WEKO3
アイテム
Large deviation statistics of the energy-flux fluctuation in the shell model of turbulence
https://nitech.repo.nii.ac.jp/records/4778
https://nitech.repo.nii.ac.jp/records/47788e9f489c-cfd9-4032-b7cb-45cc5ed5d53f
名前 / ファイル | ライセンス | アクション |
---|---|---|
![]() |
(c)2000 The American Physical Society
|
Item type | 学術雑誌論文 / Journal Article(1) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
公開日 | 2012-11-07 | |||||||||||
タイトル | ||||||||||||
タイトル | Large deviation statistics of the energy-flux fluctuation in the shell model of turbulence | |||||||||||
言語 | en | |||||||||||
言語 | ||||||||||||
言語 | eng | |||||||||||
資源タイプ | ||||||||||||
資源タイプ識別子 | http://purl.org/coar/resource_type/c_6501 | |||||||||||
資源タイプ | journal article | |||||||||||
著者 |
Watanabe, Takeshi
× Watanabe, Takeshi
× Nakayama, Yasuya
× Fujisaka, Hirokazu
|
|||||||||||
著者別名 | ||||||||||||
姓名 | 渡邊, 威 | |||||||||||
bibliographic_information |
en : PHYSICAL REVIEW E 巻 61, 号 2, p. R1024-R1027, 発行日 2000-02 |
|||||||||||
出版者 | ||||||||||||
出版者 | American Physical Society | |||||||||||
言語 | en | |||||||||||
ISSN | ||||||||||||
収録物識別子タイプ | ISSN | |||||||||||
収録物識別子 | 1063-651X | |||||||||||
item_10001_source_id_32 | ||||||||||||
収録物識別子タイプ | NCID | |||||||||||
収録物識別子 | AA10848730 | |||||||||||
出版タイプ | ||||||||||||
出版タイプ | VoR | |||||||||||
出版タイプResource | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |||||||||||
内容記述 | ||||||||||||
内容記述タイプ | Other | |||||||||||
内容記述 | The Charney-Hasegawa-Mima equation, with random forcing at the narrow band wave-number region, which is set to be slightly larger than the characteristic wave number λ, evaluating the inverse ion Larmor radius in plasma, is numerically studied. It is shown that the Fourier spectrum of the potential vorticity fluctuation in the development of turbulence with an initial condition of quiescent state obeys a dynamic scaling law for k≪λ. The dimensional analysis with the assumption that the energy transfer rate ε in the inverse cascade is constant with time leads to the scaling form S(k,t) = λ1/2ε5/4t 7/4F(k/k?(t))[k?(t)?λ3/4ε -1/8t-3/8] with a scaling function F(x), which turns out to be in good agreement with numerical experiments. | |||||||||||
言語 | en |