WEKO3
アイテム
Approximability and inapproximability of the minimum certificate dispersal problem
https://nitech.repo.nii.ac.jp/records/5506
https://nitech.repo.nii.ac.jp/records/55066f4331ef-8da7-4263-8ab3-3e8afae07dc3
名前 / ファイル | ライセンス | アクション |
---|---|---|
![]() |
Copyright c 2010 Elsevier B.V. All rights reserved.
|
Item type | 学術雑誌論文 / Journal Article(1) | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
公開日 | 2013-06-25 | |||||||||||||||||||
タイトル | ||||||||||||||||||||
タイトル | Approximability and inapproximability of the minimum certificate dispersal problem | |||||||||||||||||||
言語 | en | |||||||||||||||||||
言語 | ||||||||||||||||||||
言語 | eng | |||||||||||||||||||
資源タイプ | ||||||||||||||||||||
資源タイプ識別子 | http://purl.org/coar/resource_type/c_6501 | |||||||||||||||||||
資源タイプ | journal article | |||||||||||||||||||
著者 |
Izumi, Tomoko
× Izumi, Tomoko
× 泉, 泰介
× Ono, Hirotaka
× Wada, Koichi
|
|||||||||||||||||||
著者別名 | ||||||||||||||||||||
姓名 | Izumi, Taisuke | |||||||||||||||||||
言語 | en | |||||||||||||||||||
姓名 | 泉, 泰介 | |||||||||||||||||||
言語 | ja | |||||||||||||||||||
姓名 | イズミ, タイスケ | |||||||||||||||||||
言語 | ja-Kana | |||||||||||||||||||
著者別名 | ||||||||||||||||||||
姓名 | 和田, 幸一 | |||||||||||||||||||
bibliographic_information |
en : Theoretical Computer Science 巻 411, 号 31-33, p. 2773-2783, 発行日 2010-06-28 |
|||||||||||||||||||
出版者 | ||||||||||||||||||||
出版者 | Elsevier BV | |||||||||||||||||||
言語 | en | |||||||||||||||||||
ISSN | ||||||||||||||||||||
収録物識別子タイプ | ISSN | |||||||||||||||||||
収録物識別子 | 0304-3975 | |||||||||||||||||||
item_10001_source_id_32 | ||||||||||||||||||||
収録物識別子タイプ | NCID | |||||||||||||||||||
収録物識別子 | AA00862688 | |||||||||||||||||||
出版タイプ | ||||||||||||||||||||
出版タイプ | AM | |||||||||||||||||||
出版タイプResource | http://purl.org/coar/version/c_ab4af688f83e57aa | |||||||||||||||||||
item_10001_relation_34 | ||||||||||||||||||||
関連タイプ | isVersionOf | |||||||||||||||||||
識別子タイプ | DOI | |||||||||||||||||||
関連識別子 | http://dx.doi.org/10.1016/j.tcs.2010.03.029 | |||||||||||||||||||
関連名称 | 10.1016/j.tcs.2010.03.029 | |||||||||||||||||||
内容記述 | ||||||||||||||||||||
内容記述タイプ | Other | |||||||||||||||||||
内容記述 | Given an n-vertex directed graph G = (V;E) and a set R ⊆ V × V of requests,we consider to assign a set of edges to each vertex in G so that for every request(u; v) in R the union of the edge sets assigned to u and v contains a path fromu to v. The Minimum Certi cate Dispersal Problem (MCD) is defined as one tofind an assignment that minimizes the sum of the cardinalities of the edge setsassigned to each vertex. This problem has been shown to be NP-hard in general,though it is polynomially solvable for some restricted classes of graphs and restrictedrequest structures, such as bidirectional trees with requests of all pairsof vertices. In this paper, we give an advanced investigation about the difficultyof MCD by focusing on the relationship between its (in)approximability and requeststructures. We first show that MCD with general R has Θ(log n) lower andupper bounds on approximation ratio under the assumption P ?= NP. We thenassume R forms a clique structure, called Subset-Full, which is a natural settingin the context of the application. Interestingly, under this natural setting, MCDbecomes to be 2-approximable, though it has still no polynomial time approximationalgorithm whose factor better than 677=676 unless P = NP. Finally,we show that this approximation ratio can be improved to 3/2 for undirectedvariant of MCD with Subset-Full. | |||||||||||||||||||
言語 | en |