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Abstract—In industrial servo systems, cascade feedback (FB)
control systems are widely used for the high-speed and high-
accuracy positioning control. In general, since the parameter
design for the multiple controllers is a time-consuming task
that requires expert skills for designers, development of an
autonomous design method based on mathematical optimization
becomes a major challenge. In this paper, a cooperative opti-
mization method presented recently for single-loop FB controller
design is applied to an example position/velocity cascade con-
troller design for a laboratory piezoelectric-driven fast steering
mirror, in comparison with the conventional autonomous design
method based on a genetic algorithm (GA). In addition, a
practical feasible initial parameter design method in cooperative
optimization for the cascade controller design is newly presented
to realize the efficient autonomous design.

Index Terms—autonomous design, cascade feedback control
system, cooperative optimization, fast steering mirror, sensitivity
characteristic

I. INTRODUCTION

One of the major design requirements for the high-speed and
high-accuracy positioning control of industrial servo systems
is making the feedback (FB) control system less sensitive to
disturbance. Cascade systems with an inner loop and outer
loop are widely used in industry, and such systems achieve
excellent low-sensitivity characteristics [1]–[4]. In addition, as
multiple element compensators such as a PID compensator and
a notch filter are utilized in the systems, the parameters of the
compensators can be more easily tuned by manual than those
of an unfixed structure FB controller such as an H∞ output
FB controller [5]. However, the sensitivity characteristics are
affected by the characteristics of all control loops; hence, the
FB controller parameters of each loop need to be optimized to
achieve low sensitivity. In particular, when controlling servo
systems with high-order resonant modes, higher-order con-
troller structures require more parameters to robustly stabilize

the resonant modes, which involves significant design work
for the designer.

To address this issue, autonomous parameter design meth-
ods based on mathematical optimization have been proposed
to reduce the design work. These methods are categorized
into two main types: iterative and metaheuristic methods. A
design method based on an iterative method is outlined in
[6], which proposes an autonomous design method for a P-PI
cascade control system with a notch filter based on a non-
smooth optimization method [7]. By formulating the problem
to optimize all FB controller parameters at once, this method
enables parameter design that maximizes frequency bands with
low sensitivity. However, the optimization problem is a non-
convex problem, and the initial parameters (initial point) in the
solution need to be adjusted by trial and error to obtain the
required sensitivity characteristics, which is generally difficult.
Meanwhile, metaheuristic-based design methods that do not
require the precise setting of initial point have been proposed.
For example, [8]–[10] propose autonomous parameter design
methods based on genetic algorithms (GA) and neural net-
works. However, in general, there are concerns that design
times will increase when the system involves a large number of
design parameters. Therefore, improved efficient optimization
methods for cascade control systems are greatly desired.

In [11], a cooperative optimization method combining it-
erative sequential quadratic programming (SQP) and a meta-
heuristic GA has been presented to autonomously design a
single-loop FB control system. The cooperative optimization
method provides the fast and efficient optimization for FB
controller parameters by combining SQP and GA; however,
its effectiveness in a cascade control system has not yet been
confirmed. In this study, we will formulate the optimization
problem of FB controller parameters in a cascade control
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Fig. 1. Block diagram of cascade control system.

system for the cooperative optimization, and newly derive a
practical feasible initial point condition to realize the effi-
cient cascade controller design. The cooperative optimization
method is applied to an example autonomous design problem
of a position/velocity cascade control system for a laboratory
piezoelectric-driven fast steering mirror (FSM). The effective-
ness of the cooperative optimization method is verified by
comparing the design efficiency with that of a conventional
GA-based design method.

II. DESIGN PROBLEM OF A CASCADE CONTROL SYSTEM

In this study, we will consider the position/velocity cascade
control system shown in Fig. 1. Here, P (s): plant (FSM),
Cp(s): P controller for position control, Cv(s): PI controller
and notch filter for velocity control, FD(s): an approximate
differentiator, rp: position command, rv: velocity command,
yp: position, yv: velocity, uFB: FB control input, u: control in-
put, d: disturbance. Cp(s), Cv(s), and FD(s) can be expressed
by the following equations.

Cp(s)=Kpp (1)

Cv(s)=

(
Kvp+

Kvi

s

)Nv∏
i=1

s2 + 2ζvniωvis+ ω2
vi

s2 + 2ζvdiωvis+ ω2
vi

(2)

FD(s) =
s

1
ωD
s+ 1

(3)

In the equations above, Kpp and Kvp: proportional gains,
Kvi: integral gain, Nv: the number of stages of notch filter,
ζvni and ζvdi: damping coefficients, ωvi: center frequency, and
ωD: the cutoff frequency of low-pass filter for approximate
differentiation. The purpose of the notch filter in Cv(s) is to
stabilize the resonance mode of P (s) using the gain/phase
stabilization method [6], which allows Cp(s) and Cv(s) to
have higher gains.

The design problem in this study is to enable autonomous
design to set all the parameters of Cp(s), Cv(s), and FD(s)
in (4) such that they satisfy the desired stability margin for
P (s) (gain margin gm [dB] and phase margin φm [deg]), as
well as maximize the band with low sensitivity to disturbance
d.

ρ = [Kpp Kvp Kvi ζvni ζvdi ωvi ωD] ,

i = 1, · · · , Nv (4)

III. GA-BASED AUTONOMOUS PARAMETER DESIGN
METHOD

In this section, we define the method of optimizing the
parameters ρ in (4) using a GA.
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Fig. 2. Stability constraint for Nyquist trajectory.

A. Objective function considering expansion of low-sensitivity
band

We formulate an objective function, considering the need
to bring the actual sensitivity characteristic S(jω)

(
= u(jω)

d(jω)

)
of the cascade control system closer to the ideal sensitivity
characteristic Sds(jω) [3], [11]. The following equation shows
the actual sensitivity characteristic S(jω) of the cascade
control system in Fig. 1.

S(jω) =
u(jω)

d(jω)
=

1

1 + L(jω,ρ)
(5)

L(jω,ρ) = (Cp(jω) + FD(jω))Cv(jω)P (jω) (6)

In (5), L(jω,ρ) is the actual open-loop characteristic of the
cascade control system. We then define the ideal open-loop
characteristic Lds(jω) in (7) from Sds(jω) and evaluate the
objective function Jobj(ρ) representing the distance between
the actual open-loop characteristics L(jω,ρ) and Lds(jω) in
(8). Ωobj

m (m = 1, · · · , Nobj) is the discrete frequency for
evaluation.

Lds(jω) =
1− Sds(jω)

Sds(jω)
(7)

Jobj(ρ) =

Nobj∑
m=1

∣∣Lds(jΩ
obj
m )− L(jΩobj

m ,ρ)
∣∣ (8)

B. Stability constraints on the cascade control system

Fig. 2 shows a Nyquist trajectory of the open-loop charac-
teristic L(jω,ρ). In this figure, the circle Csm with its center
at (−σsm, j0) and radius rsm define the stability margin. The
point where Csm intersects with the real axis corresponds to
the gain margin gm(= 20 log10Gm) [dB]. The points where
Csm intersects with the unit circle centered at the origin
correspond to the phase margin φm(= 180Φm/π) [deg]. lsm
is a straight line passing through (−1, j0) at angle a.

The stability margins are ensured by making the Nyquist
trajectory L(jΩsm

n ,ρ) at the discrete frequency Ωsm
n pass



through the region outside Csm [12] and to the right side of
lsm, expressed by the following stability constraints.

hCsm(Ωsm
n ,ρ)= |L(jΩsm

n ,ρ) + σsm|2 − r2
sm ≥ 0 (9)

hlsm(Ωsm
n ,ρ) = a (Re [L(jΩsm

n ,ρ)] + 1)

− Im [L(jΩsm
n ,ρ)] ≥ 0 (10)

Note that the line lsm is a constraint that prevents the Nyquist
trajectory L(jΩsm

n ,ρ) at low frequencies from passing through
the upper part of Csm in the second quadrant.

C. Optimization problem

The optimization problem of parameter ρ by the GA is
represented as follows, considering (8)–(10).

min
ρ

Jobj(ρ)

+

Nsm∑
n=1

{JCsm(Ωsm
n ,ρ) + Jlsm(Ωsm

n ,ρ)} (11)

JCsm(Ωsm
n ,ρ) =

{
WCsm (hCsm(Ωsm

n ,ρ) < 0)

0 (hCsm(Ωsm
n ,ρ) ≥ 0)

(12)

Jlsm(Ωsm
n ,ρ) =

{
Wlsm (hlsm(Ωsm

n ,ρ) < 0)

0 (hlsm(Ωsm
n ,ρ) ≥ 0)

(13)

In (11), JCsm(Ωsm
n ,ρ) and Jlsm(Ωsm

n ,ρ) are penalty terms
for the constraints in (9) and (10), respectively. WCsm and
Wlsm are weight values. Penalties are imposed on Nsm-point
discrete frequencies. The GA method can search for the values
of ρ that maximize the low-sensitivity band while maintaining
stability. However, (11) is a non-convex optimization problem;
hence, there are concerns that design will take longer when
there are a large number of parameters.

IV. COOPERATIVE OPTIMIZATION-BASED AUTONOMOUS
PARAMETER DESIGN METHOD

A. Autonomous design algorithm

Fig. 3 shows a flowchart of the autonomous parameter
design algorithm. In this chart, ρSQP is a PI parameter vector
and Cv(s) can be expressed using ρSQP as follows.

Cv(s)=Ψv
GA(s)ρ>SQP (14)

Ψv
GA(s) =

[
1

1

s

] Nv∏
i=1

s2 + 2ζvniωvis+ ω2
vi

s2 + 2ζvdiωvis+ ω2
vi

(15)

ρSQP =
[
Kvp Kvi

]
∈ R1×2 (16)

ρGA is a vector of the parameters other than ρSQP and is
defined by the following equation.

ρGA =
[
Kpp ζvni ζvdi ωvi ωD

]
, i = 1, · · ·, Nv (17)

Based on [12], ρSQP and ρGA are designed via cooperative
optimization using SQP and GA, respectively. The procedure
of the design algorithm is as follows.

Step 1 Initialize the counter α to α := 1 as the number of
generations of GA, and randomly generate Nind

individuals as the initial population of ρGA.

Step 2
Obtain ρSQP and fitness fSQP

Step 3
Evaluate fitness set of fSQP and

obtain elite para. of ρSQP and ρGA

Step 4

α < Npara?

Obtain (sub-)optimal parameters
Step 6

Yes

Start

End

Step 1
Generate initial population of ρGA

Step 5
Generate new ρGA

α := 1

ρGA

fSQP

α := α+ 1

NoρSQP,ρGA

Fig. 3. Flowchart of autonomous FB controller design method.

Step 2 Use SQP to solve the constrained optimization
problem of ρSQP for ρGA of Nind individuals
and determine the fitness value fSQP for Nind

individuals. SQP performs optimization from a
fixed initial point ρIP

SQP.
Step 3 Use GA to compare Nind fitness values fSQP

obtained in Step 2 to obtain the elite parameters
of ρSQP and ρGA.

Step 4 If the GA optimization count α exceeds Npara,
end the search and go to Step 6. Otherwise, set
α := α+1 and go to Step 5 to perform parameter
search again.

Step 5 Perform tournament selection, single-point
crossover, and genetic operation of mutation to
generate a new population of ρGA, then go to
Step 2.

Step 6 Obtain the elite parameters of ρSQP and ρGA in
the Npara-th generation as the best FB control
parameters.

B. Optimization problem of SQP

In this section, we discuss the optimization problem solved
by SQP in Step 2 of Fig. 3. First, reformulate (8) by (18) as
the objective function of ρSQP.

Jobj(ρSQP) =

Nobj∑
m=1

√
[1 ρSQP]Qm

o [1 ρSQP]
> (18)



In (18), Qm
o is defined by the following equations.

Qm
o = Re

[
Y >o (jΩobj

m )
]

Re
[
Yo(jΩobj

m )
]

+ Im
[
Y >o (jΩobj

m )
]

Im
[
Yo(jΩobj

m )
]
∈ R3×3 (19)

Yo(jΩobj
m ) =

[
Lds(jΩ

obj
m )

−P (jΩobj
m )ΨGA(jΩobj

m )
]
∈ C1×3 (20)

ΨGA(jΩobj
m ) = Ψv

GA(jΩobj
m )

(
Cp(jΩobj

m )

+FD(jΩobj
m )
)
∈ C1×2 (21)

Subsequently, reformulate (9) as a constraint of ρSQP as

hCsm(Ωsm
n ,ρSQP)

= [1 ρSQP]Qn
sm [1 ρSQP]

> − r2
sm ≥ 0. (22)

Qn
sm in (22) is defined by the following equations.

Qn
sm = Re

[
Y >sm(jΩsm

n )
]

Re [Ysm(jΩsm
n )]

+ Im
[
Y >sm(jΩsm

n )
]

Im [Ysm(jΩsm
n )] ∈ R3×3 (23)

Ysm(jΩsm
n ) = [σsm

P (jΩsm
n )ΨGA(jΩsm

n )] ∈ C1×3 (24)
ΨGA(jΩsm

n ) = Ψv
GA(jΩsm

n ) (Cp(jΩsm
n )

+FD(jΩsm
n )) ∈ C1×2 (25)

For more details on equations (18) and (22), see [12]. From
(18) and (22), the parameter optimization problem of ρSQP

is expressed by (26). Using SQP, we can obtain the value of
ρSQP that achieves low sensitivity and also ensures the desired
stability margin.

min
ρSQP

Jobj(ρSQP)

subject to hCsm(Ωsm
n ,ρSQP) ≥ 0,

n = 1, · · · , Nsm (26)

Here, let the fitness value fSQP be the minimum value of the
constrained optimization problem in (26).

C. Initial point setting

The optimization problem of (26) is defined depending on
ρGA, setting a feasible initial point for ρSQP regardless of
ρGA is necessary for avoiding to stuck the optimization [12].
Therefore, a practical initial point condition for the cascade
control system is derived to realize the efficient autonomous
design. Because deriving a condition that satisfies (22) for all
parameters is difficult, we define the initial point ρIP

SQP as
ρIP

SQP =
[
0 KIP

vi

]
and set KIP

vi (> 0) such that ρIP
SQP becomes

feasible for any ρGA generated by the GA. To clarify the
sufficient condition of KIP

vi for (22), the conceptual Nyquist
diagram is shown in Fig. 2, where Ccon is the circle with radius
σsm − rsm centered on the origin and tangent to Csm. The
sufficient condition is the Nyquist trajectory L(jΩsm

n ,ρIP
SQP)

being described in Ccon as follows.∣∣L(jΩsm
n ,ρIP

SQP)
∣∣ ≤ σsm − rsm, n = 1, · · · , Nsm (27)

By using (6), the left term of (27) satisfies the following
inequality, considering that the gains of notch filters are below

unit at all Ωsm
n . In (28), ∗ is defined as a lower bound and ∗

is defined as a upper bound.∣∣L(jΩsm
n ,ρIP

SQP)
∣∣

≤

∣∣∣∣∣Kpp +
jΩsm

n

j
Ωsm

n

ωD
+ 1

∣∣∣∣∣
∣∣∣∣ KIP

vi

jΩsm
n

∣∣∣∣ |P (jΩsm
n )|

<

√√√√√√
(
Kpp

ωD
+ 1
)2

Ωsm
n

2
+Kpp

2(
Ωsm

n

ωD

)2

+ 1

· K
IP
vi

Ωsm
n

·max
n
|P (jΩsm

n )| (28)

Therefore, the condition for KIP
vi is derived by (29) and (30).

0 < KIP
vi ≤ κ (29)

κ =
(σsm − rsm) Ωsm

n

maxn |P (jΩsm
n )|

√√√√√√
(

Ωsm
n

ωD

)2

+ 1(
Kpp

ωD
+ 1
)2

Ωsm
n

2
+Kpp

2
(30)

D. Optimization problem of GA

In this section, we discuss the optimization problem solved
using the GA in Step 3 of Fig. 3. The Nind fitness values fSQP

obtained in Step 2 are treated as the fitness values, and the GA
obtains the elite parameters of ρGA based on the following
optimization problem.

min
ρGA

{
f

(1)
SQP, f

(2)
SQP, · · · , f

(Nind−1)
SQP , f

(Nind)
SQP

}
(31)

The penalty term from (13) is applied to fSQP in (31) to
consider the constraint in (10), which is expressed as

fSQP := fSQP +

Nsm∑
n=1

Jlsm(Ωsm
n ,ρSQP,ρGA) (32)

Jlsm in (32) is calculated from ρSQP and ρGA. In parameter
design using the cooperative optimization method, ρSQP and
ρGA are optimized using SQP and GA, respectively. Note
that even if the autonomous design is performed, there is no
guarantee that the frequency of the notch filter will become
the resonance frequency.

V. SIMULATION EVALUATION

A. Piezoelectric-driven fast steering mirror (FSM)

Fig. 4 shows the appearance of the laboratory FSM used as
the object of control. The test setup comprises a mirror for
reflecting a laser and a tilt stage driven by the piezoelectric
actuator (PI, S-331.5SL), and the mirror is fixed to the tilt
stage. The mirror tilt angle θs(s) detected by the built-in strain
gauge sensors via the amplifier (PI, E-505.10) and is fed
back to the servo control system (dSPACE, MicroLabBox).
The voltage for the piezoelectric actuator is controlled by
the amplifier according to the voltage command Vref(= uFB)
calculated in the servo control system.
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Fig. 4. Exterior of the laboratory FSM.

Fig. 5. Frequency characteristics of the plant model.

The mathematical model P (s) = θs(s)/Vref(s) from the
piezoelectric actuator voltage command to the mirror angle
θs(= yp) is defined by the following equation.

P (s)=e−TDs
Kgωamp

s+ ωamp

7∑
κ=1

kκ
s2 + 2ζκωκs+ ω2

κ

(33)

Here, Kg: steady-state gain, including the voltage amplifier,
FSM, and sensor, ωamp: cutoff frequency of voltage amplifier,
ωκ: mode resonance frequency, ζκ: modal damping coefficient,
kκ: modal gain, and TD: equivalent dead time.

Fig. 5 shows the frequency characteristics of the plant model
P (jω) in (33). The FSM is a mechanical system that has
multiple resonance modes and the main resonance is at 2π ×
8540 rad/s.

B. Design specifications

The positioning performance of the FSM is adversely af-
fected by the nonlinear characteristics of hysteresis and creep.
To mitigate these effects, the FB control system is required to
have low sensitivity in the low-frequency band. In this study,
we reduce the sensitivity characteristic gain below 4 kHz by
expanding the control band, stabilizing the resonant modes.
we set a gain margin of gm = 5 dB and a phase margin of
φm = 30 deg as stability specifications.

C. Application to autonomous design method

From Sect. V-A, a Nv = 1 stage notch filter is used
to provide the velocity controller Cv(s) for stabilizing the
resonance modes of the FSM. Therefore, the parameters ρSQP

TABLE I
PARAMETER SEARCH RANGE OF ρSQP AND ρGA .

Parameter Lower bound ∗ Upper bound ∗
Kvp 0 1.0× 10−5

Kvi 0 1.0× 10
Kpp 1.0× 103 2.0× 106

ζvn1 1.0× 10−2 1.2
ζvd1 1.0× 10−1 1.2
ωv1 [rad/s] 2π × 5000 2π × 20000
ωD [rad/s] 2π × 500 2π × 20000

TABLE II
PARAMETERS OF THE DESIRED SENSITIVITY Sds(s).

kds ωds [rad/s]
1.0 2π × 4000

TABLE III
PARAMETERS OF THE STABILITY CONSTRAINT.

σsm rsm a WCsm Wlsm

1.13 0.56 5 1.0× 105 1.0× 105

TABLE IV
SETTINGS OF GENETIC OPERATION.

Number of parameter optimization Npara 200
Number of individuals Nind 10
Selection rate 1.00
Crossover rate 0.99
Mutation rate 0.08

and ρGA designed using cooperative optimization can be
defined as follows.

ρSQP =
[
Kvp Kvi

]
∈ R1×2 (34)

ρGA =
[
Kpp ζvn1 ζvd1 ωv1 ωD

]
∈ R1×5 (35)

Table I shows the search range for (34) and (35). In this study,
the search range is determined through the trial and error
to obtain fine parameters. The same search range is set for
parameter ρ in the GA-based autonomous design.

Subsequently, from Sect. V-B, the ideal sensitivity charac-
teristic Sds(s) is defined by the following equation, consider-
ing the proportional compensation of the position controller
Cp(s) in the low frequency range, the integral compensation
of the velocity controller Cv(s), and the steady-state gain
characteristics of the FSM.

Sds(s) =
kdss

s+ ωds
(36)

Here, the parameters in Table II were applied to kds and ωds

such that Sds(s) satisfies a high-pass characteristic with the
cutoff frequency of 4 kHz. The objective function Jobj(ρSQP)
was set to Nobj = 668 frequencies logarithmically spaced
between Ωobj

m = 2π × {100, · · · , 4000} rad/s.
Subsequently, considering the gain margin gm = 5 dB and

phase margin φm = 30 deg, we formulated stability constraints
for σsm and rsm using the parameters in Table III. The angle a



Fig. 6. Feasible Nyquist trajectories (reduced view).

Fig. 7. Feasible Nyquist trajectories (magnified view).

of straight line lsm and the weight values WCsm and Wlsm are
also shown in Table III. The stability constraint was imposed
at Nsm = 1000 frequencies logarithmically spaced between
Ωsm
n = 2π×{100, · · · , 25000} rad/s. Note that Ωobj

m and Ωsm
n

can be either logarithmically or linearly spaced.
Finally, κ in (30) was calculated as κ = 6.6 × 10−7, and

KIP
vi is manually defined as KIP

vi := κ. The initial point of SQP
in the cooperative optimization method was set as ρIP

SQP =
[0 6.6 × 10−7]. Table IV shows the GA settings. The GA
settings for the conventional GA-based method are the same
as those in Table IV, but the number of generations Npara is
set to Npara = 1000. The FB controller design was performed
on a computer (CPU: Intel R© Xeon R© Gold 6230, memory:
128 GB) using MATLAB R©. We used the fmincon command
from Optimization Toolbox

TM
for the SQP optimization, and

our own program for the GA optimization.

D. Effect of the Proposed Initial Point Setting

To verify the effectiveness of the proposed initial point
setting method, 10 sets of ρGA within the range of Table I were
randomly prepared, and the respective Nyquist trajectories at
the initial point ρIP

SQP are shown in Fig. 6 and Fig. 7. From the
figures, all Nyquist trajectories are described inside Ccon and
outside Csm. Therefore, ρIP

SQP successfully works as a feasible
initial point regardless of any ρGA, as explained in Sect. IV-C.

E. Comparison of design efficiency

Fig. 8 shows the elite fitness values obtained by the coopera-
tive optimization (CoOP) and the conventional GA-based (GA)
methods. Both methods were implemented three times each.

Fig. 8. Elite fitness values.

As shown in Fig. 8, the cooperative optimization method op-
timized the parameters more efficiently than the conventional
GA-based method every time without getting optimization
stuck. In particular, considering the final fitness, the average
value obtained with the cooperative optimization method was
1613, which was 42 % lower than the average value of 2803
obtained with the conventional GA-based method.

F. Comparison of frequency characteristics

Table V lists the parameters designed using the cooperative
optimization and the conventional GA-based methods. The
table shows the best fitness values from the three tests for
each method. From Table V, the gains of both the position and
velocity controllers of the cooperative optimization method
are larger than those of the conventional GA-based method.
Fig. 9 shows the frequency characteristics of the integrated
FB controller Call(jω)(:= (Cp(jω) + FD(jω))Cv(jω)). The
cooperative optimization method yields a gain 1.45 dB higher
than that of the conventional GA-based method below 1 kHz.
As the main resonance mode at 2π×8540 rad/s shown in Fig. 5
is in phase with −180 deg, the notch filter of the controller
serves as a gain stabilizer. On the other hand, focusing on the
high frequency region, band rejection properties are observed
around the primary resonant mode in both methods. Figs. 10–
12 show the open-loop characteristics, Nyquist plot, and
sensitivity gain characteristics. In the open-loop characteris-
tics shown in Fig. 10, the cooperative optimization method
achieves a higher gain than that of the conventional GA-
based method. The Nyquist plot shown in Fig. 11 satisfies
the stability constraints specified by Csm and lsm while sta-
bilizing the resonance modes. Finally, in the sensitivity gain
characteristics shown in Fig. 12, the cooperative optimization
method achieves a sensitivity 1.4 dB lower than that of the
conventional method at 1 kHz or less. This indicates that
effective optimization can be achieved, which confirms the
effectiveness of the cooperative optimization method.

VI. CONCLUSION

In this paper, we adopted an autonomous design method
based on a cooperative optimization combining SQP and
GA for a position/velocity cascade FB control system. The



TABLE V
PARAMETERS OF THE FB CONTROLLER Cp(s), Cv(s), AND FD(s).

Parameter GA CoOP
Kvp 1.5× 10−6 2.2× 10−6

Kvi 1.4× 10−1 1.5× 10−1

Kpp 2.4× 105 2.7× 105

ζvn1 6.2× 10−2 5.1× 10−2

ζvd1 1.0 1.2
ωv1 [rad/s] 2π × 7927 2π × 7600
ωD [rad/s] 2π × 4553 2π × 17752

Fig. 9. FB controller Call(jω).

cooperative optimization method can efficiently determine
parameters that achieve low sensitivity while ensuring the
desired stability margin without getting optimization stuck for
the cascade control system. We confirmed the effectiveness
of the cooperative optimization method by comparing it with
the conventional GA-based method in an autonomous design
problem for a laboratory FSM. As a future research topic,
we would like to develop an autonomous design method with
considering the robust stability against the plant perturbation.
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