ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 研究論文

Bayesian Context Clustering Using Cross Validation for Speech Recognition

https://nitech.repo.nii.ac.jp/records/5510
https://nitech.repo.nii.ac.jp/records/5510
7beb1c0f-c97a-4b88-9152-9c406ae44c7c
名前 / ファイル ライセンス アクション
hashimoto_2011_IEICE.pdf 本文_fulltext (463.1 kB)
Copyright2011 IEICE http://search.ieice.org/index.html
Item type 学術雑誌論文 / Journal Article(1)
公開日 2012-11-07
タイトル
タイトル Bayesian Context Clustering Using Cross Validation for Speech Recognition
言語 en
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
著者 Hashimoto, Kei

× Hashimoto, Kei

en Hashimoto, Kei

Search repository
Zen, Heiga

× Zen, Heiga

en Zen, Heiga

Search repository
南角, 吉彦

× 南角, 吉彦

en Nankaku, Yoshihiko

ja 南角, 吉彦
ISNI

ja-Kana ナンカク, ヨシヒコ


Search repository
Lee, Akinobu

× Lee, Akinobu

en Lee, Akinobu

Search repository
徳田, 恵一

× 徳田, 恵一

en Tokuda, Keiichi

ja 徳田, 恵一
ISNI

ja-Kana トクダ, ケイイチ


Search repository
著者別名
姓名 橋本, 佳
著者別名
姓名 Nankaku, Yoshihiko
言語 en
姓名 南角, 吉彦
言語 ja
姓名 ナンカク, ヨシヒコ
言語 ja-Kana
著者別名
姓名 李, 晃伸
著者別名
姓名 Tokuda, Keiichi
言語 en
姓名 徳田, 恵一
言語 ja
姓名 トクダ, ケイイチ
言語 ja-Kana
書誌情報 en : IEICE transactions on information and systems

巻 E94-D, 号 3, p. 668-678, 発行日 2011-03-01
出版者
出版者 Institute of Electronics, Information and Communication Engineers
言語 en
item_10001_source_id_32
収録物識別子タイプ NCID
収録物識別子 AA10826272
出版タイプ
出版タイプ VoR
出版タイプResource http://purl.org/coar/version/c_970fb48d4fbd8a85
内容記述
内容記述タイプ Other
内容記述 This paper proposes Bayesian context clustering using cross validation for hidden Markov model (HMM) based speech recognition. The Bayesian approach is a statistical technique for estimating reliable predictive distributions by treating model parameters as random variables. The variational Bayesian method, which is widely used as an efficient approximation of the Bayesian approach, has been applied to HMM-based speech recognition, and it shows good performance. Moreover, the Bayesian approach can select an appropriate model structure while taking account of the amount of training data. Since prior distributions which represent prior information about model parameters affect estimation of the posterior distributions and selection of model structure (e.g., decision tree based context clustering), the determination of prior distributions is an important problem. However, it has not been thoroughly investigated in speech recognition, and the determination technique of prior distributions has not performed well. The proposed method can determine reliable prior distributions without any tuning parameters and select an appropriate model structure while taking account of the amount of training data. Continuous phoneme recognition experiments show that the proposed method achieved a higher performance than the conventional methods.
言語 en
戻る
0
views
See details
Views

Versions

Ver.1 2023-05-15 13:34:45.851734
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3