ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 研究論文

A Solution for Imbalanced Training Sets Problem by CombNET-II and Its Application on Fog Forecasting

https://nitech.repo.nii.ac.jp/records/5072
https://nitech.repo.nii.ac.jp/records/5072
b975069d-1929-46ba-b259-fbd661337cae
名前 / ファイル ライセンス アクション
E85-D_1165.pdf 本文_fulltext (989.4 kB)
Copyright(c)2002 IEICE http://search.ieice.org/index.html
Item type 学術雑誌論文 / Journal Article(1)
公開日 2012-11-07
タイトル
タイトル A Solution for Imbalanced Training Sets Problem by CombNET-II and Its Application on Fog Forecasting
言語 en
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
著者 Nugroho, Anto Satriyo

× Nugroho, Anto Satriyo

en Nugroho, Anto Satriyo

Search repository
Kuroyanagi, Susumu

× Kuroyanagi, Susumu

en Kuroyanagi, Susumu

Search repository
Iwata, Akira

× Iwata, Akira

en Iwata, Akira

Search repository
著者別名
姓名 黒柳, 奨
著者別名
姓名 岩田, 彰
bibliographic_information en : IEICE transactions on information and systems

巻 E85-D, 号 7, p. 1165-1174, 発行日 2002-07-01
出版者
出版者 Institute of Electronics, Information and Communication Engineers
言語 en
ISSN
収録物識別子タイプ ISSN
収録物識別子 0916-8532
item_10001_source_id_32
収録物識別子タイプ NCID
収録物識別子 AA10826272
出版タイプ
出版タイプ VoR
出版タイプResource http://purl.org/coar/version/c_970fb48d4fbd8a85
内容記述
内容記述タイプ Other
内容記述 Studies on artificial neural network have been conducted for a long time, and its contribution has been shown in many fields. However, the application of neural networks in the real world domain is still a challenge, since nature does not always provide the required satisfactory conditions. One example is the class size imbalanced condition in which one class is heavily under-represented compared to another class. This condition is often found in the real world domain and presents several difficulties for algorithms that assume the balanced condition of the classes. In this paper, we propose a method for solving problems posed by imbalanced training sets by applying the modified large-scale neural network CombNET-II. CombNET-II consists of two types of neural networks. The first type is a one-layer vector quantization neural network to turn the problem into a more balanced condition. The second type consists of several modules of three-layered multilayer perceptron trained by backpropagation for finer classification. CombNET-II combines the two types of neural networks to solve the problem effectively within a reasonable time. The performance is then evaluated by turning the model into a practical application for a fog forecasting problem. Fog forecasting is an imbalanced training sets problem, since the probability of fog appearance in the observation location is very low. Fog events should be predicted every 30 minutes based on the observation of meteorological conditions. Our experiments showed that CombNET-II could achieve a high prediction rate compared to the k-nearest neighbor classifier and the three-layered multilayer perceptron trained with BP. Part of this research was presented in the 1999 Fog Forecasting Contest sponsored by Neurocomputing Technical Group of IEICE, Japan, and CombNET-II achieved the highest accuracy among the participants.
言語 en
戻る
0
views
See details
Views

Versions

Ver.1 2023-05-15 13:42:03.013782
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3