WEKO3
アイテム
A Simplification Algorithm for Calculation of the Mutual Information by Quantum Combined Measurement
https://nitech.repo.nii.ac.jp/records/4749
https://nitech.repo.nii.ac.jp/records/4749e9b0a336-a843-4cda-9e30-1b75ff0b9835
名前 / ファイル | ライセンス | アクション |
---|---|---|
![]() |
Copyright(c)1999 IEICE http://search.ieice.org/index.html
|
Item type | 学術雑誌論文 / Journal Article(1) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
公開日 | 2013-06-25 | |||||||||||||
タイトル | ||||||||||||||
タイトル | A Simplification Algorithm for Calculation of the Mutual Information by Quantum Combined Measurement | |||||||||||||
言語 | en | |||||||||||||
言語 | ||||||||||||||
言語 | eng | |||||||||||||
資源タイプ | ||||||||||||||
資源タイプ識別子 | http://purl.org/coar/resource_type/c_6501 | |||||||||||||
資源タイプ | journal article | |||||||||||||
著者 |
Usami, Shogo
× Usami, Shogo
× Usuda, Tsuyoshi Sasaki
× Takumi, Ichi
× Hata, Masayasu
|
|||||||||||||
著者別名 | ||||||||||||||
姓名 | 内匠, 逸 | |||||||||||||
bibliographic_information |
en : IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences 巻 E82-A, 号 10, p. 2185-2190, 発行日 1999-10-20 |
|||||||||||||
出版者 | ||||||||||||||
出版者 | Institute of Electronics, Information and Communication Engineers | |||||||||||||
言語 | en | |||||||||||||
ISSN | ||||||||||||||
収録物識別子タイプ | ISSN | |||||||||||||
収録物識別子 | 0916-8508 | |||||||||||||
item_10001_source_id_32 | ||||||||||||||
収録物識別子タイプ | NCID | |||||||||||||
収録物識別子 | AA10826239 | |||||||||||||
出版タイプ | ||||||||||||||
出版タイプ | VoR | |||||||||||||
出版タイプResource | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |||||||||||||
内容記述 | ||||||||||||||
内容記述タイプ | Other | |||||||||||||
内容記述 | Recently, the quantum information theory attracts much attention. In quantum information theory, the existence of superadditivity in capacity of a quantum channel was foreseen conventionally. So far, some examples of codes which show the superadditivity in capacity have been clarified. However in present stage, characteristics of superadditivity are not still clear up enough. The reason is as follows. All examples were shown by calculating the mutual information by quantum combined measurement, so that one had to solve the eigenvalue and the eigenvector problems. In this paper, we construct a simplification algorithm to calculate the mutual information by using square-root measurement as decoding process of quantum combined measurement. The eigenvalue and the eigenvector problems are avoided in the algorithm by using group covariancy of binary linear codes. Moreover, we derive the analytical solution of the mutual information for parity check codes with any length as an example of applying the simplification algorithm. | |||||||||||||
言語 | en |