ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 研究論文

Applying Sparse KPCA for Feature Extraction in Speech Recognition

https://nitech.repo.nii.ac.jp/records/5232
https://nitech.repo.nii.ac.jp/records/5232
bad93301-5505-4c13-8fde-970c64fcd997
名前 / ファイル ライセンス アクション
E88-D_401.pdf 本文_fulltext (596.0 kB)
Copyright(c)2005 IEICE http://search.ieice.org/index.html
Item type 学術雑誌論文 / Journal Article(1)
公開日 2012-11-07
タイトル
タイトル Applying Sparse KPCA for Feature Extraction in Speech Recognition
言語 en
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
著者 Lima, Amaro

× Lima, Amaro

en Lima, Amaro

Search repository
Zen, Heiga

× Zen, Heiga

en Zen, Heiga

Search repository
南角, 吉彦

× 南角, 吉彦

en Nankaku, Yoshihiko

ja 南角, 吉彦
ISNI

ja-Kana ナンカク, ヨシヒコ


Search repository
徳田, 恵一

× 徳田, 恵一

en Tokuda, Keiichi

ja 徳田, 恵一
ISNI

ja-Kana トクダ, ケイイチ


Search repository
Kitamura, Tadashi

× Kitamura, Tadashi

en Kitamura, Tadashi

Search repository
Resende, Fernando G.

× Resende, Fernando G.

en Resende, Fernando G.

Search repository
著者別名
姓名 Nankaku, Yoshihiko
言語 en
姓名 南角, 吉彦
言語 ja
姓名 ナンカク, ヨシヒコ
言語 ja-Kana
著者別名
姓名 Tokuda, Keiichi
言語 en
姓名 徳田, 恵一
言語 ja
姓名 トクダ, ケイイチ
言語 ja-Kana
著者別名
姓名 北村, 正
書誌情報 en : IEICE transactions on information and systems

巻 E88-D, 号 3, p. 401-409, 発行日 2005-03-01
出版者
出版者 Institute of Electronics, Information and Communication Engineers
言語 en
ISSN
収録物識別子タイプ ISSN
収録物識別子 0916-8532
item_10001_source_id_32
収録物識別子タイプ NCID
収録物識別子 AA10826272
出版タイプ
出版タイプ VoR
出版タイプResource http://purl.org/coar/version/c_970fb48d4fbd8a85
内容記述
内容記述タイプ Other
内容記述 This paper presents an analysis of the applicability of Sparse Kernel Principal Component Analysis (SKPCA) for feature extraction in speech recognition, as well as, a proposed approach to make the SKPCA technique realizable for a large amount of training data, which is an usual context in speech recognition systems. Although the KPCA (Kernel Principal Component Analysis) has proved to be an efficient technique for being applied to speech recognition, it has the disadvantage of requiring training data reduction, when its amount is excessively large. This data reduction is important to avoid computational unfeasibility and/or an extremely high computational burden related to the feature representation step of the training and the test data evaluations. The standard approach to perform this data reduction is to randomly choose frames from the original data set, which does not necessarily provide a good statistical representation of the original data set. In order to solve this problem a likelihood related re-estimation procedure was applied to the KPCA framework, thus creating the SKPCA, which nevertheless is not realizable for large training databases. The proposed approach consists in clustering the training data and applying to these clusters a SKPCA like data reduction technique generating the reduced data clusters. These reduced data clusters are merged and reduced in a recursive procedure until just one cluster is obtained, making the SKPCA approach realizable for a large amount of training data. The experimental results show the efficiency of SKPCA technique with the proposed approach over the KPCA with the standard sparse solution using randomly chosen frames and the standard feature extraction techniques.
言語 en
戻る
0
views
See details
Views

Versions

Ver.1 2023-05-15 13:39:27.252411
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3