WEKO3
アイテム
A Use of Current Continuity Condition in GTD-MM Hybrid Technique
https://nitech.repo.nii.ac.jp/records/4090
https://nitech.repo.nii.ac.jp/records/409024ca5613-7421-458b-98e5-c7ac85ff9fb6
名前 / ファイル | ライセンス | アクション |
---|---|---|
![]() |
Copyright (c) 1991 IEICE http://search.ieice.org/index.html
|
Item type | 学術雑誌論文 / Journal Article(1) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
公開日 | 2013-06-25 | |||||||||||
タイトル | ||||||||||||
タイトル | A Use of Current Continuity Condition in GTD-MM Hybrid Technique | |||||||||||
言語 | en | |||||||||||
言語 | ||||||||||||
言語 | eng | |||||||||||
資源タイプ | ||||||||||||
資源タイプ識別子 | http://purl.org/coar/resource_type/c_6501 | |||||||||||
資源タイプ | journal article | |||||||||||
著者 |
Zhang, Xu
× Zhang, Xu
× Inagaki, Naoki
× Kikuma, Nobuyoshi
|
|||||||||||
著者別名 | ||||||||||||
姓名 | 菊間, 信良 | |||||||||||
bibliographic_information |
en : IEICE Transactions on Communications 巻 E74-C, 号 7, p. 2055-2060, 発行日 1991-07-20 |
|||||||||||
出版者 | ||||||||||||
出版者 | Institute of Electronics, Information and Communication Engineers | |||||||||||
言語 | en | |||||||||||
ISSN | ||||||||||||
収録物識別子タイプ | ISSN | |||||||||||
収録物識別子 | 0916-8516 | |||||||||||
item_10001_source_id_32 | ||||||||||||
収録物識別子タイプ | NCID | |||||||||||
収録物識別子 | AA10826261 | |||||||||||
出版タイプ | ||||||||||||
出版タイプ | VoR | |||||||||||
出版タイプResource | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |||||||||||
内容記述 | ||||||||||||
内容記述タイプ | Other | |||||||||||
内容記述 | A current continuity equation is proposed as the additional equation for the GTD-MM hybrid technique formulation to acquire the uniqueness of the solution which were nonexistent in the conventional formulation with the matching-point equation. The current continuity equation, which ensures the current continuity and satisfies the boundary condition, can directly be written down through equating the MM-region current to the GTD-region current at the regions boundary. It is proved that the current continuity equation is equivalent to the matching-point equation of special case when the matching-point located very close to the boundary, which were able to give the best solution in the conventional formulation with the matching-point equation as explained by Burnside et al. The validity of the new equation is confirmed through the numerical results. | |||||||||||
言語 | en |