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Abstract— Fast and precise point-to-point (PTP) posi-
tioning control is a critical technology for improving the
throughput and product quality of industrial machines. This
study aims to investigate the frequency response function
(FRF) estimation method with differential filtering (ETFE-
Diff: empirical transfer function estimation with differential
filtering) that uses the input and output signals of PTP
motion during processing operation and to apply ETFE-
Diff to a feedforward (FF) compensation adjustment. In this
study, the principle of ETFE-Diff for FRF estimation was
clarified, compared to the existing FRF estimation methods,
i.e., empirical transfer function estimation and local rational
modeling. Moreover, the effectiveness of ETFE-Diff for FF
compensation adjustment in improving positioning accu-
racy of a galvano scanner as an industrial servo system
was experimentally demonstrated.

Index Terms—Differential filtering, empirical transfer
function estimation, frequency response function, leakage
error, local rational modeling, point-to-point positioning
control.

I. INTRODUCTION

AFast and precise point-to-point (PTP) positioning control
is essential to maintain high throughput and product

quality in many industrial machines such as electronics/semi-
conductor manufacturing machines, machine tools, and in-
dustrial robots [1]–[3]. In the design of a fine positioning
control for the aforementioned industrial machines, frequency
response function (FRF) is a basic and useful non-parametric
model, and the estimation accuracy has a significant effect
on the control performance [4]–[6]. However, during the
processing operation, FRFs of servo mechanisms generally
vary due to thermal effects, such as environmental temperature
and self-heating of actuators [7]–[9].

Some FRF estimation methods that are effective for fine
positioning control have been studied [10]–[13]. The most
popular FRF estimation methods in industry are based on
random/periodic noise excitation, multi-sine excitation, and
sine sweep, and a plant FRF is estimated from the discrete
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Fourier transforms (DFTs) of measurable input and output
signals of a plant based on the empirical transfer function
estimation (ETFE) or spectral analysis [10], [14], [15]. In
recent years, more powerful FRF estimation methods based
on the local frequency modeling concept, such as local poly-
nomial modeling (LPM) and local rational modeling (LRM),
have been proposed [10], [12], [13]. These methods can
achieve an accurate plant FRF by performing an experimental
identification test using an additional excitation signal in the
control system. Moreover, developmental studies for multi-
input-multi-output and linear parameter varying systems have
also been reported [16], [17]. However, as a trade-off, they
are not favored during the processing operation because the
additional excitation deteriorates the positioning accuracy. In
contrast, other FRF estimation methods that estimate a plant
FRF using measurable signals in a PTP positioning motion
have been studied [18], [19], and these methods do not require
additional excitation. However, an estimated FRF suffers from
a leakage error because the DFTs of PTP motion signals gener-
ally include leakage effects owing to non-periodicity. A band-
pass filter-based FRF estimation method has been presented
in [20] to address the issue in FRF estimation. Furthermore,
the differential filtering-based FRF estimation method (called
“ETFE-Diff: empirical transfer function estimation with dif-
ferential filtering” in this study) was proposed in [21], [22]
to enable FRF estimation in short-time-interval PTP motions.
Although the effectiveness of ETFE-Diff has been verified in
the literature, the principle of leakage error suppression, that
is, how a leakage error and a zero leakage error condition
are mathematically formulated, has not yet been established.
Additionally, the effectiveness of FRF estimation using PTP
motion signals for designing a fine positioning control is yet
to be clarified.

Therefore, this study investigates the FRF estimation princi-
ple of ETFE-Diff compared to ETFE as a classical method and
LRM as an advanced method, and applies ETFE-Diff to design
a fast and precise PTP positioning control. The contributions
of this study are as follows.

1) The FRF estimation principle of ETFE-Diff, that is, a
leakage error and a zero leakage error condition, was
newly clarified via a theoretical analysis. Moreover, it
was demonstrated via numerical experiments that ETFE-
Diff can acquire an accurate FRF estimate when the
zero leakage error condition holds in a PTP positioning
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TABLE I
LIST OF ABBREVIATIONS.

Abbreviation Definition
FRF Frequency Response Function
DFT Discrete Fourier Transform
PTP Point-To-Point
ETFE Empirical Transfer Function Estimation
LPM Local Polynomial Modeling
LRM Local Rational Modeling
ETFE-Diff Empirical Transfer Function Estimation

with Differential Filtering
FF Feedforward
FB Feedback
DSP Digital Signal Processor

motion.
2) It was experimentally demonstrated that ETFE-Diff can

precisely estimate the plant FRF and effectively adjust
an FF compensation for variations in plant parameters
owing to environmental temperature changes.

The above experiments were performed using a galvano scan-
ner for printed circuit board laser processing machines as an
example of an industrial servo system.

Table I lists the abbreviations used in this paper.

II. FRF ESTIMATION USING PTP POSITIONING MOTION
SIGNALS

In this section, the principles of FRF estimation of ETFE,
LRM, and ETFE-Diff are explained, focusing on the leakage
error [12], [13]. In particular, concerning ETFE-Diff, math-
ematical formulations of a leakage error and a zero leakage
error condition are newly clarified as one of the significant
contributions of this study.

A. Problem Formulation
Consider a linear discrete-time single-input single-output

system P with input u and output y as shown in Fig. 1,
where additional disturbing noises or nonlinear effects are
neglected to simplify the discussion. The linear dynamics P
are described by the following n-th order state-space model:

xp(t+ 1) = Apxp(t) +Bpu(t)

y(t) = Cpxp(t)
(1)

where xp(t) is the state vector at a discrete time t, and
Ap,Bp, and Cp are the state matrices. The z-domain transfer
function of P can be represented as

P (z) = Cp(zI −Ap)
−1Bp (2)

The goal of the FRF estimation is to acquire an accurate
estimate of the plant FRF of P (z) from DFTs of the N -point
finite-length signals u(t) and y(t) with t = 0, 1, . . . , N − 1
measured in a PTP positioning motion, as shown in Fig. 2. As
a detailed problem statement, the following conditions should
be noted.
C1: The input u(t) and output y(t) are non-periodic, that is,

xp(0) ̸= xp(N).
C2: The plant is in a settled state at the start and end of the

PTP positioning motion, that is, xp(t ≤ −1) = xp(0)
and xp(t ≥ N) = xp(N − 1).

P
u y

Fig. 1. Representation of simplified FRF estimation problem.

u(t)

t
0 N

y(t)

t
0 N

Fig. 2. Example waveforms of u(t) and y(t) in a PTP positioning motion.

C3: The input u has a smooth frequency spectrum because
the PTP positioning motion is performed without addi-
tional excitation.

In general, it is well known that C1 causes a leakage error in
the DFT-based FRF estimation.

In this study, DFT of the N -point discrete-time signal x(t)
is defined as

X(k) =

N−1∑
t=0

x(t)e−j 2πkt
N , k = 0, 1, . . . , N − 1 (3)

where k is the index corresponding to the frequency Ωk =
2πk/(NTs) with the sampling time Ts.

B. Emprical Transfer Function Estimation (ETFE)
ETFE is the simplest and most practical FRF estimation

method based on DFT and is widely used in industrial appli-
cations [11], [14], [15]. From the state-space model of (1), the
frequency-domain formulation of y(t) is expressed as follows:

Y (k) = P (Ωk)U(k) + T (Ωk) (4)

with

P (Ωk) = Cp(e
jΩkTsI −Ap)

−1Bp

T (Ωk) = Cp(e
jΩkTsI −Ap)

−1ejΩkTs{xp(0)− xp(N)}
(5)

where U(k) and Y (k) are the DFTs of u(t) and y(t), respec-
tively, P (Ωk) is the plant FRF, and T (Ωk) is the leakage error,
which depends on the plant state vector xp(t) at t = 0, N . In
the classical ETFE, the FRF estimate P̂ETFE(Ωk) is simply
given by the ratio of Y (k) and U(k) as

P̂ETFE(Ωk) :=
Y (k)

U(k)
= P (Ωk) +

T (Ωk)

U(k)
(6)

From (5), the zero leakage error condition under which
T (Ωk) = 0 is derived as

xp(0) = xp(N) (7)
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As stated as C1 in II-A, because (7) does not hold in the PTP
motion and hence T (Ωk) ̸= 0, P̂ETFE(Ωk) clearly includes
estimation errors.

C. Local Rational Modeling (LRM)

LRM is an improved FRF estimation method that uses local
parametric models with the simple assumption that the plant
FRF P (Ωk) and leakage error T (Ωk) are closely related and
can be approximated by smooth functions of frequency at local
frequencies [13]. In LRM, P (Ωk) and T (Ωk) can be modeled
for the local frequencies k +w with w = 0,±1, . . . ,±Nw as
follows:

P̃ (k + w) =
ÑP(k + w)

D̃(k + w)
=

∑Q
q=0 θPq(k)w

q

1 +
∑Q

q=1 θDq(k)wq

T̃ (k + w) =
ÑT(k + w)

D̃(k + w)
=

∑Q
q=0 θTq(k)w

q

1 +
∑Q

q=1 θDq(k)wq

(8)

where θPq(k) is the numerator parameter of the plant FRF,
θTq(k) is the numerator parameter of the leakage error, θDq(k)
is the common denominator parameter, w is the integer number
used to define the local frequency window with a window size
of Nw, and Q is the integer number defining the order of the
polynomials. The parameters of the rational models can be
obtained by solving the following linear least-squares problem:

θ̂(k) = argmin
θ(k)

Nw∑
w=−Nw

∥D̃(k + w)Y (k + w)

− ÑP(k + w)U(k + w)− ÑT(k + w)∥2
(9)

with

θ(k) = {θP0(k), . . . ,θPQ(k), θT0(k), . . . , θTQ(k),

θD1(k), . . . , θDQ(k)}
(10)

By solving (9) for N frequencies, the FRF estimate P̂LRM(k)
for k = 0, 1, . . . , N − 1 is determined as

P̂LRM(k) := P̃ (k + 0) =
ÑP(k + 0)

D̃(k + 0)
= θ̂P0(k) (11)

It is known that LRM can separately estimate P (Ωk) and
T (Ωk) only when the input signal has a rough frequency
spectrum [10]. However, in general, the input signal in a PTP
positioning motion is not sufficiently rough in industrial servo
systems, and additional excitation during processing operation
is not favored because of deterioration of the positioning accu-
racy. Therefore, in this study, the LRM approach was directly
applied to the PTP motion signals without additional excitation
as stated as C3 in II-A to evaluate the FRF estimation ability.
For more details of LRM and its application examples, see
[10]–[13], [16], [17].

D. ETFE with Differential Filtering (ETFE-Diff)

The FRF estimation with differential filtering presented in
[21] can be interpreted as a type of ETFE because the FRF
estimation approach is similar to ETFE (so it is called “ETFE
with differential filtering” in this study). In this section, how

u
P (z)

y

Fdiff(z)

DFT

Fdiff(z)

DFT÷ ×

P̂ETFE−Diff(Ωk)

Udiff(k) Ydiff(k)

udiff ydiff

FRF estimation system

Fig. 3. Block diagram of FRF estimation system in ETFE-Diff.

a leakage error in ETFE-Diff is described by applying the
differential filtering is clarified, compared to ETFE. Moreover,
a zero leakage error condition in ETFE-Diff is theoretically
derived.

Fig. 3 shows a block diagram of the FRF estimation system
in ETFE-Diff, where “DFT” is the DFT calculation part,
P̂ETFE−Diff(Ωk) is the plant FRF estimate, Fdiff(z) is the
differential filter Fdiff(z) = 1 − z−1, udiff is the filtered
input, ydiff is the filtered output, Udiff(k) is the DFT of udiff ,
and Ydiff(k) is the DFT of ydiff . In this system, first, the N -
point time-domain difference signals udiff(t) and ydiff(t) with
t = 0, 1, . . . , N − 1 are calculated from the measured signals
u(t) and y(t):

udiff(t) = u(t)− u(t− 1)

ydiff(t) = y(t)− y(t− 1)
(12)

Then, DFTs Udiff(k) and Ydiff(k) of (12) are calculated, and
the FRF estimate P̂ETFE−Diff(Ωk) is determined by (13) as
the ratio of Udiff(k) and Ydiff(k) in the same way as ETFE.

P̂ETFE−Diff(Ωk) :=
Ydiff(k)

Udiff(k)
(13)

To clarify a leakage error in ETFE-Diff, the state-space
expression of Fdiff(z) for output is defined as

xf(t+ 1) = y(t)

ydiff(t) = −xf(t) + y(t)
(14)

By combining (1) and (14), the augmented system from u(t)
to ydiff(t) in Fig. 3 is formulated as follows:[

xp(t+ 1)
xf(t+ 1)

]
=

[
Ap O
Cp 0

] [
xp(t)
xf(t)

]
+

[
Bp

0

]
u(t)

ydiff(t) =
[
Cp −1

] [xp(t)
xf(t)

] (15)

In this case, the DFT Ydiff(k) is described as follows:

Ydiff(k) = (1− e−jΩkTs){P (Ωk)U(k) + T (Ωk)}
− {xf(0)− xf(N)}

(16)
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Here, the DFT U(k) is expressed by (17), considering
udiff(t) = u(t)− u(t− 1).

U(k) =

N−1∑
t=0

u(t)e−j 2πkt
N =

N−1∑
t=0

{u(t− 1) + udiff(t)}e−j 2πkt
N

= e−jΩkTs

N−1∑
t=0

u(t)e−j 2πkt
N +

N−1∑
t=0

udiff(t)e
−j 2πkt

N

+ u(−1)− u(N − 1)

= e−jΩkTsU(k) + Udiff(k) + u(−1)− u(N − 1)
(17)

By organizing (17) for U(k), the following equation can be
obtained.

U(k) = (1−e−jΩkTs)−1{Udiff(k)+u(−1)−u(N−1)} (18)

By substituting (18) to (16) and by expressing u(·) and xf(·)
with xp(·), Ydiff(k) is transformed as follows:

Ydiff(k) = P (Ωk)Udiff(k) + Tdiff(Ωk) (19)

with

Tdiff(Ωk) = T (Ωk)−Cp(e
jΩkTsI −Ap)

−1ejΩkTs

{xp(−1)− xp(N − 1)}
(20)

where Tdiff(Ωk) is the leakage error in ETFE-Diff, which is
expressed as the sum of the leakage error T (Ωk) in ETFE and
the additional term depending on the plant state vector xp(t)
at t = −1, N − 1. Hence, by applying the differential filtering
to the measured input and output signals, the additional term
changes the leakage error to be different from ETFE. From
(19) and (20), the FRF estimate P̂ETFE−Diff(Ωk) of (13) is
characterized by (21).

P̂ETFE−Diff(Ωk) :=
Ydiff(k)

Udiff(k)
= P (Ωk) +

Tdiff(Ωk)

Udiff(k)
(21)

Subsequently, to derive a zero leakage error condition
in ETFE-Diff, Tdiff(Ωk) of (20) is transformed as follows,
considering T (Ωk) and the additional term in (20) have similar
structures:

Tdiff(Ωk) = Cp(e
jΩkTsI −Ap)

−1ejΩkTs

[{xp(0)− xp(N)} − {xp(−1)− xp(N − 1)}]
(22)

From (22), the zero leakage error condition under which
Tdiff(Ωk) = 0 is derived as

xp(0)− xp(N) = xp(−1)− xp(N − 1) (23)

Therefore, when the zero leakage error condition of (23) holds,
the FRF estimate is consistent with the true plant FRF as

P̂ETFE−Diff(Ωk) :=
Ydiff(k)

Udiff(k)
= P (Ωk) (24)

It is confirmed from the above theoretical analysis that
applying the differential filtering changes the zero leakage
error condition from xp(0) = xp(N) in ETFE to xp(0) −
xp(N) = xp(−1)−xp(N−1). When the plant is in a settled
state at the start and end of a PTP positioning motion as stated
as C2 in II-A, (23) clearly holds and ETFE-Diff successfully

Galvano mirror

Servomotor

(with encoder)

Motor shaft

Fixing stand

Fig. 4. External appearance of laboratory galvano scanner.

suppresses the leakage error. In general, it is not difficult to
measure such PTP motion signals during processing. Note that
(23) is also valid for periodic motion (where xp(0) = xp(N)
and xp(−1) = xp(N − 1)) and reciprocating motion (where
xp(t ≤ 0) = xp(t ≥ N − 1)) as well as ETFE.

III. NUMERICAL EXPERIMENTS OF FRF ESTIMATION

A. Servo System
In this study, a galvano scanner, which is used as an

industrial servo mechanism for positioning a laser beam in
printed circuit board processing machines, is used as a target
servo system. In laser processing machines, fast and precise
PTP positioning control of a galvano scanner is crucial to
improve the throughput and product quality. Fig. 4 shows
the external appearance of a laboratory galvano scanner. A
galvano mirror is rotated by a servomotor, and the motor
angle is controlled by a servo controller mounted on a DSP
(PDRS-6000, System Design Service). The motor angle was
fed back to the DSP as a control output y with a resolution of
1.49 × 10−6 rad, and a motor current reference as a control
input u is calculated with a sampling time of Ts = 20 µs
in the DSP. The motor current was controlled via a servo
amplifier. The galvano scanner was installed in a thermo-
hygrostat chamber to vary the environmental temperature.

The red solid lines in Fig. 5 show the plant FRF of y
for u measured using a sine sweep test at an environmental
temperature of 25 ◦C as the default condition. The galvano
scanner contains some resonance modes at high frequencies
over 2 kHz, and the first and second resonance modes at
2.8 kHz and 6.1 kHz respectively, are attributed to the defor-
mation of the galvano mirror and torsion of the motor shaft.
For the following control design and numerical experiments,
a linear dynamics model of the plant P (s) is defined as (25)
in the s-domain expression, considering the first and second
resonance modes.

P (s) =
KtKa

J

(
1

s2
+

2∑
i=1

ki
s2 + 2ζiωis+ ω2

i

)
e−Ls (25)

where Kt is the torque constant of the motor, Ka is the static
gain of the servo amplifier, J is the moment of inertia, ωi

is the natural angular frequency of the i-th resonance mode,
ζi is the damping coefficient, ki is the resonance mode gain,
and L is the equivalent dead time for the phase delays of the
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Fig. 5. Frequency characteristics of plant.

TABLE II
PARAMETERS OF PLANT MODEL P (s).

Kt [Nm/A] 7.79×10−2 Ka 0.333
J [kgm2] 1.43×10−6 L [s] 20.8×10−6

ω1 [rad/s] 2π×2842 ω2 [rad/s] 2π×6050
ζ1 3.80×10−3 ζ2 1.14×10−2

k1 0.42 k2 -1.60

amplifier and D/A conversion. Table II lists the parameters of
P (s), while the black dotted lines in Fig. 5 show the FRF
of P (s) that accurately reproduces the measured FRF. Note
that thermal effects, such as environmental temperature and
self-heating, causes slight parameter variations in the galvano
scanner, mainly in Kt and ω1, leading to a non-negligible
deterioration in the positioning accuracy [8], [23]. Therefore,
it is necessary to accurately identify parameters for Kt and
ω1 is required to achieve fine positioning performance.

B. Position Control System
Fig. 6 shows a block diagram of the two-degree-of-freedom

position control system for the galvano scanner, where P (z)
is the discrete plant model of (25) with a zeroth-order hold,
Pff(z) is the plant model for generating the target position
trajectory reference y∗, Cfb(z) is the feedback (FB) controller,
Cff(z) is the FF controller based on the deadbeat control
manner [23], r is the target position reference as a step input,
and uff is the FF control input. Cfb(z) was constructed using a
proportional-integral-derivative compensator and two second-
order filters [24]. Cff(z) is defined as

Cff(z) =
affMff

zMff + aff(Mff−1)z
Mff−1 + · · ·+ aff1z + aff0

zMff

(26)
where affm with m = 0, 1, . . . ,Mff are the free parameters. In
the numerical experiments, Pff(z) was set as Pff(z) = P (z)
and Cff(z) was designed using the same model Pff(z). Owing
to FF compensation, the motor angular position y precisely
follows the reference y∗ while suppressing the vibratory
responses of the resonance modes and realizing the dead-
beat control property at t ≥ Mff . In this study, the target

u yr

uff

Pff(z)Cff(z) Cfb(z)
−

P (z)
y∗

Fig. 6. Block diagram of two-degree-of-freedom position control system.

Fig. 7. Simulation waveforms of control input u and angular position y
in a PTP positioning motion.

control specifications were defined by considering a typical
motion condition of the galvano scanner: target position of
r = 6.58×10−3 rad, target settling time of 0.72 ms(= 36Ts),
and target settling accuracy of ±1.97× 10−5 rad, and hence
Mff was set as Mff = 36. For more details on the FF controller
design, see [23].

C. Comparisons of FRF Estimation Properties
First, the three FRF estimation methods, which are ETFE,

LRM, and ETFE-Diff, were comparatively evaluated. The PTP
positioning motion from a settled state, xp(0) = xp(−1) =
O, was performed using the control system depicted in Fig.
6, and the measured time-domain signals u(t) and y(t) with
N = 8192 shown in Fig. 7 were utilized to estimate the plant
FRF. Herein, the plant sufficiently converges to a settled state
by t = N − 1, that is, xp(N) = xp(N − 1) holds. Clearly,
xp(0) ̸= xp(N). In the simulations, disturbing noises and
nonlinear effects, such as quantization, were not considered
to evaluate the theoretical differences described in Section II,
and the input frequency spectrum is smooth. In LRM, the
local window size Nw and rational model order Q were set
as Nw = 4 and Q = 2 respectively, with reference to [10].
ETFE and ETFE-Diff have no setting parameters.

Fig. 8 shows plant FRF estimates obtained by ETFE, LRM,
and ETFE-Diff. Both ETFE (black solid) and LRM (red dash)
include remarkable estimation errors owing to the leakage
error in all frequency bands, which makes it difficult to
accurately identify the rigid and resonance modes for the
true FRF P (Ωk) (black dot). Although LRM has a rational
model-based separating capability to remove the leakage error,
separating does not work effectively for such PTP positioning
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Fig. 8. Estimated FRFs for plant P (Ωk).
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Fig. 9. Estimated FRFs by ETFE-Diff using different time interval
signals.

motion signals without additional excitation. Consequently, it
was difficult to further improve the estimation accuracy of
LRM by changing Nw and Q. In contrast, ETFE-Diff (blue
solid) significantly eliminates the leakage error by using a
simple filtering approach, acquiring the most accurate FRF
estimate.

Subsequently, regarding ETFE-Diff, the validity of zero
leakage error condition of (23) was verified. From the response
waveform of y(t) near the target position shown in Fig. 7, it
is confirmed that y(t) almost converges to the settled state
after the target settling time of 0.72 ms = 36Ts. Therefore,
the time interval Nint of the measured signals for the FRF
estimation was changed to Nint = 50, 36, 33, and 30 ,
while xp(Nint) = xp(Nint − 1) was required to hold (23).
The measured Nint-point signals were zero-padded after the
end points to calculate the DFT with sufficient frequency
resolution, and N = 8192-point signals were prepared in
all cases. Fig. 9 shows the FRF estimates in the different
time intervals. In the cases of Nint = 50 (blue solid) and
Nint = 36 (blue dash), ETFE-Diff obtains accurate FRF

u

yr

uff

Pff(z)Cff(z) Cfb(z)
−

P (z)
y∗

FRF est.P̂ (Ωk)ρ̂

(ETFE-Diff)
Parameter

Ident.

Fig. 10. Block diagram of two-degree-of-freedom position control sys-
tem with FF compensation adjustment based on FRF estimation.

estimates because the plant sufficiently converges to the settled
states: xp(Nint) = xp(Nint − 1). In contrast, in the cases of
Nint = 33 (red dash) and Nint = 30 (red solid), the leakage
error owing to the transient response in the settling motion,
that is, xp(Nint) ̸= xp(Nint − 1), deteriorated the estimation
accuracy. The numerical experiments demonstrated that ETFE-
Diff can successfully suppress the leakage error owing to the
zero leakage error condition of (23) even with PTP positioning
motion signals satisfying the conditions C1 ∼ C3 stated in
II-A.

IV. EXPERIMENTAL EVALUATIONS OF
ETFE-DIFF-BASED FF COMPENSATION ADJUSTMENT

The FRF estimation-based FF compensation adjustment
system shown in Fig. 10 was constructed to evaluate the
effectiveness of the ETFE-Diff-based FRF estimation in fine
positioning control of the galvano scanner, compared to the
case without the FF compensation adjustment shown in Fig. 6
as the default control method. First, the FRF estimation system
calculates an plant FRF estimate P̂ (Ωk) based on the ETFE-
Diff using PTP motion signals u(t) and y(t). Subsequently, the
torque constant and first resonance frequency are identified
as ρ̂ = {K̂t, ω̂1}, based on simple parameter identification
algorithms. Thereafter, parameters of the FF controllers Cff(z)
and Pff(z) are adjusted using ρ̂ based on the parameter
adjustment method [23], and a PTP positioning motion is
performed again. In the remainder of this section, the parame-
ter identification algorithms and FF compensation adjustment
method are briefly explained, and then the experimental results
using the galvano scanner are presented.

A. Parameter Identification Algorithms
In this study, simple and classical parameter identifica-

tion algorithms that do not require complicated optimization
techniques were employed considering practical use in the
industry.

• Identification of Kt

The plant FRF at frequencies below the first reso-
nance frequency can be approximated as P (Ωk) =
−KtKa/JΩ

2
k considering only the rigid mode dynamics

in (25). Thus, the torque constant is identified as K̂t =
|P̂ (Ωk)|JΩ2

k/Ka by using the FRF estimate P̂ (Ωk). The
final identification value for K̂t is acquired as the average
in the frequency range of 2π × [400, 1000] rad/s.

• Identification of ω1

The identified value ω̂1 for the first resonance frequency
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Fig. 11. Configuration of experimental setup of galvano scanner.

ω1 is simply defined as the frequency where |P̂ (Ωk)|
has the highest gain around the first resonance mode,
by searching a narrow frequency window of 2π ×
[2700, 2900] rad/s, including the resonance peak.

B. FF Compensation Adjustment Method
The z-domain transfer function of the plant is defined as

P (z,ρ) := N(z,ρ)/D(z,ρ) in terms of ρ = {Kt, ω1}. To
achieve the deadbeat control property even with the parameter
variation due to thermal effects, the FF controllers Cff(z) and
Pff(z) are adjusted as follows, using the identified parameters
ρ̂ = {K̂t, ω̂1} and the parameters ρ̂o before adjusting:

Cff(z, ρ̂, ρ̂o) :=
N(1, ρ̂o)D(z, ρ̂)Cffno(z)

N(1, ρ̂)zMff

Pff(z, ρ̂) :=
N(z, ρ̂)

D(z, ρ̂)

(27)

where Cffno(z) is the fixed polynomial that is not adjusted
in Cff(z) [23]. By applying the above adjustments, if ρ̂ = ρ
holds, the control output obtained by the FF compensation can
be characterized as follows:

Y (z) =
N(1, ρ̂o)N(z,ρ)Cffno(z)

N(1, ρ̂)zMff
R(z) = Y ∗(z) (28)

Note that N(1, ρ̂) in the denominator does not affect the
transient property. For more details on the adjustment method,
see [23].

C. Experimental Setup
Fig. 11 shows a configuration of the experimental setup

of the galvano scanner used for performing both the ETFE-
Diff-based FRF estimation and FF compensation adjustment.
The FRF estimation by ETFE-Diff and parameter identification
explained in IV-A were performed using single PTP motion
signals u(t) and y(t) obtained by the FF compensation with
ρ̂o. Subsequently, the FF controllers Cff(z) and Pff(z) in the
servo controller were adjusted using ρ̂, as explained in IV-B,
and the next PTP motion was performed by the FF compen-
sation with ρ̂. The FRF estimation, parameter identification,
and FF compensation adjustment were performed online via
the DSP.
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Fig. 12. Waveforms of PTP positioning responses before adjusting FF
compensation at varied temperatures: (a) control input u; (b) angular
position y; (c) position error r − y; (d) position tracking error y∗ − y.

D. Experimental Evaluations
Experimental evaluations were performed via PTP posi-

tioning motions at environmental temperatures of 25, 35, and
45 ◦C. Each PTP motion was performed from a sufficiently
settled initial condition, that is, xp(0) = xp(−1). Hence, to
satisfy (23) in ETFE-Diff, xp(N) = xp(N − 1) is required.
In the experiment, the default FF controllers Cff(z) and
Pff(z) were designed with the model parameters of 25 ◦C,
as listed in Table II, and ρ̂o were set as ρ̂o = {7.79 ×
10−2 Nm/A, 2π×2842 rad/s}. Note that although disturbing
noises and nonlinear effects exist in the experimental system,
the direct FRF estimation approach was applied because their
effects are small.

Fig. 12 shows the response waveforms of the galvano
scanner before adjusting the FF compensation at the varied
temperatures. Although the input and output signals were
almost the same regardless of the temperature variations in the
macro view, as shown in Figs. 12(a) and 12(b), the perturbed
responses at 35 ◦C and 45 ◦C deteriorated the settling accuracy
in a micro view, as shown in Figs. 12(c) and 12(d).

The plant FRF estimated by ETFE-Diff at 25 ◦C using
N = 8192-point time-domain signals u(t) and y(t) are shown
in Fig. 13. Here, the plant FRF measured by sine sweep
(black dot) is shown as reference for the true FRF, while
the FRF estimates by ETFE and LRM are also shown for
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Fig. 13. Gain characteristics of estimated FRFs in experiment at 25 ◦C.
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Fig. 14. Gain characteristics of estimated FRFs by ETFE-Diff using
different time interval signals in experiment.

comparison. In the case of ETFE-Diff (blue solid), although
frequency characteristics over 5 kHz could not be estimated
clearly owing to the slight influence of disturbing noises
and nonlinear effects, the most accurate FRF estimate was
successfully acquired as in the numerical experiment in III-C.
In contrast, both ETFE (black solid) and LRM (red dash) could
not suppress the leakage error also in the experiment because
of xp(0) ̸= xp(N) in ETFE and no additional excitation in
LRM.

The FRF estimates using the measured signals at 25 ◦C
with Nint = 50, 36, 33, and 30 are shown in Fig. 14 to verify
the validity of zero leakage error condition of (23) for the
ETFE-Diff-based FRF estimation. For the FRF estimation,
N = 8192-point time-domain signals with zero-padding were
utilized in the same manner as in the numerical experiment of
III-C. Although slight transient responses appear around the
target position, the zero leakage error condition of (23) suffi-
ciently holds after the target settling time of 0.72 ms(= 36Ts).
Consequently, accurate FRF estimates were acquired in the
cases of Nint = 50, 36.

Next, the estimated plant FRFs at varied temperatures are
shown in Fig. 15 to clarify the effectiveness of the ETFE-Diff-
based FF adjustment. In the experiment of FF adjustment, Nint

was set as Nint = 50, considering the time required for the
transient responses at varied temperatures to sufficiently con-
verge within the target settling accuracy, and N = 32768-point
signals with zero-padding were utilized for FRF estimation
with a sufficiently small frequency resolution of approximately
1.53 Hz. Except a frequency range over 5 kHz, ETFE-Diff
acquired the FRF estimates eliminating the leakage error at
varied temperatures, as shown in Fig. 15(a). In addition, the
FRF estimates represent the variations in the rigid and first
resonance modes owing to the environmental temperature, as
shown in Figs. 15(b) and 15(c). From the estimated FRFs,
ρ̂ = {K̂t, ω̂1} were identified, as listed in Table III. It was
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Fig. 15. Gain characteristics of FRF estimates before adjusting FF
compensation at varied temperatures: (a) overview; (b) magnified view
around rigid mode; (c) magnified view around first resonance mode.

TABLE III
IDENTIFIED PARAMETERS FROM FRFS ESTIMATED BY ETFE-DIFF.

Parameter Temperature [◦C]
25 35 45

K̂t [Nm/A] 7.79×10−2 7.72×10−2 7.64×10−2

ω̂1 [rad/s] 2π×2827 2π×2817 2π×2808

confirmed that both K̂t and ω̂1 decreased slightly when the
temperature increased, which was the same trend as measured
by sine sweep.

Fig. 16 shows the experimental PTP positioning responses
at various temperatures after adjusting the FF compensation
by ρ̂ = {K̂t, ω̂1}. The adjusted FF compensation successfully
suppressed the perturbed responses, resulting in fine position-
ing performance that satisfied a target settling accuracy of
±1.97 × 10−5 rad. The settling time, RMS of the position
tracking error y∗ − y, and maximum absolute value of the
position error r−y after the target settling time are summarized
in Table IV, and compared to the values before adjusting
the FF compensation. Before adjusting the FF compensation,
the position tracking error and position error significantly
increased owing to the thermal effect, and the settling time
deteriorated to a maximum of 2.1 ms, which failed to satisfy
the target time of 0.72 ms. In contrast, after adjusting the
FF compensation, there was no deterioration in the settling
time despite the varied temperatures, and the settling time was
reduced by up to 69 % compared to that before adjusting the
FF compensation.

V. CONCLUSIONS

The ETFE-Diff-based FRF estimation and FF compensation
adjustment are presented to realize fine PTP positioning per-
formance, even if the plant parameters vary owing to thermal
effects during the processing operation. Regarding the FRF
estimation, the principle of ETFE-Diff to eliminate the leakage
error was newly clarified, and compared to ETFE and LRM.
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TABLE IV
COMPARISON OF POSITIONING PERFORMANCE AT VARIED TEMPERATURES.

Temperature [◦C]
Settling time [ms] RMS of pos. tracking error [µrad] Max. pos. error (absolute) [µrad]

Before FF adj. After FF adj. Before FF adj. After FF adj. Before FF adj. After FF adj.
25 0.68 0.66 10.80 6.15 16.96 6.55
35 1.20 0.66 17.64 6.93 35.47 7.06
45 2.10 0.66 30.82 7.24 81.93 10.03
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Fig. 16. Waveforms of PTP positioning responses after adjusting FF
compensation at varied temperatures: (a) position error r−y; (b) position
tracking error y∗ − y.

The ability of ETFE-Diff to accurately estimate plant FRF
when the zero leakage error condition holds in the positioning
motion was also verified via the theoretical analysis and
numerical experiments. The effectiveness of the ETFE-Diff-
based FRF estimation and FF compensation adjustment was
demonstrated experimentally with fast and precise position-
ing control of the galvano scanner under the environmental
temperature variations.
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