ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 研究論文

Polynomially Fast Parallel Algorithms for Some P-Complete Problems

https://nitech.repo.nii.ac.jp/records/4949
https://nitech.repo.nii.ac.jp/records/4949
9bee0c16-eddc-4147-aad7-908e72f1bf59
名前 / ファイル ライセンス アクション
E84-A_1244.pdf 本文_fulltext (677.5 kB)
Copyright (c) 2001 IEICE http://search.ieice.org/index.html
Item type 学術雑誌論文 / Journal Article(1)
公開日 2013-06-25
タイトル
タイトル Polynomially Fast Parallel Algorithms for Some P-Complete Problems
言語 en
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
著者 Castanho, Carla Denise

× Castanho, Carla Denise

en Castanho, Carla Denise

Search repository
Chen, Wei

× Chen, Wei

en Chen, Wei

Search repository
Wada, Koichi

× Wada, Koichi

en Wada, Koichi

Search repository
Fujiwara, Akihiro

× Fujiwara, Akihiro

en Fujiwara, Akihiro

Search repository
著者別名
姓名 和田, 幸一
bibliographic_information en : IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences

巻 E84-A, 号 5, p. 1244-1255, 発行日 2001-05-01
出版者
出版者 Institute of Electronics, Information and Communication Engineers
言語 en
ISSN
収録物識別子タイプ ISSN
収録物識別子 0916-8508
item_10001_source_id_32
収録物識別子タイプ NCID
収録物識別子 AA10826239
出版タイプ
出版タイプ VoR
出版タイプResource http://purl.org/coar/version/c_970fb48d4fbd8a85
内容記述
内容記述タイプ Other
内容記述 P-complete problems seem to have no parallel algorithm which runs in polylogarithmic time using a polynomial number of processors. A P-complete problem is in the class EP (Efficient and Polynomially fast) if and only if there exists a cost optimal algorithm to solve it in T(n) = O(t(n)ε) (ε < 1) using P(n) processors such that T(n) P(n) = O(t(n)), where t(n) is the time complexity of the fastest sequential algorithm which solves the problem. The goal of our research is to find EP parallel algorithms for some P-complete problems. In this paper first we consider the convex layers problem. We give an algorithm for computing the convex layers of a set S of n points in the plane. Let k be the number of the convex layers of S. When 1 k nε/2 (0 ε < 1) our algorithm runs in O((n log n)/p) time using p processors, where 1 p n1-ε/2, and it is cost optimal. Next, we consider the envelope layers problem of a set S of n line segments in the plane. Let k be the number of the envelope layers of S. When 1 k nε/2 (0 ε < 1), we propose an algorithm for computing the envelope layers of S in O((n α(n) log3 n)/p) time using p processors, where 1 p n1-ε/2, and α(n) is the functional inverse of Ackermann's function which grows extremely slowly. The computational model we use in this paper is the CREW-PRAM. Our first algorithm, for the convex layers problem, belongs to EP, and the second one, for the envelope layers problem, belongs to the class EP if a small factor of log n is ignored.
言語 en
戻る
0
views
See details
Views

Versions

Ver.1 2023-05-15 14:02:05.296893
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3