| ≥ 4𝛼. Similarly, with the first proof, we define the random
variable 𝑋2 corresponding the value of 𝐶 [𝑢] after the execution of the algorithm.
Since it follows the binomial distribution 𝐵(𝑚, 𝑝) with the same parameter as the first
proof, we have E[𝑋] ≥ 96⌈(|Γ| ln 𝑛)/𝛼⌉ · (4𝛼/|Γ|) ≥ 96(( |Γ| ln 𝑛)/𝛼) · (4𝛼/|Γ|) ≥
384 ln 𝑛. Letting 𝜇2 = 384 ln 𝑛, Chernoff bound provides the following inequality.

Pr[𝑋2 ≤ 𝑙] ≤ Pr[𝑋2 ≤ (1 − 1/2)𝜇2]
≤ e−𝜇2/(3·22) ≤ 1/𝑛8.

Thus, the lemma is proven. 2

The next corollary immediately implies the correctness of algorithm Sample(Γ,𝛼),
which is obtained by Lemma 9 and the standard union-bound argument.

Corollary 9 Consider any call of Sample(Γ,𝛼). If |Γ| ≥ 𝛼, then 𝐻′ ⊆ 𝐻𝛼 (Γ) and
𝑁+(𝑣𝑎0) \ 𝐻

′ ⊆ 𝐿4𝛼 (Γ) hold with probability at least 1 − 1/𝑛7.

Note that the running time of the algorithm Sample(Γ,𝛼) is 𝑂 ( Γ ln 𝑛
𝛼 ).

3.2.5 Correctness Proof of Algorithm Construct
Now we turn to the analysis of the algorithm Construct. Our first goal of this analysis
is to show that the algorithm Construct constructs a desired (𝑎, 𝛿/8, 2)-dense set𝑇𝑎 in
𝑂 (𝑛/𝛿) iterations. As we stated at the description of the algorithm (in section 3.2.3),
the key observation for this goal is that in each iteration the algorithm adds a light
vertex 𝑥𝑖 to 𝑆𝑖. We show this observation in Lemma 11. Before proving Lemma 11,
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we state auxiliary lemma, which proves any strict run of the algorithm divides 𝑁+(𝑣𝑎0)
into a set 𝑅𝑖 of light vertices and a set 𝐻𝑖 of heavy vertices with high probability.
This lemma shows that the algorithm selects light vertex 𝑥𝑖 in each strict run of the
algorithm.

Lemma 10 If the strict run occurs at the 𝑖-th iteration, 𝑅𝑖 ⊆ 𝐿𝛿/2(𝑁+(𝑆𝑎𝑖−1)) and
𝐻𝑖 ⊆ 𝐻𝛿/8(𝑁+(𝑆𝑎𝑖−1)) hold with probability at least 1 −𝑂 (1/𝑛7).

Proof 7 Since 𝑆𝑎𝑖 is nonempty and its cardinality is monotonically increasing, we
have |𝑆𝑎𝑖 | ≥ 1, and thus Γ = 𝑁+(𝑆𝑎𝑖 ) ≥ 𝛿 holds at the beginning of the strict run at
the 𝑖-th iteration. This implies |Γ| ≥ 𝛼 = 𝛿/8. By Corollary 9, 𝑅𝑖 ⊆ 𝐿𝛿/2(𝑁+(𝑆𝑎𝑖−1))
and 𝐻𝑖 ⊆ 𝐻𝛿/8(𝑁+(𝑆𝑎𝑖−1)) holds with probability at least 1 − 1/𝑛7. 2

Lemma 11 For any 𝑖, 𝑥𝑖 is 𝛿/2-light for 𝑁+(𝑆𝑎𝑖 ) with probability at least 1−𝑂 (1/𝑛7).

Proof 8 We first consider the case that 𝑥𝑖 is added without strict runs. In this case,
agent 𝑎 directly visits 𝑥𝑖 and checks its heaviness. Hence, the lemma obviously
holds. We next consider the case that 𝑥𝑖 is added after the strict run. By Lemma
10, 𝑅𝑖+1 ⊆ 𝐿𝛿/2(𝑁+(𝑆𝑎𝑖 )) holds with probability at least 1 − 1/𝑛7. Thus any vertex
𝑣 ∈ 𝑅𝑖+1 is 𝛿/2-light for 𝑁+(𝑆𝑎𝑖 ). Hence, the lemma holds. 2

Now we show that in each iteration 𝐻𝑖+1 ⊆ 𝐻𝛿/8(𝑁+(𝑆𝑎𝑖 )) holds.

Lemma 12 For any 𝑖 ∈ [1, 𝑛 − 1], let 𝑌𝑖 be the indicator random variable taking
𝑌𝑖 = 1 if and only if 𝐻𝑖+1 ⊆ 𝐻𝛿/8(𝑁+(𝑆𝑎𝑖 )) holds. Then we have Pr

[∩𝑛
𝑖=1𝑌𝑖 = 1

]
≥

1 −𝑂 (1/𝑛6).

Proof 9 Since 𝑆𝑎𝑖 is nonempty and its cardinality is monotonically increasing, we
have |𝑆𝑎𝑖 | ≥ 1, and thus Γ = 𝑁+(𝑆𝑎𝑖 ) ≥ 𝛿 holds at the beginning of the strict run in the
𝑖-th iteration. It implies |Γ| ≥ 𝛼 = 𝛿/8. By Lemma 11, |𝑁+(𝑆𝑎𝑖−1) ∩ 𝑁+(𝑥𝑖) | < 𝛿/2
holds, and then we have |𝑁+(𝑆𝑎𝑖−1) \ 𝑁

+(𝑥𝑖) | ≥ 𝛿/2 > 𝛼. Hence any call of Sample
satisfies the assumption of Corollary 9 with probability at least 1 − 3/𝑛7. Since
Sample is called at most 𝑂 (𝑛) times, a standard union-bound argument provides the
lemma. 2

By using Lemma 12, we prove that the algorithm eventually finds a (𝑎, 𝛿/8, 2)-
dense set𝑇𝑎 in Lemma 13. We also prove the upper bound for the number of iterations
of the algorithm.

Lemma 13 Algorithm Construct outputs a (𝑎, 𝛿/8, 2)-dense set 𝑇𝑎 within 𝑂 (𝑛/𝛿)
iterations with probability at least 1 −𝑂 (1/𝑛5).
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Proof 10 Let 𝑇𝑎 = 𝑁+(𝑆𝑎𝑗 ). That is, the algorithm terminates at the 𝑗-th iteration.
First we show that 𝑇𝑎 is (𝑎, 𝛿/8, 2)-dense. Since 𝑆𝑎𝑖 ⊆ 𝑁+(𝑣𝑎0) holds, the first and
second conditions of (𝑎, 𝛿/8, 2)-dense condition are obviously satisfied. Consider
the third condition. By definition, two sets 𝑅𝑖 and 𝐻𝑖 are always a partition of
𝑁+(𝑣𝑎0). Thus we obtain 𝐻 𝑗 = 𝑁+(𝑣𝑎0) because 𝑅 𝑗 = ∅ holds. Lemma 12 implies
that 𝑁+(𝑣𝑎0) = 𝐻 𝑗 ⊆ 𝐻𝛿/8(𝑁+(𝑆𝑎𝑗 )) holds. That is, 𝑇𝑎 = 𝑁+(𝑆𝑎𝑗 ) satisfies the third
condition.

We next show that the event 𝑅𝑖 = ∅ occurs within 𝑂 (𝑛/𝛿) iterations. By Lemma
11, |𝑁+(𝑥𝑖) \ 𝑁+(𝑆𝑎𝑖−1) | ≥ 𝛿/2 holds for any 𝑥𝑖. Then we have |𝑁+(𝑆𝑎𝑗 ) | ≥ 𝑗𝛿/2.
Due to the trivial upper bound of |𝑁+(𝑆𝑎𝑗 ) | ≤ 𝑛, we obtain 𝑗 ≤ 2𝑛/𝛿 = 𝑂 (𝑛/𝛿). The
success probability of the lemma is derived from taking the union bound for at most
𝑂 (𝑛) applications of Lemmas 11 and 12. 2

We analyse the time complexity of the algorithm Construct.

Lemma 14 The total running time of Construct is𝑂 (𝑛 log2 𝑛/𝛿) time with probability
at least 1 −𝑂 (1/𝑛3).

Proof 11 We first bound the total running time incurred by the part of optimistic de-
cision. Assume that𝑇𝑎 is constructed at the 𝑗-th iteration. For each 1 ≤ 𝑖 ≤ 𝑗 − 1, the
optimistic run of Sample(𝑁+(𝑥𝑖) \ 𝑁+(𝑆𝑎𝑖 ), 𝛿/8) takes 96⌈|(𝑁+(𝑥𝑖) \ 𝑁+(𝑆𝑎𝑖 ) | ln 𝑛/𝛿⌉
rounds. Hence, the total running time is bounded by

𝑟∑
𝑖=1

96
⌈ |𝑁+(𝑥𝑖) \ 𝑁+(𝑆𝑎𝑖 ) | ln 𝑛

𝛿

⌉
≤ 𝑂

(
𝑁+(𝑆𝑎𝑗 ) log 𝑛

𝛿

)
= 𝑂

(
𝑛 log 𝑛

𝛿

)
.

We next consider the time complexity caused by the part of strict decision. We
show that Sample is executed as a strict run at most 𝑂 (log 𝑛) times. It is sufficient to
prove that at least a constant fraction of 𝑅𝑖 is moved to 𝐻𝑖+1 with high probability if
the strict run occurs at the 𝑖-th iteration. In each 𝑖-th iteration, let 𝑔𝑖 be the number
of (𝛿/8)-heavy vertices for 𝑁+(𝑆𝑎𝑖 ). We show that 𝑔𝑖/|𝑅𝑖 | ≥ 1/2 holds if the agent
samples no light vertex from 𝑅𝑖 in the strict run of Sample. Consider the case of
𝑔𝑖/|𝑅𝑖 | < 1/2. Then the probability that the agent samples a 𝛿/8-heavy vertex is at
most 1/2. Thus, the probability that all of the sampled vertices are 𝛿/8-heavy is at
most (1/2) ⌈4 log 𝑛⌉ ≤ 1/𝑛4. Conversely, if all of the sampled vertices are 𝛿/8-heavy,
𝑔𝑖/|𝑅𝑖 | ≥ 1/2 holds with probability at least 1− 1/𝑛4. By Lemma 10, the strict run of
Sample in the 𝑖-th iteration moves all the 𝛿/8-heavy vertices in 𝑅𝑖 to 𝐻𝑖+1 with high
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probability. Then at least a half of the elements in 𝑅𝑖 are deleted. Since the cardinality
of 𝑅𝑖 never increases, the number of calls to Sample as a strict run is at most𝑂 (log 𝑛)
times with high probability. Each strict run takes 𝑂 (( |𝑁+(𝑆𝑎𝑖 ) | log 𝑛)/𝛿) rounds, and
thus the total running time of Construct is bounded by 𝑂 ((𝑛 log2 𝑛)/𝛿). The success
probability of the lemma is obtained by taking union bounds on𝑂 (log 𝑛) applications
of Lemma 10. 2

Finally, we obtain the main lemma of Construct.

Lemma 15 Algorithm Construct outputs 𝑇𝑎 satisfying (𝑎, 𝛿/8, 2)-dense condition in
𝑂 (𝑛 log2 𝑛/𝛿) rounds with probability at least 1 −𝑂 (1/𝑛3).

The combination of this lemma and Lemma 7 deduces the correctness of our
rendezvous algorithm.

Theorem 16 Let 𝐺 = (𝑉 , 𝐸) be any graph such that 𝛿𝐺 ≥
√
𝑛 holds. There is

an algorithm that completes rendezvous within 𝑂

(
𝑛
𝛿 log2 𝑛 +

√
𝑛Δ
𝛿 log 𝑛

)
rounds with

high probability.

3.3 Discussion

3.3.1 Removing the Assumption of Min-Degree Knowledge

In the algorithm presented in Subsection 3.2.3, we suppose that agents know a
constant factor approximation of 𝛿. This assumption can be easily removed by a
simple doubling-estimation mechanism. Precisely, in the construction of 𝑇𝑎 (which
is the only part of the algorithm using 𝛿), agent 𝑎 initially sets 𝛿′ to the half of the
degree of 𝑣𝑎0 . If the agent visits a vertex whose degree is less than 𝛿′, then it restarts
the procedure of Construct after halving 𝛿′. Note that we do not have to restart
agent 𝑏 for synchronization because its behavior (in Main-rendezvous) is inherently
oblivious (i.e., iteratively marking neighbors). Eventually the procedure terminates
without restarting when 𝛿′ < 𝛿𝐺 is satisfied. Since the running time of Construct is
𝑂 ((𝑛 log2 𝑛)/𝛿′), the doubling update of 𝛿′ does not incur any extra asymptotic cost.
That is, if the estimation of 𝛿′ starts from a range [2 𝑗 , 2 𝑗+1], the total running time is
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bound as follows:∑
⌊log 𝛿⌋≤ 𝑗 ′≤ 𝑗

𝑂 (𝑛 log2 𝑛/2 𝑗 ′)

= 𝑂 (𝑛 log2 𝑛/𝛿) ·
(
1 + 1

2
+ · · · + 1

2 𝑗−⌊log 𝛿⌋

)
= 𝑂

(
𝑛 log2 𝑛

𝛿

)
.

Corollary 17 The modified algorithm stated above outputs𝑇𝑎 (equivalently, 𝑁+(𝑆𝑎𝑖 ))
satisfying (𝑎, 𝛿′/8, 2)-dense set in 𝑂 (𝑛 log2 𝑛/𝛿′) rounds with probability at least
1 −𝑂 (1/𝑛3).

3.3.2 Algorithm without Using Whiteboards
In this subsection, we present a rendezvous algorithm Rendezvous-without-Whiteboard
that does not use whiteboards, under the assumption that nodes are tightly named (that
is, 𝑛′ = 𝑂 (𝑛)). We present the pseudo-code of the algorithm in Algorithm 6. This
algorithm assumes that agents know the value of 𝑛′ and the minimum degree 𝛿, but
the minimum-degree assumption can be removed by the technique in Section 3.3.1.
In this algorithm, agent 𝑎 first constructs a set 𝑇𝑎 ⊆ 𝑁+(𝑁+(𝑣𝑎0)) in the same way
as the original one (recall that Construct does not use whiteboards). In order to
synchronize the iterative probings of vertices by both agents, they start Rendezvous-
without-Whiteboard at round 𝑡′ = 𝑐1𝑛

′ log2 𝑛/𝛿 for sufficiently large constant 𝑐1 such
that the construction of 𝑇𝑎 finishes by round 𝑡′.

We define several notations. We denote the ID space {1, . . . , 𝑛′} by SID. For any
integer 𝛽, we define the 𝛽-partition {I1 . . . , I⌈𝑛/𝛽⌉} of SID as I𝑖 = [(𝑖 − 1)𝛽 + 1, 𝑖𝛽]}
for all 𝑖. The goal of the algorithm is that for an appropriate 𝛽, the agents 𝑎 and 𝑏
respectively construct Φ𝑎 ⊆ 𝑇𝑎 and Φ𝑏 ⊆ 𝑁+(𝑣𝑏0 ) satisfying the following properties
with high probability:

• (intersection) |Φ𝑎 ∩Φ𝑏 | ≥ 1.

• (sparseness) There exists some constant 𝑐2 such that |Φ𝑎 ∩ I𝑖 | ≤ 𝑐2 log 𝑛 and
|Φ𝑏 ∩ I𝑖 | ≤ 𝑐2 log 𝑛 hold for any 𝑖 ∈ [1, ⌈𝑛/𝛽⌉].

We first present the construction of Φ𝑎 and Φ𝑏 satisfying the properties above. For
each 𝑣 ∈ 𝑇𝑎, agent 𝑎 adds 𝑣 into Φ𝑎 with probability 4 ln 𝑛/

√
𝛿. Similarly, for each

𝑣 ∈ 𝑁+(𝑣𝑏0 ), agent 𝑏 adds 𝑣 intoΦ𝑏 with probability 4 ln 𝑛/
√
𝛿. Then we can guarantee
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with high probability that Φ𝑎 and Φ𝑏 satisfy the intersection property, and also satisfy
the sparseness property for 𝛽 = ⌈

√
𝛿⌉ and 𝑐2 = 18.

We explain how rendezvous is achieved by using two sets Φ𝑎 and Φ𝑏. The agents
𝑎 and 𝑏 iterate the following operations for all 𝑖 = 1, 2, . . . , ⌈𝑛/

√
𝛿⌉ (referred as

𝑖-th phase of agents 𝑎 and 𝑏). The 𝑖-th phase consists of ⌈4𝑐2 ln 𝑛⌉2 rounds, and
starts at round 𝑡′ + (𝑖 − 1) ⌈4𝑐2 ln 𝑛⌉2 + 1. In the 𝑖-th phase, agent 𝑎 visits each vertex
𝑣 𝑗 ∈ Φ𝑎 ∩ I𝑖 in ascending order of its ID, and waits ⌈4𝑐2 ln 𝑛⌉ rounds at each visited
vertex. After visiting all the vertices in Φ𝑎 ∩ I𝑖, the agent waits at the initial position
until round 𝑡′ + 𝑖⌈4𝑐2 ln 𝑛⌉2 to synchronize the next phase. The behavior of agent 𝑏 is
similar to that of 𝑎. It visits each 𝑣𝑘 ∈ Φ𝑏 ∩ I𝑖 in ascending order of its ID. The agent
𝑏 waits at each visited vertex for two rounds. Agent 𝑏 repeats this process ⌈4𝑐2 ln 𝑛⌉
times. Then it waits on the initial position until 𝑡′ + 𝑖 · ⌈4𝑐2 ln 𝑛⌉2 rounds. We can
show that agents 𝑎 and 𝑏 attain rendezvous in I𝑙 such that Φ𝑎 ∩Φ𝑏 ∩ I𝑙 ≠ ∅ holds.
The total time complexity is 𝑂 ((𝑛/𝛽) · log2 𝑛) = 𝑂 ((𝑛 log2 𝑛)/

√
𝛿) rounds.

Theorem 18 Algorithm Rendezvous-without-Whiteboard achieves rendezvous in
𝑂

(
𝑡′ + 𝑛√

𝛿
log2 𝑛

)
rounds with probability at least 1 −𝑂 (1/𝑛2).

Proof 12 First, we show that Φ𝑎 and Φ𝑏 satisfy the intersection property. By the
independence of the probabilistic choices of agents 𝑎 and 𝑏, any node in 𝑇𝑎 ∩ 𝑁+(𝑣𝑏0 )
is contained in both Φ𝑎 and Φ𝑏 with probability (4 ln 𝑛/

√
𝛿)2 = (4 ln 𝑛)2/𝛿. Hence

the probability 𝑝 that |Φ𝑎 ∩Φ𝑏 | = 0 is upper bounded by 𝑝 ≤
(
1 − (4 ln 𝑛)2

𝛿

)𝛿/8
≤

e−2 ln2 𝑛 ≤ 1
𝑛2 . That is, the intersection property is satisfied with high probability. Next,

we show that Φ𝑎 and Φ𝑏 satisfy the sparseness property. For any 𝑖 ∈ [1, ⌈𝑛/
√
𝛿⌉],

let 𝑌 𝑎
𝑖 be the number of vertices in 𝑁+(𝑣𝑎0) ∩ I𝑖. Then we have E[𝑌 𝑎

𝑖 ] ≤ ⌈
√
𝛿⌉ ·

4 ln 𝑛/
√
𝛿 ≤ 9 ln 𝑛. Applying the Chernoff bound, the probability Pr[𝑌 𝑎

𝑖 ≥ 18 log 𝑛]
is upper bounded by Pr[𝑌 𝑎

𝑖 ≥ 18 ln 𝑛] ≤ Pr[𝑌 𝑎
𝑖 ≥ (1 + 1)9 ln 𝑛] ≤ 𝑒−3 ln 𝑛 ≤ 1

𝑛3 . By
taking union bound over all 𝑖 ∈ [1, ⌈𝑛/

√
𝛿⌉], 𝑎, and 𝑏, the probability that Φ𝑎 and

Φ𝑏 do not satisfy the sparseness property is at most 3/𝑛2.
Finally, we show that if Φ𝑎 and Φ𝑏 satisfy the two properties, then rendezvous

is achieved within 𝑂 ((𝑛 log2 𝑛)/
√
𝛿) rounds. We consider the 𝑙-th part such that

|I𝑙 ∩ Φ𝑎 ∩ Φ𝑏 | ≥ 1 holds. Let 𝑟 be any vertex in |I𝑙 ∩ Φ𝑎 ∩ Φ𝑏 |, and 𝑠 be the
order of 𝑟 in Φ𝑎 ∩ I𝑙 following IDs. By the definition of the algorithm, both 𝑎 and
𝑏 starts phase 𝑙 at round 𝑡′ + (𝑙 − 1) ⌈4𝑐2 ln 𝑛⌉2 + 1. In addition, the time when
agent 𝑎 stays at 𝑟 is from round 𝑡′ + (𝑖 − 1) ⌈4𝑐2 ln 𝑛⌉2 + (𝑠 − 1) ⌈4𝑐2 ln 𝑛⌉ − 2 to
𝑡′ + (𝑖 − 1) ⌈4𝑐2 ln 𝑛⌉2 + 𝑠⌈4𝑐2 ln 𝑛⌉ − 2. During that period, agent 𝑏 visits all the
nodes in Φ𝑏 ∩ I𝑙 . That is, rendezvous is achieved. 2
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3.3.3 Achieving Rendezvous for 𝑑 ≥ 2

Since both Main-Rendezvous and Rendezvous-without-Whiteboard presented above
work correctly under the assumption of 𝑑 = 1, there is no guarantee to achieve
rendezvous when 𝑑 > 1. Fortunately, we can make these algorithms work for general
𝑑 ≥ 1 by combining the algorithms with the following termination detection scheme
and a graph exploration algorithm. Roughly speaking, when one of the agents (more
precisely, agent 𝑏 in our algorithms) detects the fail of the algorithm of 𝑑 = 1,
it conducts the standard DFS algorithm taking 𝑂 (𝑛) rounds, for finding the initial
location of another agent (i.e., agent 𝑎). Since agent 𝑎 periodically moves back its
initial location. the rendezvous is achieved by making 𝑏 stay at the initial location of
𝑎. The whole algorithm achieves the sublinear-time rendezvous for 𝑑 = 1, and also
achieves the rendezvous in𝑂 (𝑛 log2 𝑛) rounds for general 𝑑 > 1 with high probability.
Note that these algorithms are nearly optimal up to poly-logarithmic factor because
we prove Ω(𝑛)-round lower bound for the case of 𝑑 = 2 in Section 3.4.

The termination detection of the algorithms are as follows. Recall that in the
algorithm, the agent 𝑏 repeatedly visits neighbors of initial position until rendezvous.
We add operations that the agent memorizes these visited neighbors in the whiteboard
of the initial location, and the agent checks if it visits all neighbors. When the
agent finds that it visits all neighbors (and does not achieved rendezvous), then it
concludes that 𝑑 > 1, and proceeds to the graph exploration. The time spent in
this detection process is 𝑂 ( |𝑁 (𝑣) | log 𝑛) = 𝑂 (𝑛 log 𝑛) rounds with high probability,
which is obtained by the standard coupon collector argument.

For exploring the graph by agent 𝑏, we apply the Depth-First Search (DFS)
algorithm, which roughly described as follows: The exploring agent at current vertex
𝑣 searches an unvisited neighbor in 𝑁 (𝑣), and if it is found, the agent moves to the
vertex (i.e., forward); otherwise, the agent returns to the (neighboring) vertex from
which the agent visits 𝑣 first (i.e., backtrack). Obviously, the number of forward and
backtrack movements are respectively upper bounded by 𝑛. Hence the crucial point
of time complexity is that spent for checking if an unvisited vertex exists in 𝑁 (𝑣) or
not. In our setting, each agent has enough memory to memorize the whole visited
vertices, and it also has the capability of knowing neighborhood IDs. Therefore the
exploring agent can search an unvisited vertex locally by storing all visited vertices
in its memory. Thus the time complexity of the DFS algorithm is 𝑂 (𝑛) rounds in our
setting. The precise implementation of the DFS algorithm in the setting of mobile
agent systems is given in [35].

41



3.4. IMPOSSIBILITY FOR SUB-LINEAR TIME RENDEZVOUS 42

3.4 Impossibility for Sub-linear Time Rendezvous
In this section, we show four impossibility results for sublinear-time rendezvous,
which respectively concern the four unconventional assumptions of our algorithm,
namely, bounded minimum degrees, accessibility to neighborhood IDs, initial dis-
tance one, and randomization. In each proof, we show the impossibility results
in the models relaxing the corresponding assumption. We define some terminolo-
gies used in the proofs. Given a graph 𝐺 and an algorithm A, let 𝑋̂ (𝐺, 𝑎, 𝑣, 𝑓 (𝑛))
be the random variable representing the set of vertices visited by agent 𝑎 initially
at vertex 𝑣 in 𝐺 in the first consecutive 𝑓 (𝑛) rounds. While this is an illegal
run because 𝑏 is not in the graph, but can identify the (probabilistic) set of ver-
tices 𝑎 visits. Also, we define 𝑋 (𝐺, 𝑎, 𝑣, 𝑓 (𝑛)) to be the vertex set defined as
𝑋 (𝐺, 𝑎, 𝑣, 𝑓 (𝑛)) = {𝑥 ∈ 𝑉 (𝐺) | Pr[𝑥 ∈ 𝑋̂ (𝐺, 𝑎, 𝑣, 𝑓 (𝑛))] ≤ 1/4}.

3.4.1 Lower bound in the Case of Bounded Minimum Degrees
First, we show that there is a graph instance with minimum degree 𝛿 = 𝑜(√𝑛) and
Δ = 𝜔(√𝑛) such that any algorithm needsΩ(Δ) rounds for neighborhood rendezvous.
Precisely, the Ω(𝑛/𝛿)-round lower bound is obtained in the graphs with 𝛿 = 𝑜(√𝑛)
and Δ = Ω(√𝑛).

Theorem 19 Letting 𝛿 = 𝑜(√𝑛) and Δ = 𝜔(√𝑛), the (Δ, 𝛿, 1)-rendezvous problem
has a class of instances where any rendezvous algorithm takes Ω(Δ) rounds with a
constant probability. In particular, the (𝑛/2, 1, 1)-rendezvous problem has a class
of instances where any rendezvous algorithm takes Ω(𝑛) rounds with a constant
probability.

Proof 13 We first consider the case of Δ = 𝑛/2 and 𝛿 = 1 for simplicity of argument.
Suppose for contradiction that an algorithm A achieves rendezvous within 𝑓 (𝑛) =
𝑜(𝑛) rounds with high probability for the (𝑛/2, 1, 1)-rendezvous problem. Assume
that 𝑛 is a multiple of 4 for simplicity, and let [1, 𝑛] be the domain of vertex IDs.
First, we consider a star graph 𝑆1( 𝑗) of 𝑛/2 + 1 vertices, where the ID of the center
is 𝑗 ∈ [𝑛/2 + 1, 𝑛], and IDs of all leaves are from [1, 𝑛/2]. In this graph we put
agent 𝑎 at the center vertex 𝑗 , and run A during 𝑓 (𝑛) rounds. It is easy to verify
|𝑋 (𝑆1( 𝑗), 𝑎, 𝑗 , 𝑓 (𝑛)) | > 𝑛/4 because 𝑓 (𝑛) is sublinear of 𝑛. Next, we consider a star
graph 𝑆2(𝑘) of 𝑛/2 + 1 vertices that consists of the center vertex with ID 𝑘 ∈ [1, 𝑛/2]
and leaf sets with IDs [𝑛/2+ 1, 𝑛]. It also satisfies |𝑋 (𝑆2(𝑘), 𝑏, 𝑘 , 𝑓 (𝑛)) | > 𝑛/4. Now
we consider a directed bipartite graph 𝐺′ = ( [1, 𝑛/2], [𝑛/2 + 1, 𝑛], 𝐸). The edge set
𝐸 is defined as 𝐸 = {(ℎ, 𝑖) | ℎ ∈ 𝑋 (𝑆1(𝑖), 𝑎, 𝑖, 𝑓 (𝑛)) ∨ ℎ ∈ 𝑋 (𝑆2(𝑖), 𝑏, 𝑖, 𝑓 (𝑛))}.
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Since we have |𝑋 (𝑆1(𝑖), 𝑎, 𝑖, 𝑓 (𝑛)) | > 𝑛/4 and |𝑋 (𝑆2(𝑖), 𝑏, 𝑖, 𝑓 (𝑛)) | > 𝑛/4 for all 𝑖,
the total number of directed edges is more than (𝑛/2 · 𝑛/4) · 2 = 𝑛2/4. This means that
there exists at least one pair ( 𝑗 , 𝑘) such that both ( 𝑗 , 𝑘) and (𝑘 , 𝑗) are contained in 𝐸 .
We consider the graph that consists of two star graphs of 𝑛/2 + 1 vertices sharing an
edge (Fig. 3.1 (a)). The IDs of the two center vertices are 𝑗 and 𝑘 , and the IDs of 𝑗’s
leaves are from [𝑛/2+ 1, 𝑛] \ {𝑘}, and those of 𝑘’s leaves are from [1, 𝑛/2] \ { 𝑗}. The
edge ( 𝑗 , 𝑘) connects the two centers. In this graph, when we execute the algorithmA
locating the two agents at 𝑗 and 𝑘 respectively, it is guaranteed that each agent does
not pass through edge ( 𝑗 , 𝑘) in the first consecutive 𝑓 (𝑛) rounds with probability at
least 1/4. That is, the algorithm does not achieve rendezvous within 𝑓 (𝑛) rounds
with probability at least 1/2. This is a contradiction.

The general case can be proven in the same way as the argument above. The
only difference is to change the degree of the center vertex to Δ and replace all the
leaves of star graphs with a clique of size 𝑠 = 𝑛−2

2Δ = Ω(𝑛/Δ) = Ω(𝛿) where exactly
one vertex is adjacent to the center (Fig. 3.1 (b)). That graph obviously satisfies the
constraint of min/max degrees, and the proof above also applies to it. 2

3.4.2 Lower bound in the Case of the No Accessibility to IDs of
Neighborhood Vertices

Next, we show that any algorithm solving the (Θ(𝑛),Θ(𝑛),1)-rendezvous problem
requiresΩ(𝑛) rounds in the worst case if agents have no access to IDs of neighborhood
vertices.

Theorem 20 Let 𝑛 be even, 𝑛 ≥ 6, 𝛿 = 𝑛/2 − 1 and Δ = 𝑛/2 − 1, and assume
that any agent has no access to neighborhood IDs. Then there exists an instance
of (Δ, 𝛿, 1)-rendezvous problem where any rendezvous algorithm takes Ω(Δ) rounds
with a constant probability.

Proof 14 Suppose for contradiction that an algorithmA achieves rendezvous within
𝑓 (𝑛) = 𝑜(𝑛) rounds with high probability for the (𝑛/2 − 1, 𝑛/2 − 1, 1)-rendezvous
problem. We first consider two cliques 𝐶1 and 𝐶2 of 𝑛/2 vertices where each vertex
has an arbitrary ID. Let agent 𝑎 be located at 𝑣𝑎0 in the clique 𝐶1, and let agent 𝑏 be
located at 𝑣𝑏0 in the clique 𝐶2. As the proof of Theorem 19, we make agents 𝑎 and 𝑏
execute algorithm A in each clique. By the assumption of 𝑓 (𝑛) = 𝑜(𝑛), it is easy to
verify that |𝑋 (𝐶1, 𝑎, 𝑣𝑎0 , 𝑓 (𝑛)) | > 𝑛/4 and |𝑋 (𝐶2, 𝑏, 𝑣𝑏0 , 𝑓 (𝑛)) | > 𝑛/4 holds. Now we
select vertices 𝑥1 ∈ 𝑋 (𝐶1, 𝑎, 𝑣𝑎0 , 𝑓 (𝑛)) and 𝑥2 ∈ 𝑋 (𝐶2, 𝑏, 𝑣𝑏0 , 𝑓 (𝑛)). Let 𝑗 = 𝑃̂−1

𝑣𝑎0
(𝑥1),

𝑘 = 𝑃̂−1
𝑣𝑏0
(𝑥2), 𝑗 = 𝑃̂−1

𝑥1 (𝑣
𝑎
0), and 𝑘̄ = 𝑃̂−1

𝑥2 (𝑣
𝑏
0 ). We construct a graph 𝐺 by removing
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Figure 3.1: Proof of Theorem 19

edges (𝑣𝑎0 , 𝑥1) and (𝑣𝑏0 , 𝑥2) from 𝐶1 and 𝐶2 respectively, and adding the edges (𝑣𝑎0 , 𝑣𝑏0 )
and (𝑥1, 𝑥2). The local port number of those edges are defined as 𝑃̂−1

𝑣𝑎0
(𝑣𝑏0 ) = 𝑗 ,

𝑃̂−1
𝑣𝑏0
(𝑣𝑎0) = 𝑘 , 𝑃̂−1

𝑥1 (𝑥2) = 𝑗 , and 𝑃̂−1
𝑥2 (𝑥1) = 𝑘̄ . The construction is illustrated in Fig.

3.2. Consider the 𝑓 (𝑛)-round run of A in 𝐺 where two agents 𝑎 and 𝑏 start from 𝑣𝑎0
and 𝑣𝑏0 respectively. Since 𝑣𝑎0 and 𝑣𝑏0 are connected by an edge, this is an instance of
the (𝑛/2 − 1, 𝑛/2 − 1, 1)-rendezvous problem. Since 𝑥1 ∈ 𝑋 (𝐶1, 𝑎, 𝑣𝑎0 , 𝑓 (𝑛)), agent
𝑎 visits 𝑥1 or 𝑣𝑏0 with probability at most 1/4. Similarly, 𝑏 also visits 𝑥2 or 𝑣𝑎0 with
probability at most 1/4. This implies that with probability at least 1/2 no agent moves
along edge (𝑣𝑎0 , 𝑣𝑏0 ) or (𝑥1, 𝑥2), that is, rendezvous is not achieved at round 𝑛/2 with
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a constant probability. This is a contradiction. 2
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Figure 3.2: Proof of Theorem 20

3.4.3 Lower bound in the Case of the Distance Two of Initial
Locations

Next, we show that the lower bound for the (Θ(𝑛),Θ(𝑛), 2)-rendezvous problem.

Theorem 21 Let 𝑛 be odd, Δ = 𝑛 − 1 and 𝛿 = (𝑛 − 1)/2. (Δ, 𝛿, 2)-rendezvous
problem has a graph instance where any algorithm takesΩ(Δ) rounds with a constant
probability.

Proof 15 Suppose for contradiction that an algorithmA achieves rendezvous within
𝑓 (𝑛) = 𝑜(𝑛) rounds with high probability for the (𝑛 − 1, (𝑛 − 1)/2, 2)-rendezvous
problem. We first consider (𝑛 + 1)/2 cliques 𝐶1,𝐶2, . . . ,𝐶(𝑛+1)/2 of (𝑛 + 1)/2 ver-
tices, where the 𝑖-th vertex set is 𝑉 (𝐶𝑖). The IDs of the vertices of each clique 𝐶𝑖

are assigned from
[
𝑛+1
2 (𝑖 − 1) + 1, 𝑛+12 𝑖

]
respectively for all 𝑖 ∈ [1, 𝑛+12 ]. Suppose

that agent 𝑎 executes algorithm A in each clique 𝐶𝑖 with an arbitrary initial lo-
cation 𝑐𝑖 ∈ 𝑉 (𝐶𝑖). By the assumption of 𝑓 (𝑛) = 𝑜(𝑛), it is easy to verify that
|𝑋 (𝐶𝑖, 𝑎, 𝑐𝑖, 𝑓 (𝑛)) | > (𝑛 + 1)/4. Let 𝑉 ′ a vertex set that obtained by picking up
one vertex 𝑤𝑖 ∈ |𝑋 (𝐶𝑖, 𝑎, 𝑐𝑖, 𝑓 (𝑛)) | for all 𝑖 ∈ [1, 𝑛+12 ], and we construct a clique
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𝐶′ consisting of (𝑛 + 1)/2 vertices whose IDs come from 𝑉 ′. Suppose that agent 𝑏
executes algorithm A in 𝐶′ with an arbitrary initial location 𝑐′ ∈ 𝑉 (𝐶′). It also
satisfies |𝑋 (𝐶′, 𝑏, 𝑐′, 𝑓 (𝑛)) | > (𝑛 + 1)/4 because 𝑓 (𝑛) is sublinear of 𝑛. We pick
up any vertex 𝑥 ∈ 𝑋 (𝐶′, 𝑏, 𝑐′, 𝑓 (𝑛)). Letting 𝐶𝑘 be the clique containing the vertex
𝑥, we construct the graph 𝐺 consisting of two cliques 𝐶′ and 𝐶𝑘 sharing 𝑥 (Fig.
3.3). Consider the 𝑓 (𝑛)-round run of A in 𝐺 where 𝑎 and 𝑏 respectively start from
𝑐𝑘 and 𝑐′. This is an instance of (𝑛 − 1, (𝑛 − 1)/2, 2)-rendezvous problem. Since
𝑥 ∈ 𝑋 (𝐶𝑘 , 𝑎, 𝑐𝑘 , 𝑓 (𝑛)) ∩ 𝑋 (𝐶′, 𝑏, 𝑐′, 𝑓 (𝑛)) holds, 𝑎 and 𝑏 do not visit 𝑥 with proba-
bility at least 1/4. That is, they cannot attain the rendezvous within 𝑓 (𝑛) rounds at
least with probability 1/2. This is a contradiction. 2
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Figure 3.3: Proof of Theorem 21

3.4.4 Lower Bound for Deterministic Algorithms
We show that any deterministic algorithm solving the (Θ(𝑛),Θ(𝑛), 1)-rendezvous
problem requires Ω(𝑛) rounds in the worst case. First, we outline the proof strategy.
Suppose for contradiction that an algorithm A solves (Θ(𝑛),Θ(𝑛), 1)-rendezvous
problem within 𝑜(𝑛) rounds. In the proof, we adaptively construct the hard-core
instance according to the behavior of A: We start the construction with the two star
graphs whose centers are the initial locations of two agents, and consider the run of
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A in that graph. When the agent moves to an unvisited vertex, we adaptively fix its
neighborhood vertices. More precisely, the graph construction roughly follows the
process below: We select in advance Ω(𝑛) vertices as a pool, and if an agent moves
to an unvisited vertex with degree 𝑜(𝑛), we select Ω(𝑛) vertices from the pool as
neighbors. This construction provides two independent graphs respectively associated
with two agents. Finally, we carefully glue them in the way of guaranteeing the initial
distance one and minimum degree Ω(𝑛), which becomes the instance yielding Ω(𝑛)-
round lower bound.

We define some notations for explaining the details. Let 𝑛 be a multiple of 32
for simplicity. As we stated, our proof first constructs two instances (for two agents)
separately. By symmetry we only focus on the instance for agent 𝑎. We select an
arbitrary ID space ID𝑎 whose size is 𝑛/2 + 1 for the instance of agent 𝑎, and fix an
initial vertex 𝑣𝑎0 ∈ ID𝑎. Let 𝑄𝑎

𝑡 (A,𝐺, 𝑣𝑎0) = {𝑣
𝑎
0 , 𝑣𝑎1 , . . . , 𝑣𝑎𝑡 }. That is, 𝑄𝑎

𝑡 (A,𝐺, 𝑣𝑎0)
is the set of vertices visited by agent 𝑎 in the execution of A starting from 𝑣𝑎0 in
𝐺 up to round 𝑡. We also define the sequence 𝑆𝑎𝑡 (A,𝐺, 𝑣𝑎0) = (𝑣

𝑎
0 , 𝑣𝑎1 , . . . , 𝑣𝑎𝑡 ) of

the vertices in 𝑄𝑎
𝑡 (A,𝐺, 𝑣𝑎0) with order. Given A, 𝐺 = (𝑉 , 𝐸), 𝑣𝑎0 and a round

𝑟 ≥ 0, we can construct the execution spanning subgraph 𝐺̂𝑎
𝑟 (A,𝐺, 𝑣𝑎0) = (𝑉̂ , 𝐸̂)

such that 𝑉̂ = 𝑁+𝐺 (𝑄𝑎
𝑟 (A,𝐺, 𝑣𝑎0)) and 𝐸̂ = {(𝑢, 𝑣) | 𝑢 ∈ 𝑄𝑎

𝑟 (A,𝐺, 𝑣𝑎0) ∧ (𝑢, 𝑣) ∈ 𝐸}.
Intuitively, 𝐺̂𝑎

𝑟 (A,𝐺, 𝑣𝑎0) represents the substructure of 𝐺 seen by agent 𝑎 in the
execution of A starting from 𝑣𝑎0 up to round 𝑟. Now we assume any graph 𝐺′ such
that 𝐺̂𝑎

𝑟 (A,𝐺, 𝑣𝑎0) = 𝐺̂𝑎
𝑟 (A,𝐺′, 𝑣𝑎0) holds. It is obvious that the behavior of 𝑎 in 𝐺′

starting from 𝑣𝑎0 is completely same as that in 𝐺 up to round 𝑟 + 1, and thus we obtain
the following proposition.

Proposition 2 Assume for any 𝐺,𝐺′, we have 𝐺̂𝑎
𝑟 (A,𝐺, 𝑣𝑎0) = 𝐺̂𝑎

𝑟 (A,𝐺′, 𝑣𝑎0). Then,
𝑆𝑎𝑟+1(A,𝐺, 𝑣𝑎0) = 𝑆𝑎𝑟+1(A,𝐺′, 𝑣𝑎0) holds.

We show the lemma below, which is a key observation of our lower bound proof.

Lemma 22 Let A be any algorithm terminating within 𝑡 ≤ 𝑛/32 rounds. Suppose
that 𝐼𝐷𝑎 and 𝑣𝑎0 is given. There exists a graph 𝐺 containing a vertex subset 𝑊 ⊆
𝑁𝐺 (𝑣𝑎0) of size at least 13𝑛/32 such that (i) (𝑄𝑎

𝑡 (A,𝐺, 𝑣𝑎0) \ {𝑣
𝑎
0 }) ∩ 𝑁+𝐺 (𝑊) = ∅

holds, and (ii) for each vertex 𝑤 ∈ 𝑉 (𝐺) \ (𝑁+𝐺 (𝑊) \ {𝑣𝑎0 }), |𝑁𝐺 (𝑤) | = Θ(𝑛) holds.

Proof 16 We adaptively construct the graph 𝐺 according to the agent 𝑎’s movement.
Precisely, we incrementally fix the sequence of graphs 𝐺0,𝐺1, . . . ,𝐺 𝑡 such that for
each 𝑟 ∈ [0, 𝑡 − 1], 𝑆𝑎𝑟+1(A,𝐺𝑟 , 𝑣𝑎0) = 𝑆𝑎𝑟+1(A,𝐺𝑟+1, 𝑣𝑎0) is guaranteed. The vertex
set of each 𝐺𝑖 is common, which is denoted by 𝑉 , and equal to 𝐼𝐷𝑎 (i.e., 𝑉 = 𝐼𝐷𝑎).
Let 𝑃 ⊆ 𝑉 \ {𝑣𝑎0 } be an arbitrary subset of size 7𝑛/16, and 𝑃 = 𝑉 \ 𝑃. We also define
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𝐸0 = {(𝑣𝑎0 , 𝑢) | 𝑢 ∈ 𝐼𝐷𝑎 \ {𝑣𝑎0 }} ∪ {(𝑢, 𝑣) | 𝑢, 𝑣 ∈ 𝑃 ∧ 𝑢 ≠ 𝑣}. For all 𝑟 ≥ 0, the
algorithm A outputs the vertex 𝑣𝑎𝑟+1 ∈ 𝑁𝐺𝑟 (𝑣𝑎𝑟 ), as the destination of the movement
at round 𝑟. Let 𝑄𝑟 = 𝑄𝑎

𝑟 (A,𝐺𝑟 , 𝑣𝑎0) for short. There are following two cases:

• 𝑣𝑎𝑟+1 ∈ 𝑄𝑟 ∪ 𝑃.

• 𝑣𝑎𝑟+1 ∉ 𝑄𝑟 ∪ 𝑃 (that is, 𝑣𝑎𝑟+1 ∈ 𝑃 \𝑄𝑟).

If 𝑣𝑎𝑟+1 ∈ 𝑄𝑟 ∪ 𝑃 holds, we simply fix 𝐺𝑟+1 = 𝐺𝑟 (i.e., 𝐸𝑟+1 = 𝐸𝑟). Otherwise, we
construct 𝐸𝑟+1 by adding to 𝐸𝑟 the edges from 𝑣𝑎𝑟+1 to all the vertices in 𝑃 \𝑄𝑟 . In
the following argument, we show 𝑆𝑎𝑟+1(A,𝐺𝑟 , 𝑣𝑎0) = 𝑆𝑎𝑟+1(A,𝐺𝑟+1, 𝑣𝑎0) holds for any
𝑟 ∈ [0, 𝑡 − 1] by the induction on 𝑟. In the base case of 𝑟 = 0, we have 𝑄0 = {𝑣𝑎0 }
and 𝑆𝑎0 (A,𝐺0, 𝑣𝑎0) = (𝑣

𝑎
0). The algorithm outputs the vertex 𝑣𝑎1 as the destination of

the movement in 𝐺0 at round 𝑟 = 0. In any case of updating rules, we can confirm
that 𝐺̂𝑎

0 (A,𝐺0, 𝑣𝑎0) = 𝐺̂𝑎
0 (A,𝐺1, 𝑣𝑎0). Therefore the vertex 𝑣𝑎1 in 𝐺0 coincides with

the one in 𝐺1 and we have 𝑆𝑎1 (A,𝐺0, 𝑣𝑎0) = 𝑆𝑎1 (A,𝐺1, 𝑣𝑎0). In the case of 𝑟 > 1,
assume that we are given 𝐺𝑟 . The algorithm outputs the vertex 𝑣𝑎𝑟+1 as the destination
of the movement in 𝐺𝑟 at round 𝑟. If 𝑣𝑎𝑟+1 ∈ 𝑄𝑟 ∪ 𝑃, then 𝐺𝑟 = 𝐺𝑟+1 holds, we
have 𝑆𝑟+1(A,𝐺𝑟 , 𝑣𝑎0) = 𝑆𝑟+1(A,𝐺𝑟+1, 𝑣𝑎0). Otherwise, since we add edges between
unvisited vertices (from 𝑣𝑎𝑟+1 ∈ 𝑃 \𝑄𝑟 to each 𝑢 ∈ 𝑃 \𝑄𝑟), it follows 𝐺̂𝑎

𝑟 (A,𝐺𝑟 , 𝑣𝑎0) =
𝐺̂𝑎

𝑟 (A,𝐺𝑟+1, 𝑣𝑎0). Then by proposition 2, 𝑆𝑎𝑟+1(A,𝐺𝑟 , 𝑣𝑎0) = 𝑆𝑎𝑟+1(A,𝐺𝑟+1, 𝑣𝑎0) hold.
We set 𝑃 \𝑄𝑡 = 𝑊 (that is, the vertices in 𝑃 not visited by round 𝑡). Finally,

we show that 𝐺 𝑡 has the desired property of the lemma. Since the agent visits to the
vertices in 𝑃 at most 𝑡 = 𝑛/32 times, the size of 𝑊 is at least 7𝑛/16− 𝑛/32 = 13𝑛/32.
Since 𝑊 is the set of vertices which are unvisited by agent 𝑎 in the execution of A
in 𝐺 𝑡 , by the updating rules of the graphs, each vertex in 𝑊 is only connected to 𝑣𝑎0 .
Therefore we have (𝑄𝑎

𝑡 (A,𝐺, 𝑣𝑎0) \ {𝑣
𝑎
0 }) ∩ 𝑁+𝐺 (𝑊) = ∅. Since 𝑃 is a clique in 𝐺0

(and thus in 𝐺 𝑡), for each vertex 𝑢 ∈ 𝑃, we have |𝑁𝐺𝑡 (𝑢) | ≥ 𝑛/16 − 1 = Θ(𝑛). For
each vertex 𝑢 ∈ 𝑃∩𝑄𝑟 , the size of 𝑃 \𝑄𝑟 is at least 𝑛/16− 𝑛/32 = 𝑛/32 at any round
𝑟 ∈ [0, 𝑡], and thus we have |𝑁𝐺𝑡 (𝑢) | ≥ 𝑛/32 = Θ(𝑛). 2

By the proposition and the lemma, we can construct the hard-core instance for the
deterministic algorithm. In the proof, we apply Lemma 22 several times according
to the agent IDs and initial positions 𝑣𝑎0 , 𝑣𝑏0 . Therefore in the proof we add subscripts
of agent IDs and initial vertices to 𝐺 and 𝑊 constructed by the lemma, as 𝐺 (𝑎,𝑣𝑎0 ) and
𝑊(𝑎,𝑣𝑎0 ) .

Theorem 23 For Δ = Θ(𝑛) and 𝛿 = Θ(𝑛), the (Δ, 𝛿, 1)-rendezvous problem has a
graph instance where any deterministic algorithm takesΩ(Δ) rounds with probability
one.
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Proof 17 Suppose for contradiction that a deterministic algorithm A achieves ren-
dezvous within 𝑓 (𝑛) = 𝑛/32 rounds for the (Δ, 𝛿, 1)-rendezvous problem of Δ = Θ(𝑛)
and 𝛿 = Θ(𝑛). Let [1, 𝑛] be the domain of vertex IDs.

We select [1, 𝑛/2] and 𝑗 ∈ [𝑛/2 + 1, 𝑛] as the ID space of the execution of the
agent 𝑎, denoted by 𝐼𝐷𝑎. We choose 𝑣𝑎0 = 𝑗 as the initial vertex of 𝑎, and construct
𝐺 (𝑎, 𝑗) by using Lemma 22. Similarly, we adaptively construct the graph instance
according to the agent 𝑏’s moves alone. We select [𝑛/2 + 1, 𝑛] and 𝑘 ∈ [1, 𝑛/2]
as the ID space, denoted by 𝐼𝐷𝑏. We choose 𝑣𝑏0 = 𝑘 as the initial vertex of 𝑏, and
construct 𝐺 (𝑏,𝑘) by also using Lemma 22.

Now we consider a directed bipartite graph 𝐺′ = ([1, 𝑛/2], [𝑛/2 + 1, 𝑛], 𝐸). The
edge set 𝐸 is defined as 𝐸 = {(𝑥, 𝑦) | (𝑥 = 𝑗 ∧ 𝑦 ∈ 𝑊(𝑎, 𝑗)) ∨ (𝑥 = 𝑘 ∧ 𝑦 ∈ 𝑊(𝑏,𝑘)))} for
all 𝑗 and 𝑘 . Since we have |𝑊(𝑎, 𝑗) | ≥ (13/32)𝑛 > 𝑛/4 and |𝑊(𝑏,𝑘) | ≥ (13/32)𝑛 > 𝑛/4
for all 𝑗 and 𝑘 , the total number of directed edges is more than (𝑛/2 · 𝑛/4) · 2 = 𝑛2/4.
This means that there exists at least one pair ( 𝑗 , 𝑘) such that both ( 𝑗 , 𝑘) and (𝑘 , 𝑗)
are contained in 𝐸 . Finally we construct the whole graph instance. Prepare 𝐺𝑎, 𝑗
and 𝐺𝑏𝑘 as the subgraphs of the constructed instance. Then we add an edge between
𝑗 and 𝑘 . We augment edges between any vertices in 𝑊(𝑎, 𝑗) \ {𝑘} and in 𝑊(𝑏,𝑘) \{ 𝑗}
respectively. By the condition (ii) of Lemma 22, it is easy to verify that the minimum
degree of the constructed instance is Θ(𝑛). In this graph, consider the execution of
A where two agents 𝑎 and 𝑏 are respectively located at 𝑗 and 𝑘 . By the condition (i)
of Lemma 22, it is guaranteed that each agent does not pass through edge ( 𝑗 , 𝑘) in
the first consecutive 𝑛/32 rounds. That is, the algorithm does not achieve rendezvous
within 𝑓 (𝑛) rounds. This is a contradiction. 2
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Algorithm 5 Construct
1: while 𝑅𝑖 ≠ ∅ do
2: 𝐻′← Sample(𝑁+(𝑆𝑎𝑖 ) \ 𝑁+(𝑆𝑎𝑖−1), 𝛿/8);
3: 𝐻𝑖+1 ← 𝐻𝑖 ∪ 𝐻′;
4: 𝑅𝑖+1 ← 𝑁+(𝑣𝑎0) \ 𝐻𝑖+1;
5: if 𝑅𝑖+1 ≠ ∅ then
6: for 𝑗 = 1 to ⌈4 log 𝑛⌉ do
7: choose 𝑢 𝑗 ∈ 𝑅𝑖+1 uniformly at random;
8: visit 𝑢 𝑗 ;
9: compute |𝑁+(𝑆𝑎𝑖 ) ∩ 𝑁+(𝑢 𝑗 ) | using NS𝑎𝑖 ;

10: if 𝑢 𝑗 is 𝛿/2-light for 𝑁+(𝑆𝑎𝑖 ) then
11: 𝑥𝑖 ← 𝑢 𝑗

12: 𝑆𝑎𝑖+1 ← 𝑆𝑎𝑖 ∪ {𝑥𝑖};
13: 𝑅𝑖+1 ← 𝑅𝑖+1 \ {𝑥𝑖};
14: break;
15: end if
16: end for
17: if Each 𝑢 𝑗 is 𝛿/2-heavy for 𝑁+(𝑆𝑎𝑖 ) then
18: 𝐻′← Sample(𝑁+(𝑆𝑎𝑖 ), 𝛿/8);
19: 𝐻𝑖+1 ← 𝐻𝑖+1 ∪ 𝐻′;
20: 𝑅𝑖+1 ← 𝑁 (𝑣𝑎0) \ 𝐻𝑖+1;
21: if 𝑅𝑖+1 ≠ ∅ then
22: choose any vertex 𝑥𝑖 ∈ 𝑅𝑖+1;
23: 𝑆𝑎𝑖+1 ← 𝑆𝑎𝑖 ∪ {𝑥𝑖};
24: NS𝑎𝑖 ← NS𝑎𝑖 ∪ 𝑁+(𝑥𝑖);
25: 𝑅𝑖+1 ← 𝑅𝑖+1 \ {𝑥𝑖};
26: end if
27: end if
28: end if
29: 𝑖 ← 𝑖 + 1
30: end while
31: return 𝑁+(𝑆𝑎𝑖 )
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Algorithm 6 Rendezvous-without-Whiteboards
Operations of Agent 𝐴

1: Construct
2: wait until 𝑡 = 𝑐1

(
𝑛′ log2 𝑛

𝛿

)
3: for all 𝑢 ∈ 𝑇𝑎 do
4: Φ𝑎 ← Φ𝑎 ∪ {𝑢} with probability 4 log 𝑛√

𝛿
5: end for
6: for 𝑖 = 1 to ⌈𝑛/

√
𝛿⌉ do

7: for all 𝑢 ∈ Φ𝑎 ∩ I𝑖 do
8: visit 𝑢
9: wait on 𝑢 until ⌈4𝑐2 log 𝑛⌉ time (including the round moving to 𝑢)

10: return to 𝑣𝑎0
11: end for
12: wait on 𝑣𝑎0 until time 𝑐1

(
𝑛′ log2 𝑛

𝛿

)
+ 𝑖⌈4𝑐2 log 𝑛⌉2

13: end for
Operations of Agent 𝐵

1: for all 𝑢 ∈ 𝑁+(𝑣𝑏0 ) do
2: Φ𝑏 ← Φ𝑏 ∪ {𝑢} with probability 4 log 𝑛√

𝛿
3: end for
4: wait until 𝑡 = 𝑐1

(
𝑛′ log2 𝑛

𝛿

)
5: for 𝑖 = 1 to ⌈𝑛/

√
𝛿⌉ do

6: for 𝑗 = 1 to ⌈4𝑐2 log 𝑛⌉ do
7: for all 𝑢 ∈ Φ𝑏 ∩ I𝑖 do
8: visit 𝑢
9: wait two time units on 𝑣𝑏0

10: return to 𝑣𝑏0
11: end for
12: end for
13: wait on 𝑣𝑏0 until 𝑡 = 𝑐1

(
𝑛′ log2 𝑛

𝛿

)
+ 𝑖⌈4𝑐2 log 𝑛⌉2

14: end for
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Chapter 4

Concluding Remarks

In this dissertation, we considered the sub-linear time solvability of the two problems
in autonomous and passively mobile agent systems. Specifically, for the passively
mobile agent system, we considered the aggregation problem in probabilistic popu-
lation protocol model, and we propose a sufficient condition for the sub-linear time
solvability of the problem in the model. On the other hand, for the autonomous
mobile agent system we consider the rendezvous problem in graphical mobile agent
system, and we propose the minimal condition for the sub-linear time solvability of
the problem. Our result is summarized as follows.

Sub-linear time Aggregation in Probabilistic Population Protocol Model

In chapter 2, we proposed a new aggregation algorithm that converges in𝑂 (√𝑛 log2 𝑛)
parallel time with high probability and uses 𝑂 ( |𝑋 |2) states per ordinary agent. To
the best of our knowledge, this is the first algorithm attaining a sub-linear running
time which does not depends on the alphabet size |𝑋 |. We should point out that our
algorithm does not guarantee the stability of executions. That is, though the failure
probability is quite small, the system converges to a wrong output and never recovers.

A future research direction is to design a much faster convergence algorithm
achieving polylogarithmic convergent time. Another challenging problem is to design
a (relatively) faster algorithm not relying on the existence of the base station or a leader.

Fast Neighborhood Rendezvous

In chapter 3, we consider the neighborhood rendezvous problem, and propose two
randomized algorithms for solving it. The first algorithm achieves rendezvous in
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𝑂

(
𝑛
𝛿 log3 𝑛 +

√
𝑛Δ
𝛿 log 𝑛

)
rounds with high probability for graphs of minimum degree

𝛿 = 𝜔(√𝑛 log 𝑛). The second algorithm achieves rendezvous in𝑂
(
𝑛
𝛿 log2 𝑛 + 𝑛√

𝛿
log2 𝑛

)
rounds with high probability. It does not use whiteboards. We also presented four
impossibility results for sub-linear time rendezvous, where each result respectively
considers four unconventional assumptions of our algorithm, that is, bounded mini-
mum degrees, accessibility to neighborhood IDs, initial distance one, and random-
ization. One can obtain the Ω(𝑛)-round lower bound if either of them is removed.
Therefore we conclude that our algorithms run under a minimal assumption.
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