WEKO3
アイテム
A Method for Evaluating Minimum Free Chernov Distance of Trellis-Codes for Discrete Memoryless Channel
https://nitech.repo.nii.ac.jp/records/4596
https://nitech.repo.nii.ac.jp/records/45961d19d4b9-5451-4a06-9df4-c31f53fb8fc0
名前 / ファイル | ライセンス | アクション |
---|---|---|
![]() |
Copyright(c)1998 IEICE http://search.ieice.org/index.html
|
Item type | 学術雑誌論文 / Journal Article(1) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
公開日 | 2013-06-25 | |||||||||||
タイトル | ||||||||||||
タイトル | A Method for Evaluating Minimum Free Chernov Distance of Trellis-Codes for Discrete Memoryless Channel | |||||||||||
言語 | en | |||||||||||
言語 | ||||||||||||
言語 | eng | |||||||||||
資源タイプ | ||||||||||||
資源タイプ識別子 | http://purl.org/coar/resource_type/c_6501 | |||||||||||
資源タイプ | journal article | |||||||||||
著者 |
Wadayama, Tadashi
× Wadayama, Tadashi
× Wakasugi, Koichiro
× Kasahara, Masao
|
|||||||||||
著者別名 | ||||||||||||
姓名 | 和田山, 正 | |||||||||||
書誌情報 |
en : IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences 巻 E81-A, 号 10, p. 1972-1978, 発行日 1998-10-20 |
|||||||||||
出版者 | ||||||||||||
出版者 | Institute of Electronics, Information and Communication Engineers | |||||||||||
言語 | en | |||||||||||
ISSN | ||||||||||||
収録物識別子タイプ | ISSN | |||||||||||
収録物識別子 | 0916-8508 | |||||||||||
item_10001_source_id_32 | ||||||||||||
収録物識別子タイプ | NCID | |||||||||||
収録物識別子 | AA10826239 | |||||||||||
出版タイプ | ||||||||||||
出版タイプ | VoR | |||||||||||
出版タイプResource | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |||||||||||
内容記述 | ||||||||||||
内容記述タイプ | Other | |||||||||||
内容記述 | In this paper, we present a method for evaluating the minimum free Chernov distance of trellis-codes for a discrete memoryless channels (DMC). In order to design an efficient trellis-code for the DMC, we need to evaluate the minimum free Chernov distance of the target code. However, the lack of the additive property of the Chernov distance prevents a conventional branch-and-bound search for evaluating the minimum distance. To overcome the difficulty, we present a lower bound on the Chernov distance with an additive property. The lower bound plays a key role in the minimum distance evaluation algorithm presented here. By using the proposed algorithm, we have derived the minimum free Chernov distance of some binary linear convolutional codes over Z-channel. | |||||||||||
言語 | en |