WEKO3
アイテム
Scaling law for coherent vortices in decaying drift Rossby wave turbulence
https://nitech.repo.nii.ac.jp/records/4547
https://nitech.repo.nii.ac.jp/records/4547119382e7-1ec5-483f-9df8-1bbad1d2dd15
名前 / ファイル | ライセンス | アクション |
---|---|---|
![]() |
(c)1998 The American Physical Society
|
Item type | 学術雑誌論文 / Journal Article(1) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
公開日 | 2012-11-07 | |||||||||||
タイトル | ||||||||||||
タイトル | Scaling law for coherent vortices in decaying drift Rossby wave turbulence | |||||||||||
言語 | en | |||||||||||
言語 | ||||||||||||
言語 | eng | |||||||||||
資源タイプ | ||||||||||||
資源タイプ識別子 | http://purl.org/coar/resource_type/c_6501 | |||||||||||
資源タイプ | journal article | |||||||||||
著者 |
Watanabe, Takeshi
× Watanabe, Takeshi
× Iwayama, Takahiro
× Fujisaka, Hirokazu
|
|||||||||||
著者別名 | ||||||||||||
姓名 | 渡邊, 威 | |||||||||||
bibliographic_information |
en : PHYSICAL REVIEW E 巻 57, 号 2, p. 1636-1643, 発行日 1998-02 |
|||||||||||
出版者 | ||||||||||||
出版者 | American Physical Society | |||||||||||
言語 | en | |||||||||||
ISSN | ||||||||||||
収録物識別子タイプ | ISSN | |||||||||||
収録物識別子 | 1063-651X | |||||||||||
item_10001_source_id_32 | ||||||||||||
収録物識別子タイプ | NCID | |||||||||||
収録物識別子 | AA10848730 | |||||||||||
出版タイプ | ||||||||||||
出版タイプ | VoR | |||||||||||
出版タイプResource | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |||||||||||
内容記述 | ||||||||||||
内容記述タイプ | Other | |||||||||||
内容記述 | We numerically study the time evolution of coherent vortices in decaying turbulence described by the Charney-Hasegawa-Mima equation with the weak dissipation. Self-organized coherent vortices develop through the mutual advection and the vortex merging. The dimensional analysis provides the dynamical scaling law of structure function of the potential vorticity field S(k,t) = E5/4λ1/2t1/2G(k/k?(t)) [k?(t)?E-1/8λ3/4t-1/4] with a scaling function G(x), which turns out to be in good agreement with numerical experiments. In physical space, quantities related to coherent vortices develop algebraically with time. The dimensional analysis predicts that the total number N of vortices decreases as N?t-χ with exponent χ=1/2. Moreover, it is found that the remarkable feature of this system is the approximate conservation of the area of the coherent region in the potential voracity field. | |||||||||||
言語 | en |