ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 研究論文

CombNET-III with Nonlinear Gating Network and Its Application in Large-Scale Classification Problems

https://nitech.repo.nii.ac.jp/records/5371
https://nitech.repo.nii.ac.jp/records/5371
63c6c1ec-1441-4f05-95f4-16e4ebee847f
名前 / ファイル ライセンス アクション
E91-D_286.pdf 本文_fulltext (546.0 kB)
Copyright(c)2008 IEICE http://search.ieice.org/index.html
Item type 学術雑誌論文 / Journal Article(1)
公開日 2012-11-07
タイトル
タイトル CombNET-III with Nonlinear Gating Network and Its Application in Large-Scale Classification Problems
言語 en
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
著者 Kugler, Mauricio

× Kugler, Mauricio

en Kugler, Mauricio

Search repository
Kuroyanagi, Susumu

× Kuroyanagi, Susumu

en Kuroyanagi, Susumu

Search repository
Nugroho, Anto Satriyo

× Nugroho, Anto Satriyo

en Nugroho, Anto Satriyo

Search repository
Iwata, Akira

× Iwata, Akira

en Iwata, Akira

Search repository
著者別名
姓名 黒柳, 奨
著者別名
姓名 岩田, 彰
bibliographic_information en : IEICE transactions on information and systems

巻 E91-D, 号 2, p. 286-295, 発行日 2008-02-01
出版者
出版者 Institute of Electronics, Information and Communication Engineers
言語 en
ISSN
収録物識別子タイプ ISSN
収録物識別子 0916-8532
item_10001_source_id_32
収録物識別子タイプ NCID
収録物識別子 AA10826272
出版タイプ
出版タイプ VoR
出版タイプResource http://purl.org/coar/version/c_970fb48d4fbd8a85
内容記述
内容記述タイプ Other
内容記述 Modern applications of pattern recognition generate very large amounts of data, which require large computational effort to process. However, the majority of the methods intended for large-scale problems aim to merely adapt standard classification methods without considering if those algorithms are appropriated for large-scale problems. CombNET-II was one of the first methods specifically proposed for such kind of a task. Recently, an extension of this model, named CombNET-III, was proposed. The main modifications over the previous model was the substitution of the expert networks by Support Vectors Machines (SVM) and the development of a general probabilistic framework. Although the previous model's performance and flexibility were improved, the low accuracy of the gating network was still compromising CombNET-III's classification results. In addition, due to the use of SVM based experts, the computational complexity is higher than CombNET-II. This paper proposes a new two-layered gating network structure that reduces the compromise between number of clusters and accuracy, increasing the model's performance with only a small complexity increase. This high-accuracy gating network also enables the removal the low confidence expert networks from the decoding procedure. This, in addition to a new faster strategy for calculating multiclass SVM outputs significantly reduced the computational complexity. Experimental results of problems with large number of categories show that the proposed model outperforms the original CombNET-III, while presenting a computational complexity more than one order of magnitude smaller. Moreover, when applied to a database with a large number of samples, it outperformed all compared methods, confirming the proposed model's flexibility.
言語 en
戻る
0
views
See details
Views

Versions

Ver.1 2023-05-15 13:37:09.764806
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3